159 research outputs found

    Brines from industrial water recycling: New ways to resource recovery

    Get PDF
    Stricter environmental regulation policies and freshwater as an increasingly valuable resource have led to global growth of zero liquid discharge (ZLD) processes in recent years. During this development, in addition to water, the recovery of recyclable materials, e.g. salts, from industrial wastewater and brines is considered more frequently. Within the framework of the HighCon research project, the subject of this study, a new ZLD process with the goal of pure single-salt recovery from industrial wastewater has been developed and investigated in a demonstrational setup at an industrial site. With regard to pure salts recovery, separating organic components is of great importance during the treatment of the concentrate arising from used water recycling. The removal of COD and of ions responsible for scaling worked very well using nanofiltration. The nanofiltration permeate containing the monovalent ions was pre-concentrated using electrodialysis and membrane distillation before selective crystallization for single-salt recovery was performed. An example economic case study for the newly developed ZLD process - based on demonstration results and considering optimization measures for a full-scale design - indicates that the costs are equal to those of a conventional ZLD process, which, however, does not provide inter alia the aforementioned benefit of single-salt recovery

    Fast Track Communication

    Get PDF
    Abstract Photoionization of Mg 3s is studied near the Cooper minimum in dipole channels using the relativistic-random-phase approximation. While the importance of first-order nondipole effects on photoelectron angular distributions at low energies is well known, it is reported here for the first time that in the energy region near the dipole Cooper minimum, quadrupole transitions are not just important, but actually dominate the total photoionization cross section. Studies of dipole-dipole, dipole-quadrupole and quadrupole-quadrupole interference terms in the photoelectron angular distribution show that in the region of dipole Cooper minimum even the calculation of the dipole angular distribution parameter, β, requires the inclusion of quadrupole channels. The significance of second-order [O(k 2 r 2 )] nondipole terms, primarily due to the contributions from electric quadrupole-quadrupole interference terms at photon energy as low as ∼11 eV, are shown to induce dramatic changes in the photoelectron angular distribution over a small energy range

    COMT Val 158 Met polymorphism is associated with post-traumatic stress disorder and functional outcome following mild traumatic brain injury

    Get PDF
    Mild traumatic brain injury (mTBI) results in variable clinical trajectories and outcomes. The source of variability remains unclear, but may involve genetic variations, such as single nucleotide polymorphisms (SNPs). A SNP in catechol-o-methyltransferase (COMT) is suggested to influence development of post-traumatic stress disorder (PTSD), but its role in TBI remains unclear. Here, we utilize the Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot (TRACK-TBI Pilot) study to investigate whether the COMT Val158Met polymorphism is associated with PTSD and global functional outcome as measured by the PTSD Checklist - Civilian Version and Glasgow Outcome Scale Extended (GOSE), respectively. Results in 93 predominately Caucasian subjects with mTBI show that the COMT Met158 allele is associated with lower incidence of PTSD (univariate odds ratio (OR) of 0.25, 95% CI [0.09-0.69]) and higher GOSE scores (univariate OR 2.87, 95% CI [1.20-6.86]) 6-months following injury. The COMT Val158Met genotype and PTSD association persists after controlling for race (multivariable OR of 0.29, 95% CI [0.10-0.83]) and pre-existing psychiatric disorders/substance abuse (multivariable OR of 0.32, 95% CI [0.11-0.97]). PTSD emerged as a strong predictor of poorer outcome on GOSE (multivariable OR 0.09, 95% CI [0.03-0.26]), which persists after controlling for age, GCS, and race. When accounting for PTSD in multivariable analysis, the association of COMT genotype and GOSE did not remain significant (multivariable OR 1.73, 95% CI [0.69-4.35]). Whether COMT genotype indirectly influences global functional outcome through PTSD remains to be determined and larger studies in more diverse populations are needed to confirm these findings

