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Traumatic brain injury (TBI) often leads to heterogeneous clinical outcomes, which may be 

influenced by genetic variation. A single-nucleotide polymorphism (SNP) in the dopamine D2 

receptor (DRD2) may influence cognitive deficits following TBI. However, part of the association 

with DRD2 has been attributed to genetic variability within the adjacent ankyrin repeat and kinase 

domain containing 1 protein (ANKK1). Here, we utilize the Transforming Research and Clinical 

Knowledge in Traumatic Brain Injury Pilot (TRACK-TBI Pilot) study to investigate whether a 

novel DRD2 C957T polymorphism (rs6277) influences outcome on a cognitive battery at 6 

months following TBI—California Verbal Learning Test (CVLT-II), Wechsler Adult Intelligence 

Test Processing Speed Index Composite Score (WAIS-PSI), and Trail Making Test (TMT). Results 

in 128 Caucasian subjects show that the rs6277 T-allele associates with better verbal learning and 

recall on CVLT-II Trials 1–5 (T-allele carrier 52.8 ± 1.3 points, C/C 47.9 ± 1.7 points; mean 

increase 4.9 points, 95% confidence interval [0.9 to 8.8]; p = 0.018), Short-Delay Free Recall (T-

carrier 10.9 ± 0.4 points, C/C 9.7 ± 0.5 points; mean increase 1.2 points [0.1 to 2.5]; p = 0.046), 

and Long-Delay Free Recall (T-carrier 11.5 ± 0.4 points, C/C 10.2 ± 0.5 points; mean increase 1.3 

points [0.1 to 2.5]; p = 0.041) after adjusting for age, education years, Glasgow Coma Scale, 

presence of acute intracranial pathology on head computed tomography scan, and genotype of the 

ANKK1 SNP rs1800497 using multivariable regression. No association was found between DRD2 
C947T and non-verbal processing speed (WAIS-PSI) or mental flexibility (TMT) at 6 months. 

Hence, DRD2 C947T (rs6277) may be associated with better performance on select cognitive 

domains independent of ANKK1 following TBI.
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Introduction

Traumatic brain injury (TBI) is a significant source of morbidity and mortality—an 

estimated 2.5 million cases occur annually in the USA alone [1] Initial injury severity is 

commonly stratified into severe, moderate, and mild TBI categories as defined by an initial 

Glasgow Coma Scale (GCS) score of 8 or less, 9 to 12, and 13 to 15, respectively [2, 3]. 

Individuals with similar injuries often follow divergent clinical trajectories [4]. Up to 5.3 

million people live with long-term disability from TBI, and numerous others experience 

persistent TBI-related sequelae—including cognitive deficits, changes in personality, and 

increased rates of post-traumatic psychiatric disorders such as depression and/or post-

traumatic stress disorder [5, 6]. However, factors influencing variability in post-traumatic 

clinical course remain unclear and efforts are needed to better identify those at greatest risk 

for post-traumatic sequelae [7].

Studies have begun to suggest that genetic variability—such as single-nucleotide 

polymorphisms (SNPs)—may be one factor which contributes to observed clinical variance. 

A number of polymorphisms influencing protein structure, function, and/or availability have 

been identified [8–11]. In particular, SNPs arising within the dopaminergic system may 

influence cognition and cognitive recovery following TBI [12]. The neurotransmitter 

dopamine is essential for proper neuronal function of the striate nucleus linked to learning 

Yue et al. Page 2

Neurogenetics. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and memory [13]. One important molecular component of dopaminergic signaling pathways 

is the dopamine D2 receptor (DRD2), which is highly expressed in the striatum of the 

subcortical forebrain. DRD2 binds to dopamine in the synaptic cleft and initiates post-

synaptic secondary messenger cascades, which modulate neuronal circuits contributing to 

several cognitive domains, namely learning [14]. Reduced DRD2 expression has been linked 

to cognitive impairment and psychiatric disease [15, 16]. Furthermore, stimulation of DRD2 

in the striatum has been shown to potentiate learning when treated with a D2-specific 

agonist [13, 17].

