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Abstract
Photoionization of Mg 3s is studied near the Cooper minimum in dipole channels using the
relativistic-random-phase approximation. While the importance of first-order nondipole
effects on photoelectron angular distributions at low energies is well known, it is reported here
for the first time that in the energy region near the dipole Cooper minimum, quadrupole
transitions are not just important, but actually dominate the total photoionization cross section.
Studies of dipole–dipole, dipole–quadrupole and quadrupole–quadrupole interference terms in
the photoelectron angular distribution show that in the region of dipole Cooper minimum even
the calculation of the dipole angular distribution parameter, β, requires the inclusion of
quadrupole channels. The significance of second-order [O(k2r2)] nondipole terms, primarily
due to the contributions from electric quadrupole–quadrupole interference terms at photon
energy as low as ∼11 eV, are shown to induce dramatic changes in the photoelectron angular
distribution over a small energy range.

It has been generally believed that the absorption by an
atom of low-energy photons, having energies up to ∼5 keV
above the ionization threshold, is described rather well by
the electric dipole approximation [1–3]. However, at lower
energies, the importance of first-order nondipole effects,
resulting from interference of electric dipole (E1) and electric
quadrupole (E2) ionization amplitudes, has been observed in
photoelectron angular distributions [4–8]. The possibility
of strong nondipole effects at extremely low photon energy
(∼13 eV) was also noted [9]. With developments in high
precision instruments and brighter light sources, however, it
has been found that even at much lower energy, hundreds or
even just tens of eV, a correct description of the differential
photoionization cross section requires the inclusion of first-
order, quadrupole, corrections to the dipole approximation
[10–16]. In all of these investigations, quadrupole effects
have been seen in the photoelectron angular distribution, but
have never been found large enough to manifest themselves

in total (integrated) cross sections. This occurs because the
quadrupole matrix element, resulting from the expansion of
eik·r, includes a factor of k, the photon wave number which is
very small at low energy; for a photon energy of 1 Rydberg, for
example, k = α/2 in atomic units, α being the fine structure
constant. Thus, for outer and near-outer subshells, where
r ∼ a0, the magnitude of the quadrupole photoionization
matrix element, which enters the lowest order nondipole
correction to the angular distribution linearly, is typically about
a factor of 300 smaller than dipole; but for the total cross
section, where the correction goes as the absolute square of
the quadrupole matrix element, the quadrupole term is about
five orders of magnitude smaller than dipole. Of course,
near the ionization thresholds of deep inner shells, where
the threshold energies are much higher, quadrupole effects
are correspondingly relatively larger, of the order of 10% in
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angular distributions and 1% in total cross sections [17, 18]5.
In any case, in the 1 Rydberg photon energy range, quadrupole
effects can become important when the quadrupole matrix
element is abnormally large, like at a quadrupole resonance
[19], or when the dipole matrix element is uncharacteristically
small, like at a dipole Cooper minimum.

Recently, significant second-order nondipole effects,
primarily due to electric-dipole–octupole and electric-
quadrupole–quadrupole interference in the photoelectron
angular distributions of 2s and 2p subshells of neon, were
demonstrated in the photon energy range of 100–1200 eV
[20]. To the best of our knowledge, this is the only case
where second-order nondipole effects were ever found to be
of importance in this energy range or lower. This prompted
us to search for other such situations where second-order
terms are important. In this work, significant second-order
nondipole effects, due to interference of E2–E2 channels,
are demonstrated in the photoionization of the 3s shell of
magnesium, at extremely low photon energy (∼11 eV).