    Diagnosing Level of Consciousness: Limits of the Glasgow Coma Scale Total Score

    Full text link
    In nearly all clinical and research contexts, the initial severity of a traumatic brain injury (TBI) is measured using the Glasgow Coma Scale (GCS) total score. The GCS total score however, may not accurately reflect level of consciousness, a critical indicator of injury severity. We investigated the relationship between GCS total scores and level of consciousness in a consecutive sample of 2455 adult subjects assessed with the GCS 69,487 times as part of the multi-center Transforming Research and Clinical Knowledge in TBI (TRACKTBI) study. We assigned each GCS subscale score combination a level of consciousness rating based on published criteria for the following disorders of consciousness (DoC) diagnoses: coma, vegetative state/ unresponsive wakefulness syndrome, minimally conscious state, and post-traumatic confusional state, and present our findings using summary statistics and four illustrative cases. Participants had the following characteristics: mean (standard deviation) age 41.9 (17.6) years, 69% male, initial GCS 3–8 = 13%; 9–12 = 5%; 13–15 = 82%. All GCS total scores between 4–14 were associated with more than one DoC diagnosis; the greatest variability was observed for scores of 7–11. Further, a wide range of total scores was associated with identical DoC diagnoses. Importantly, a diagnosis of coma was only possible with GCS total scores of 3–6. The GCS total score does not accurately reflect level of consciousness based on published DoC diagnostic criteria. To improve the classification of patients with TBI and to inform the design of future clinical trials, clinicians and investigators should consider individual subscale behaviors and more comprehensive assessments when evaluating TBI severityTRACK-TB

    COMT Val 158 Met polymorphism is associated with nonverbal cognition following mild traumatic brain injury

    Get PDF
    Mild traumatic brain injury (mTBI) results in variable clinical outcomes, which may be influenced by genetic variation. A single-nucleotide polymorphism in catechol-o-methyltransferase (COMT), an enzyme which degrades catecholamine neurotransmitters, may influence cognitive deficits following moderate and/or severe head trauma. However, this has been disputed, and its role in mTBI has not been studied. Here, we utilize the Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot (TRACK-TBI Pilot) study to investigate whether the COMT Val (158) Met polymorphism influences outcome on a cognitive battery 6 months following mTBI--Wechsler Adult Intelligence Test Processing Speed Index Composite Score (WAIS-PSI), Trail Making Test (TMT) Trail B minus Trail A time, and California Verbal Learning Test, Second Edition Trial 1-5 Standard Score (CVLT-II). All patients had an emergency department Glasgow Coma Scale (GCS) of 13-15, no acute intracranial pathology on head CT, and no polytrauma as defined by an Abbreviated Injury Scale (AIS) score of ≥3 in any extracranial region. Results in 100 subjects aged 40.9 (SD 15.2) years (COMT Met (158) /Met (158) 29 %, Met (158) /Val (158) 47 %, Val (158) /Val (158) 24 %) show that the COMT Met (158) allele (mean 101.6 ± SE 2.1) associates with higher nonverbal processing speed on the WAIS-PSI when compared to Val (158) /Val (158) homozygotes (93.8 ± SE 3.0) after controlling for demographics and injury severity (mean increase 7.9 points, 95 % CI [1.4 to 14.3], p = 0.017). The COMT Val (158) Met polymorphism did not associate with mental flexibility on the TMT or with verbal learning on the CVLT-II. Hence, COMT Val (158) Met may preferentially modulate nonverbal cognition following uncomplicated mTBI.Registry: ClinicalTrials.gov Identifier NCT01565551

    DRD2 C957T polymorphism is associated with improved 6-month verbal learning following traumatic brain injury

    Get PDF
    Traumatic brain injury (TBI) often leads to heterogeneous clinical outcomes, which may be influenced by genetic variation. A single-nucleotide polymorphism (SNP) in the dopamine D2 receptor (DRD2) may influence cognitive deficits following TBI. However, part of the association with DRD2 has been attributed to genetic variability within the adjacent ankyrin repeat and kinase domain containing 1 protein (ANKK1). Here, we utilize the Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot (TRACK-TBI Pilot) study to investigate whether a novel DRD2 C957T polymorphism (rs6277) influences outcome on a cognitive battery at 6 months following TBI-California Verbal Learning Test (CVLT-II), Wechsler Adult Intelligence Test Processing Speed Index Composite Score (WAIS-PSI), and Trail Making Test (TMT). Results in 128 Caucasian subjects show that the rs6277 T-allele associates with better verbal learning and recall on CVLT-II Trials 1-5 (T-allele carrier 52.8 ± 1.3 points, C/C 47.9 ± 1.7 points; mean increase 4.9 points, 95% confidence interval [0.9 to 8.8]; p = 0.018), Short-Delay Free Recall (T-carrier 10.9 ± 0.4 points, C/C 9.7 ± 0.5 points; mean increase 1.2 points [0.1 to 2.5]; p = 0.046), and Long-Delay Free Recall (T-carrier 11.5 ± 0.4 points, C/C 10.2 ± 0.5 points; mean increase 1.3 points [0.1 to 2.5]; p = 0.041) after adjusting for age, education years, Glasgow Coma Scale, presence of acute intracranial pathology on head computed tomography scan, and genotype of the ANKK1 SNP rs1800497 using multivariable regression. No association was found between DRD2 C947T and non-verbal processing speed (WAIS-PSI) or mental flexibility (TMT) at 6 months. Hence, DRD2 C947T (rs6277) may be associated with better performance on select cognitive domains independent of ANKK1 following TBI