Given the prevalence of cognitive defects in TBI patients, there is an interest in identifying 

SNPs that associate with poor cognitive outcome [13, 18]. The DRD2 gene is located on 

chromosome 11 q22–23 with a relatively common SNP located within exon 7 with a single-

nucleotide cytosine to thymine substitution—known as the C957T SNP rs6277 [19, 20]. 

This substitution has been associated with decreased affinity of the striatal D2 receptors [21] 

and is associated with better learning, verbal memory, and cognitive ability in the psychiatry 

literature [22–24]. Initial studies report a potential connection between DRD2 C957T and 

cognitive performance following TBI [13, 15, 18]. However, this observation may be 

confounded by linkage effects with ankyrin repeat and kinase domain containing 1 protein 

(ANKK1) TaqIA (rs1800497)—a gene adjacent to and oriented tail to tail with DRD2 on 

chromosome 11 [13, 25]. Therefore, a potential modulatory role of DRD2 C957T on 

cognitive performance remains unclear and warrants further investigation.

For the current analysis, we utilized data from the prospective multicenter Transforming 

Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) Pilot study in 

order to explore associations between the DRD2 C957T SNP and cognitive outcomes post-

TBI while controlling for ANKK1 Taq1A [26]. We demonstrate that the DRD2 C957T T-

allele is associated with better performance on verbal memory but not processing speed or 

mental flexibility at 6 months post-TBI.

Methods

Study design

The TRACK-TBI Pilot Study is a multicenter prospective observational study conducted at 

three level I trauma centers in the USA—San Francisco General Hospital, University of 

Pittsburgh Medical Center, and University Medical Center Brackenridge (UMCB) in Austin, 

TX—using the National Institutes of Health (NIH) and National Institute of Neurological 

Disorders and Stroke (NINDS) common data elements (CDEs) [26–30]. Inclusion criteria 

for the pilot study were adult patients presenting to a level I trauma center with external 

force trauma to the head and clinically indicated head computed tomography (CT) scan 

within 24 h of injury. Exclusion criteria were pregnancy, comorbid life-threatening disease, 

incarceration, on psychiatric hold, and non-English speakers due to limitations in 

participation with outcome assessments. For the present study, our goal was to study the 

association of the DRD2 C957T polymorphism on cognitive outcome after TBI 

uncomplicated by massive intracranial injury, neurosurgical intervention, or polytrauma. 

Therefore, our analysis was restricted to a subset of adult patients with Marshall CT Score 

1–2; no acute neurosurgical intervention; no developmental delay; and no severe, critical, or 

Yue et al. Page 3

Neurogenetics. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



unsurvivable extracranial injuries as defined by an Abbreviated Injury Scale (AIS) score >3 

in any extracranial body region. Due to the small numbers and unequal distribution of DRD2 
C957T genotypes in other races in our sample, all selected patients were of Caucasian race.

Eligible subjects were enrolled through convenience sampling at all three sites. Institutional 

review board approval was obtained at all participating sites. Informed consent was obtained 

for all subjects prior to enrollment in the study. For patients unable to provide consent due to 

their injury, consent was obtained from their legally authorized representative (LAR). 

Patients were then reconsented, if cognitively able at later inpatient and/or outpatient follow-

up assessments for continued participation in the study.

Biospecimen acquisition and genotyping

Specimen acquisition was performed as previously described [30]. In brief, blood samples 

for DNA genotyping analysis were collected via peripheral venipuncture or existing 

peripheral venous indwelling catheters within 24 h of injury. Samples were collected in BD 

Vacutainer K2-EDTA Vacutainer tubes and subsequently aliquoted and frozen in cryotubes 

at −80 °C within 1 h of collection in accordance with recommendations from the NIH-CDE 

Biomarkers Working Group [29]. DNA was extracted from isolated leukocytes using the 