The dipole Cooper minimum, a minimum in the
dipole photoionization matrix element [21], was discovered
experimentally almost a century ago [22]. Thought originally
to be an isolated curiosity, it was found to be a feature
of the dipole photoionization matrix element l → l + 1
transitions of almost all outer and near-outer subshells over
the entire periodic table. These minima, located near the
ionization threshold in each case, result from the cancellation
of the positive and negative contributions to the dipole matrix
element. For the photoionization of subshells with l �= 0,
the cross section is the sum of the dipole-allowed l → l +
1 and l → l − 1 transitions, so that minima are generally
not evident in the integrated subshell cross section; even
though the l → l + 1 transition might have a minimum, the
l → l − 1 transition does not. For the photoionization of
s-states, simple (independent-particle) theory predicts a zero
minimum. This implies that, at a dipole Cooper minimum
for an s-state, the cross section arises from quadrupole and
higher multipole photoabsorption. This, however, is mitigated
by the fact that, even for the photoionization of s-states, the
cross section is never zero for two reasons. First, the effect
of relativistic interactions causes the s → p1/2 and the s →
p3/2 minima to occur at slightly different energies, so that
the total dipole cross section never vanishes [23, 24]. In
addition, correlation in the form of interchannel coupling
causes the dipole matrix elements to be complex, and the real
and imaginary parts go to zero at slightly different energies,
so that the dipole cross section never vanishes, even without
relativistic effects [25]. But it is evident that to obtain
a quantitatively accurate cross section in the region of the
dipole Cooper minimum, or even a qualitatively accurate one,
both relativistic and correlation effects must be included in a
calculation; a non-relativistic independent-particle calculation
which lacks both of these effects simply will not do.

Now, at low photon energies, the quadrupole
photoionization cross section is generally far smaller than
the dipole cross section, as mentioned. But at a Cooper

5 Note that in these references, quadrupole matrix elements are defined,
unlike here, without k, which is factored out.

Figure 1. Dipole (E1) and quadrupole (E2) photoionization cross
sections for Mg 3s.

minimum in the photoionization of an s-state, it is possible
that quadrupole effects could become significant, or even
dominant. Note, however, that in all cases that have
been investigated, even in the vicinity of a dipole Cooper
minimum, the dipole cross section remains far larger than
the quadrupole and the integrated subshell cross section is
well represented by just the dipole contribution [26, 27]. In
this paper, we investigate the possibility that there are some
instances where the quadrupole cross section actually does
dominate at low energy, a result that would be surprising
indeed. To perform this investigation, the relativistic-random-
phase approximation (RRPA) [28] has been employed. This
methodology includes both relativistic effects and interchannel
coupling that are crucial to a qualitatively and quantitatively
accurate rendering of the shape and depth of dipole Cooper
minima, although the actual energy could be off owing to the
use of Dirac–Fock energies in the RRPA along with the neglect
of two-electron resonances. We emphasize that, in earlier work
using the RRPA, although the threshold energies, as well as
the energies of various prominent features of photoionization
cross sections, were often significantly off, the dynamics of
the cross sections were generally quite accurate [25–29]. In
any case, the same formulation has been used to calculate the
quadrupole photoionization channels. For both dipole and
quadrupole calculations, coupling among single-excitation
photoionization channels from all occupied subshells was
included.

As an example, the photoionization of the 3s valence
subshell of the Mg atom has been studied. To begin with,
the results for the dipole and quadrupole total 3s subshell
cross sections are shown in figure 1 in the region of the
dipole Cooper minimum. This clearly shows that the dipole
cross section, although small, does not go through a zero,
but still the quadrupole cross section is larger than the dipole
over a range of photon energies approximately 0.05 eV. This
is the first case found where the quadrupole is larger than
the dipole in any realistic calculation; and it is remarkable
that it occurs at such a low energy—certainly below where
one would ordinarily expect nondipole effects to manifest
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themselves. The inclusion of some other configurations in
the initial state may alter the position of the Cooper minimum
somewhat. Notwithstanding that possibility, the results of this
work clearly and unambiguously demonstrate the importance
of the first- and second-order corrections coming from the
quadrupole terms in determining the angular distribution of
the photoelectrons. In any case, any measurement of the total
subshell cross section would only observe the sum of these
two cross sections, and this would not provide information on
the relative sizes of the dipole and quadrupole cross sections;
but observation of the photoelectron angular distribution
would. It is important to add that such a measurement is
entirely within the capabilities of the present experimental
technology.