    DRD2 C957T polymorphism is associated with improved 6-month verbal learning following traumatic brain injury

    Get PDF
    Traumatic brain injury (TBI) often leads to heterogeneous clinical outcomes, which may be influenced by genetic variation. A single-nucleotide polymorphism (SNP) in the dopamine D2 receptor (DRD2) may influence cognitive deficits following TBI. However, part of the association with DRD2 has been attributed to genetic variability within the adjacent ankyrin repeat and kinase domain containing 1 protein (ANKK1). Here, we utilize the Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot (TRACK-TBI Pilot) study to investigate whether a novel DRD2 C957T polymorphism (rs6277) influences outcome on a cognitive battery at 6 months following TBI-California Verbal Learning Test (CVLT-II), Wechsler Adult Intelligence Test Processing Speed Index Composite Score (WAIS-PSI), and Trail Making Test (TMT). Results in 128 Caucasian subjects show that the rs6277 T-allele associates with better verbal learning and recall on CVLT-II Trials 1-5 (T-allele carrier 52.8 ± 1.3 points, C/C 47.9 ± 1.7 points; mean increase 4.9 points, 95% confidence interval [0.9 to 8.8]; p = 0.018), Short-Delay Free Recall (T-carrier 10.9 ± 0.4 points, C/C 9.7 ± 0.5 points; mean increase 1.2 points [0.1 to 2.5]; p = 0.046), and Long-Delay Free Recall (T-carrier 11.5 ± 0.4 points, C/C 10.2 ± 0.5 points; mean increase 1.3 points [0.1 to 2.5]; p = 0.041) after adjusting for age, education years, Glasgow Coma Scale, presence of acute intracranial pathology on head computed tomography scan, and genotype of the ANKK1 SNP rs1800497 using multivariable regression. No association was found between DRD2 C947T and non-verbal processing speed (WAIS-PSI) or mental flexibility (TMT) at 6 months. Hence, DRD2 C947T (rs6277) may be associated with better performance on select cognitive domains independent of ANKK1 following TBI

    Central curation of Glasgow Outcome Scale-Extended data: lessons learned from TRACK-TBI

    Get PDF
    The Glasgow Outcome Scale (GOS) in its original or extended (GOSE) form is the most widely used assessment of global disability in traumatic brain injury (TBI) research. Several publications have reported concerns about assessor scoring inconsistencies, but without documentation of contributing factors. We reviewed 6801 GOSE assessments collected longitudinally, across 18 sites in the 5-year, observational Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) study. We recorded error rates (i.e., corrections to a section or an overall rating) based on site assessor documentation and categorized scoring issues, which then informed further training. In Cohort 1 (n=1261; 2/2014-5/2016), 24% of GOSEs had errors identified by central review. In Cohort 2 (n=1130; 6/2016-7/2018), acquired following curation of Cohort 1 data, feedback, and further training of site assessors, the error rate was reduced to 10%. GOSE sections associated with the most frequent interpretation and scoring difficulties included whether current functioning represented a change from pre-injury (466 corrected ratings in Cohort 1; 62 in Cohort 2), defining dependency in the home and community (163 corrections in Cohort 1; 3 in Cohort 2); and return to work/school (72 corrections in Cohort 1; 35 in Cohort 2). These results highlight the importance of central review in improving consistency across sites and over time. Establishing clear scoring criteria, coupled with ongoing guidance and feedback to data collectors, is essential to avoid scoring errors and resultant misclassification, which carry potential to result in “failure” of clinical trials that rely on the GOSE as their primary outcome measure

    The use of schools for malaria surveillance and programme evaluation in Africa

    Get PDF
    Effective malaria control requires information on both the geographical distribution of malaria risk and the effectiveness of malaria interventions. The current standard for estimating malaria infection and impact indicators are household cluster surveys, but their complexity and expense preclude frequent and decentralized monitoring. This paper reviews the historical experience and current rationale for the use of schools and school children as a complementary, inexpensive framework for planning, monitoring and evaluating malaria control in Africa. Consideration is given to (i) the selection of schools; (ii) diagnosis of infection in schools; (iii) the representativeness of schools as a proxy of the communities they serve; and (iv) the increasing need to evaluate interventions delivered through schools. Finally, areas requiring further investigation are highlighted
    corecore