Wizard® Genomic DNA Purification Kit as described by the manufacturer (Promega, 

Madison, WI). The DRD2 C957T (rs6277) and ANKK1 TaqIA (rs1800497) polymorphisms 

were genotyped using the TaqMan® SNP Genotyping Assay as described by the 

manufacturer (Applied Biosystems, Carlsbad, CA; rs6277 Assay ID# C__11339240_10; 

rs1800497 Assay ID# C__7486676_10). For the purposes of evaluating a potential 

protective benefit of the DRD2 C957T T-allele, C/T and T/T individuals were combined as a 

single group as previously described for DRD2 C957T [13, 22, 23]. Therefore, for data 

recording and all figures, this group is referred to as DRD2 C957T T-Present. Likewise, 

ANKK1 TaqIA genotype was dichotomized by T-allele carriers versus non-carriers as 

described previously [13].

Neuropsychiatric testing and outcome parameters

The NINDS defines measures of neuropsychological impairment as those “of 

neuropsychological functions, such as attention, memory, and executive function which are 

very sensitive to effects of TBI that affect everyday activities and social role participation.” 

To evaluate for neuropsychological impairment, all participants underwent outcome 

assessment at 6 months following TBI with a battery of NIH NINDS-designated “Core 

Measures”—those deemed most relevant and applicable across large TBI studies. For the 

current analysis, all three measures of the “neuropsychological impairment” domain of the 

outcome CDEs were included.

California Verbal Learning Test, second edition—The California Verbal Learning 

Test (CVLT)-II is a verbal learning and memory task in which five learning trials, an 

interference trial, an immediate recall trial, and a post-20-min recall trial are performed. The 

CVLT-II was substituted for the Rey Auditory Verbal Learning Test (RAVLT) listed in the 

NIH NINDS outcome CDEs, due to relevant revisions of the second edition and higher 

consistency on between-norm sets as previously described [31, 32]. The CVLT-II Trial 1–5 
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raw score provides a global index of verbal learning ability [33]. Further, lower scores on the 

CVLT-II Short-Delay Free Recall (SDFR) indicate retroactive interference, while lower 

scores on the CVLT-II Long-Delay Free Recall (LDFR) indicate the occurrence of rapid 

forgetting. As outlined, all CVLT raw scores are adjusted for age and years of education as 

part of the current analysis [33].

Wechsler Adult Intelligence Scale, fourth edition, Processing Speed Index 
Subscale—The Wechsler Adult Intelligence Test Processing Speed Index Composite Score 

(WAIS-PSI) is composed of two non-verbal tasks (symbol search and coding) which require 

visual attention and motor speed [34]. The composite score, normalized for age, was used in 

this analysis. On this test, a higher score reflects improved non-verbal processing speeds. In 

prior versions of this test, WAIS III, TBI has demonstrated that the WAIS-PSI predominately 

reflects impairment in perceptual processing speed with a small component attributable to 

working memory and only minimal contribution from motor speed [35]. The WAIS-PSI 

composite score includes adjustment for age and thus is adjusted only for years of education 

as part of the current analysis [34].

Trail Making Test—The Trail Making Test (TMT) is a two-part timed test (TMT-A and 

TMT-B). TMT-A assesses visual processing, and TMT-B assesses mental flexibility and 

processing speed [36]. In order to increase the accuracy of the score with respect to the 

flexibility and processing speed without accounting for visual processing, we subtracted the 

first trial from the second trial (TMT B-A) as previously described [37]. On this test, a lower 

score suggests improved performance. The TMT B minus A score is adjusted for age and 

years of education as part of the current analysis [36].

Statistical analysis

Descriptive variables are presented as means and standard deviations (SDs) for continuous 

variables and as proportions for categorical variables. Group differences in patient 

demographics and injury characteristics across DRD2 C957T genotypes were assessed by 