This work brings out an important aspect regarding the
theoretical determination of the dipole angular distribution
asymmetry parameter β. This parameter has been studied
theoretically in many cases, and in virtually all of these
investigations, it has been obtained [30] omitting any
nondipole effects. This work, however, demonstrates that
nondipole terms need to be included even in the determination
of the dipole angular distribution asymmetry parameter, since
β is given by [31]

β = 1

σ̄

∑
κκ ′

√
30〈κ ′‖C2‖κ〉(−1)j

′+jb

{
1 1 2
j ′ j jb

}

[DκD

∗
κ ′],

(1)

where σ̄ = ∑
κ

[|Dκ |2 + k2

20 |Qκ |2
]

in the denominator of
equation (1) is essentially the total cross section, including
the quadrupole part. D and Q in the above denote the dipole
and quadrupole matrix elements, respectively, κ ′ and κ are
the final state relativistic quantum numbers corresponding
to the transition from the initial state, k is the photon
momentum, 
[X] designates the real part of argument X
and

〈
κ ′ ‖Cn‖ κ

〉
is the reduced matrix element of the spherical

tensor:

Cnq(r̂) =
√

4π

2n + 1
Ynq(r̂).

In a spectral region where the quadrupole cross section is
not negligible, as in the present case, the denominator must
include the quadrupole cross section. Thus, in previous cases
of the calculation of β where the quadrupole cross section
matters, the calculated β must be multiplied by a factor of
σ d/(σ d + σ q), where σ d and σ q are the dipole and quadrupole
subshell cross sections, respectively. Clearly, this factor is
always less than (or equal to) unity, so it can only serve to
lower the absolute value of β. In the present case, for example,
in the vicinity of the Cooper minimum, β drops to a value of
about −0.4; without the inclusion of the quadrupole part of the
cross section, the calculated β would drop to a value of −1.0
(figure 2). Other cases might not be so dramatic, but it would
be well to re-examine various results investigated previously
where the inclusion quadrupole effects could be of importance
in obtaining a quantitatively correct value of β.

The photoelectron angular distribution, the differential
cross section, including both dipole and quadrupole

Figure 2. Dipole asymmetry parameter, calculated by considering
the effect of E2 (solid line) and without considering E2 (dotted line),
in the region of dipole Cooper minimum.

contributions, is given generally for the photoionization of
subshell i by linearly polarized photon as [31]

dσi/d� = (σi/4π)[1 + (β + �β)P2(cos θ)

+ (δ + γ cos2 θ) sin θ cos ϕ + λP2(cos θ) cos 2ϕ

+μ cos 2ϕ + ν(1 + cos 2ϕ)P4(cos θ)], (2)

where σ i is the total subshell cross section, θ and ϕ

are the polar and azimuthal angles of the photoelectron
direction in the coordinate system defined by the photon
polarization as the z-axis and the photon direction as the
x-axis. In the above equation, P2(cos θ) = 3 cos2 θ−1

2 and

P4(cos θ) = 35 cos4 θ−30 cos2 θ+3
8 are the second- and fourth-

order Legendre polynomials, respectively. The dipole
angular distribution parameter β results from dipole–dipole
interference, the first-order (in kr) nondipole correction
parameters, δ and γ from dipole–quadrupole interference,
and the second-order (in kr) nondipole correction parameters,
�β, λ, μ and ν from quadrupole–quadrupole interference;
clearly, in the absence of quadrupole effects, the shape
of the angular distribution is determined entirely by the β

parameter. The detailed expressions for the various parameters
are given elsewhere [31] where it is also noted that, for
photoionization of an ns-state, the parameter δ is vanishingly
small.

The results of our calculations of the angular distribution
parameters are shown in figure 3 which exhibits several
outstanding features. First is the huge magnitude of the
γ parameter in the vicinity of the dipole Cooper minimum.
Second are the dramatic changes in γ , as a function of photon
energy, in the vicinity of the Cooper minimum. Third is
the existence (and rapid change with energy) of the second-
order nondipole parameters near the minimum. This is
the first indication of non-negligible second-order nondipole
contributions to the photoelectron angular distribution below
about 1 keV. Furthermore, it is seen that the dipole
angular distribution parameter β, which is usually 2 for the
photoionization of s-states of a closed-shell atom [30], exhibits
a deep dip in the vicinity of the Cooper minimum, reflecting
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Figure 3. Dipole asymmetry parameter β (dotted line), first-order
nondipole asymmetry parameter γ (solid line), and second-order
nondipole angular distribution parameters, �β (dash–dotted line), μ
(dash line) and ν (dash dot line) for Mg 3s in the neighbourhood of
the dipole Cooper minimum. The left scale applies to β and γ ,
and the right scale for the others. The asymmetry parameter λ =
−μ − ν so, for clarity, it is not shown.

the splitting of the minima in the s → p1/2 and the s → p3/2

channels. In any case, the strength of the nondipole parameters
along with the strong energy dependence of all of the angular
distribution parameters means that the angular distribution
will also exhibit an extremely strong dependence upon
energy.