Pearson’s chi-squared test (X2) for categorical variables and analysis of variance (ANOVA) 

for continuous variables. Fisher’s exact test was used to assess for differences in categorical 

variables with individual cell counts ≤5. Linear regression was performed to assess the 

univariate association between DRD2 C957T genotype and each of the five outcome 

measures, adjusted for age and education years for CVLT measures and TMT B-A, and for 

education years only for WAIS-PSI, as described in the respective “Methods” section 

previously. Multivariable linear regression was performed to adjust for ANKK1 TaqIA 
genotype, gender, post-traumatic amnesia, emergency department admission GCS, and 

intracranial pathology on initial head CT scan for each outcome measure. The adjusted 

means and standard errors (SE) are reported for DRD2 C957T genotypes, and the adjusted 

mean differences (B) and their associated 95% confidence intervals (CI) are reported for 

predictors in each regression analysis. Significance was assessed at α = 0.05. All analyses 

were performed using Statistical Package for the Social Sciences (SPSS) v. 22 (IBM 

Corporation, Chicago, IL).
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Results

Demographic and injury characteristics

In total, 128 subjects were included in the current analysis (Table 1). The majority were 

male (64%) and all self-identified as Caucasian. Mean age was 44.4 ± 16.4 years, and mean 

years of education were 14.3 ± 2.7. Mechanisms of injury included fall (50%), motor vehicle 

accident (25%), pedestrian versus automobile (13%), assault (10%), and struck by object 

(2%). Mean GCS was 13.5 ± 3.2. Injury severity by admission GCS was 85% mild, 5% 

moderate, and 10% severe TBI. Thirty-two percent of patients did not have post-traumatic 

amnesia, while 56% had positive amnesia and 12% were unknown. Thirty-eight percent of 

patients showed positive intracranial pathology on initial head CT. DRD2 C947T (rs6277) 

was distributed with the following ns: C/C = 42, C/T = 58, and T/T = 28 (C-allele frequency 

0.55, T-allele frequency 0.45), conforming to the Hardy-Weinberg equilibrium (X2 = 0.88, p 
> 0.05) and known Caucasian-European (CEU) HapMap distribution (C-allele frequency 

0.53, T-allele frequency 0.47). No statistically significant differences were observed for any 

demographic or clinical descriptor across DRD2 C957T genotypes (Table 1). ANKK1 
TaqIA (rs1800497) was distributed with the following ns: C/C = 79, C/T = 42, and T/T = 7 

(C-allele frequency 0.78, T-allele frequency 0.22), conforming to the Hardy-Weinberg 

equilibrium (X2 = 0.20, p > 0.05) and known CEU HapMap distribution (C-allele frequency 

0.81, T-allele frequency 0.19). The ANKK1 TaqIA polymorphism distributed differently 

across DRD2 C957T; 26/86 (30%) of DRD2 C957T T-allele carriers, versus 23/42 (55%) of 

DRD2 C/C individuals, carried the ANKK1 T-allele (p = 0.007); the lower concurrent 

inheritance of DRD2 C957T T-allele and the ANKK1 TaqIA T-allele is consistent with prior 

reports [25, 38].

DRD2 C957T is associated with verbal memory but not processing speed or mental 
flexibility

We first sought to characterize whether the DRD2 C957T polymorphism was associated 

with global or domain-specific differences in 6-month cognitive performance. DRD2 C957T 
T-allele carriers were found to perform better on CVLT-II Trials 1–5 (mean increase 4.4 

points, 95% CI [0.4 to 8.5], p = 0.033); a non-significant statistical trend was found for 

CVLT-II Short-Delay Free Recall (mean increase 1.1 points, 95% CI [−0.1 to 2.4], p = 

0.073) and Long-Delay Free Recall (mean increase 1.1 points, 95% CI [−0.1 to 2.4], p = 

0.083). No differences were found for TMT B-A (B = −13.6, 95% CI [−31.3 to 4.1], p = 

0.131) or WAIS-PSI (B = 1.3, 95% CI [−4.2 to 6.8], p = 0.639) (Table 2). These data suggest 

that the DRD2 C957T polymorphism is not associated with a global improvement in 

cognitive performance, but rather a specific performance advantage with tasks of verbal 

learning and recall.

DRD2 C957T is associated with verbal memory after multivariable correction

We next sought to evaluate whether the association between the DRD2 C957T 
polymorphism and CVLT-II performance persisted after adjusting for known predictors of 

outcome after TBI. For each of the five outcome measures, DRD2 C957T was entered into a 

multivariable model including ANKK1 TaqIA genotype, gender, presence/absence of post-
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traumatic amnesia, admission GCS, and presence/absence of intracranial pathology on CT in 

addition to age and education years.