To demonstrate this dependence, this volatility of the
photoelectron angular distribution most simply, the differential
cross section, equation (2), is recast as

dσi/d� = (σi/4π)[1 + A(θ, ϕ)], (3)

where A(θ , ϕ) represents all of the angular information and
1 + A(θ , ϕ) represents the shape of the angular distribution,
unencumbered by the overall magnitude of the cross section
which also changes rapidly with energy. In figure 4, three-
dimensional plots of the shape of the angular distribution,
1 + A(θ , ϕ), for a selection of six photon energies spanning the
dipole Cooper minimum are presented and a truly remarkable
evolution of the shape is demonstrated. At the lowest photon
energy shown, about 9.52 eV, well below the minimum,
the angular distribution is seen to be essentially cos2 θ with
no dependence on the azimuthal angle ϕ; this reflects the
situation of β = 2 and all the nondipole parameters vanishingly
small. At about 10.88 eV, still below the minimum, a
notable ϕ dependence is evident, indicating the effects of
nondipole interactions, quadrupole in this case. Going up
a bit further in energy to approximately 11.02 eV, just below
the minimum, the angular distribution changes dramatically
and the ϕ dependence is at least as strong as the θ dependence.
This occurs owing to the huge value of the γ parameter just
below the minimum, as seen in figure 3. Moving up slightly,
to about 11.16 eV, there is another dramatic change in the
shape of the angular distribution where the ϕ dependence
dominates and the θ dependence is much less important;
this is because the γ parameter goes through a zero at the

Cooper minimum (figure 3) along with the strength of the
second-order nondipole parameters. Then, with a further
increase in energy, above the Cooper minimum, the angular
distribution gradually goes back to the simple cos2 θ shape as
the dipole cross section ‘recovers’ from the Cooper minimum
and quadrupole effects become proportionally less and less
important.

Looking at equation (2), it is evident that any ϕ

dependence of the photoelectron angular distribution is
a hallmark of nondipole effects, and the very strong ϕ

dependence, along with the very rapid changes of the angular
distribution as a function of photon energy, as seen in
figure 4, is indicative of very strong nondipole effects. But
this is to be expected in a region of the spectrum where the
quadrupole photoionization cross section is actually larger than
the dipole.

Getting back to the integrated cross sections shown in
figure 1, the energies of the two relativistic s → pj dipole
Cooper minima shall be designated as C1 and C2 for j = 1/2
and 3/2, respectively, separated by the spin–orbit splitting.
Since the radial functions for εp1/2 and εp3/2 continua are so
similar, the respective dipole matrix elements behave similarly
in the vicinity of their respective zeros; in fact, they are linear
in a small region which includes both zeros, i.e. M1/2(E) =
α(E − C1) and M3/2(E) = α(E − C2); the cross sections,
proportional to |M|2, are then σ 1/2 = Aα2(E − C1)2, σ 3/2 =
2Aα2(E − C2)2, noting that the s → p3/2 cross section includes
an extra factor of 2 compared to s → p1/2, so that, defining
E0 = (C1 + 2C2)/3 and � = (C1 − C2)/2, the total cross
section, σ , is given by

σ = σ1/2 + σ3/2 = 3Aα2(E − E0)
2 + 3Aα2(8/9)�2, (4)

a parabola as a function of photon energy. This can be
generalized to include interchannel coupling by taking the
dipole matrix elements to be complex where both the real and
imaginary parts of the matrix elements go through zeros at
slightly different energies; this leads to a more complicated
expression, not very different from equation (4) since the
imaginary terms are small, and still a parabola, just as is seen
in figure 1.

Without loss of generality then, the dipole cross section
can be written in a small energy region in the vicinity of the
Cooper minima as

σD = F(E0)[(E − E0)
2 + (8/9)�2] (5)

for some function F(E). In the small energy region around the
dipole Cooper minimum, to an excellent approximation the
quadrupole cross section is constant, i.e. σQ = K, for some
constant K, assuming that we are not near a quadrupole Cooper
minimum (a minimum in the absolute value of the quadrupole
photoionization matrix element). Then, in the region of the
Cooper minima, the total cross section

σ(E) = σD + σQ = F(E0)[(E − E0)
2 + (8/9)�2] + K

= F(E0)(E − E0)
2 + σ(E0) (6)

with σ (E0) (=F(E0) (8/9)�2 + K), the cross section at E =
E0. Then, if measurements are comprised of E0, the bottom of
the parabola, along with the cross section at any two energies
in the region of the minima, then E0, F(E0) and σ (E0), can be
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Shape of the photoelectron angular distribution, 1 + A(θ , ϕ), for Mg 3s in the neighbourhood of the dipole Cooper minimum:
(a) at photon energy 9.52 eV, (b) photon energy 10.88 eV, (c) photon energy 11.02 eV, (d) photon energy 11.16 eV, (e) photon energy
11.56 eV and (f) photon energy 12.92 eV.

obtained from the measurements. Unfortunately, this does not
allow us to obtain separately the quadrupole cross section, K,
or the splitting of the dipole Cooper minima, �, without further
assumptions. However, it does put a useful check on theory

owing to the relationship among E0, F(E0), �, K and σ (E0),
i.e. along with the three measurements, if theory does a good
job of predicting the positions of the dipole Cooper minima
(and thereby �), then the quadrupole cross section, K, could
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be obtained without any quadrupole calculation. On the other
hand, if K in the region could be accurately calculated, then
� could be obtained and, thus, the positions of the relativistic
dipole Cooper minima. In any case, this analysis shows that
scrutiny of the photoionization cross section in the vicinity of
the dipole Cooper minima leads to a relationship that provides
a stringent test of theory which is not obtainable in any other
manner.

In summary then, Mg 3s photoionization is shown to
exhibit very strong effects of quadrupole photoionization in
the vicinity of the Cooper minimum, effects which show up
particularly dramatically in the shape and evolution of the
photoelectron angular distribution. Thus, even in a photon
energy region of the order of 10 eV, large and rapidly changing
nondipole parameters, both of first and second orders, are
found. And this should also be the case for the photoionization
of other atoms with a 3s Cooper minimum, from Na to Ar, and
to a lesser extent, owing to stronger relativistic interactions,
for heavier atoms with a 4s Cooper minimum, starting with K.
Using a simple relativistic independent-particle calculation,
we have confirmed that the same effects occur for other
elements in the Na to Ar row of the periodic table. It is
also likely that similar effects will occur in regions of the
dipole resonance series, since between the resonances the
dipole cross section can drop to a very small value [32].
This should be the most important at low Z where relativistic
interactions are small. And, at somewhat higher energies,
inner shells, even deep inner shells, might offer opportunities
to examine quadrupole effects in the vicinities of the small
dipole cross sections between the resonances of a Rydberg
series, especially because, as noted earlier, quadrupole cross
sections are ordinarily larger, compared to that of the dipole,
for inner shells. These findings suggest a new arena for
laboratory investigations, studies of photoelectron angular
distributions in the vicinity of dipole minima, which are
within the capabilities on modern experimental technology
with regard to energy resolution [33] and sensitivity to small
cross sections [34]. Regardless of the cross section of the order
of 10−5 Mb being measurable or not, it is clear that the effect
on angular distribution is measurable. The dramatic changes
shown in figure 3 are attributed to the fact that σ E2 > σ E1 in
the vicinity of the dipole Cooper minimum.

In addition, calculations of the dipole angular distribution
parameter β, particularly for the ns-state photoionization in
the vicinity of Cooper minima, or other energy regions where
dipole cross section might be quite small, need to be re-
examined for possible effects of quadrupole photoionization.
Finally, it is shown that under most conditions, the shape of
the cross section in the vicinity of the dipole Cooper minima
is parabolic and the addition of the quadrupole cross section,
which is essentially constant over a small energy region around
the dipole Cooper minimum, does not change that fact; it
would be well to investigate photoionization cross section in
the region of Cooper minima experimentally which would
provide the most stringent test of theory.
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Nikkinen J, Ricsoka T, Aksela H and Aksela S 2004 Phys.
Rev. A 69 012707

[17] Bechler A and Pratt R H 1989 Phys Rev. A 39 1774
[18] Bechler A and Pratt R H 1990 Phys Rev. A 42 6400
[19] Dolmatov V K and Manson S T 1999 Phys. Rev. Lett. 83 939
[20] Derevianko A et al 2000 Phys. Rev. Lett. 84 2116
[21] Cooper J W 1962 Phys. Rev. 128 681

Cooper J W 1964 Phys. Rev. Lett. 13 762
[22] Ditchburn R W 1928 Proc. R. Soc. A 117 486
[23] Seaton M 1951 Proc. R. Soc. A 208 418
[24] Kim Y S et al 1981 Phys. Rev. Lett. 46 1326
[25] Johnson W R and Cheng K T 1979 Phys. Rev. A 20 978
[26] Johnson W R and Cheng K T 1978 Phys. Rev. Lett. 40 1167
[27] Schmidt V 1992 Rep. Prog. Phys. 55 1483
[28] Johnson W R and Lin C D 1979 Phys. Rev. A 20 964

Johnson W R, Lin C D, Cheng K T and Lee C M 1980 Phys.
Scr. 21 409

[29] Amusia M Ya 1987 Atomic Photoeffect (New York: Plenum)
[30] Manson S T and Starace A F 1982 Rev. Mod. Phys. 54 389
[31] Derevianko A, Johnson W R and Cheng K T 1999 At. Data

Nucl. Data Tables 73 153 and references therein
[32] Fano U and Cooper J W 1968 Rev. Mod. Phys. 40 441
[33] See, for example, Müller A et al 2010 J. Phys. B: At. Mol. Opt.

Phys. 43 225201
[34] Wehlitz R 2011 private communication

6

http://dx.doi.org/10.1103/PhysRev.177.151
http://dx.doi.org/10.1103/PhysRevA.10.242
http://dx.doi.org/10.1103/PhysRevLett.75.4736
http://dx.doi.org/10.1103/PhysRevA.54.2127
http://dx.doi.org/10.1103/PhysRevA.67.022707
http://dx.doi.org/10.1103/PhysRevLett.81.1199
http://dx.doi.org/10.1088/0953-4075/41/2/021002
http://dx.doi.org/10.1088/0953-4075/30/21/003
http://dx.doi.org/10.1103/PhysRevLett.88.203002
http://dx.doi.org/10.1103/PhysRevA.67.012712
http://dx.doi.org/10.1103/PhysRevLett.91.053002
http://dx.doi.org/10.1103/PhysRevLett.93.113001
http://dx.doi.org/10.1103/PhysRevA.69.012707
http://dx.doi.org/10.1103/PhysRevA.39.1774
http://dx.doi.org/10.1103/PhysRevA.42.6400
http://dx.doi.org/10.1103/PhysRevLett.83.939
http://dx.doi.org/10.1103/PhysRevLett.84.2116
http://dx.doi.org/10.1103/PhysRev.128.681
http://dx.doi.org/10.1103/PhysRevLett.13.762
http://dx.doi.org/10.1098/rspa.1928.0012
http://dx.doi.org/10.1098/rspa.1951.0171
http://dx.doi.org/10.1103/PhysRevLett.46.1326
http://dx.doi.org/10.1103/PhysRevA.20.978
http://dx.doi.org/10.1103/PhysRevLett.40.1167
http://dx.doi.org/10.1088/0034-4885/55/9/003
http://dx.doi.org/10.1103/PhysRevA.20.964
http://dx.doi.org/10.1088/0031-8949/21/3-4/029
http://dx.doi.org/10.1103/RevModPhys.54.389
http://dx.doi.org/10.1006/adnd.1999.0818
http://dx.doi.org/10.1103/RevModPhys.40.441
http://dx.doi.org/10.1088/0953-4075/43/22/225201