On multivariable analysis of CVLT-II Trials 1–5, the DRD2 T-allele is associated with 

improved performance compared to non-carriers as evidenced by a mean increase of 4.9 

points (95% CI [0.9 to 8.8], p = 0.018) (Table 3). Male gender showed a mean decrease of 

4.0 points (95% CI [−7.8 to −1.1], p = 0.044), and CT-positive patients had a mean decrease 

of 5.8 points (95% CI [−10.0 to −1.6], p = 0.007). ANKK1 genotype, post-traumatic 

amnesia, and admission GCS did not show significant associations with CVLT-II Trials 1–5.

On multivariable analysis of CVLT-II Short-Delay Free Recall, the DRD2 T-allele showed a 

significant association with improved performance (mean increase 1.2 points, 95% CI [0.1 to 

2.5], p = 0.046). CT pathology was the only other significant multivariable predictor (mean 

decrease 1.7 points, 95% CI [−3.0 to −0.4], p = 0.011) (Table 3).

On multivariable analysis of CVLT-II Long-Delay Free Recall, the DRD2 T-allele showed a 

significant association with improved performance (mean increase 1.3 points, 95% CI [0.1 to 

2.5], p = 0.041). CT pathology was the only other significant predictor (mean decrease 2.0 

points, 95% CI [−3.3 to −0.7], p = 0.002) (Table 3).

DRD2 C957T is not associated with processing speed or mental flexibility after 
multivariable correction

As previously demonstrated (Table 2), no significant differences were observed between the 

DRD2 C957T polymorphism and TMT B-A or WAIS-PSI. To confirm the lack of 

confounder effects, we utilized a similar multivariable approach for TMT B-A and WAIS-

PSI (Table 4). On multivariable analysis, a non-significant statistical trend was observed for 

DRD2 C957T T-carriers on TMT B-A (mean decrease −16.2 s, 95% CI [−34.6 to 2.2], p = 

0.084), while no other predictors showed a significant association. No significant association 

was observed on WAIS-PSI for DRD2 T-allele carriers (mean increase 1.1 points, 95% CI 

[−4.6 to 6.9], p = 0.700) or any other predictor, and only admission GCS showed a non-

significant statistical trend (per-unit increase of 0.8 points, 95% CI [−0.1 to 1.7, p = 0.093). 

These data confirm that the DRD2 C957T polymorphism does not associate with 6-month 

performance on metrics of nonverbal processing speed or mental flexibility.

Discussion

In the present study, we investigated whether the DRD2 C957T polymorphism was 

associated with cognitive performance 6 months following TBI. We show that the DRD2 
C957T polymorphism was associated with better performance on the components of the 

CVLT but was not the WAIS-PSI or the TMT. The CVLT assesses a patient’s ability to store 

new information and is understood to be a gauge of verbal and working memory [33, 39]. 

Thus, our results suggest that the DRD2 C957T polymorphism is specifically associated 

with better verbal and working memory post-TBI and does not offer benefit for processing 

speed and/or mental flexibility. The identification of a potential association with DRD2 and 

cognitive outcome after TBI and the specificity of the effect for verbal and working memory 

are both novel insights advanced by this work.
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Previous efforts to associate DRD2 with altered cognitive performance have been promising 

but inconclusive. In 2005, a study found an association between DRD2 SNPs and altered 

cognitive performance in a post-TBI population [18]. However, these results were 

confounded by the influence of a nearby gene, ANKK1 [13]. It was not known if DRD2 is 

independently associated with long-term altered cognitive performance in a post-TBI 

population. Here, we analyzed subjects’ cognitive performance at 6 months after TBI and 

controlled for the effects of ANKK1. The 6-month time point allowed us to measure long-

term cognitive outcome after TBI and not be overly influenced by transient changes in 

cognition that occur during the recovery period, which usually completes 3 months after 

injury [40, 41]. As noted previously, we found that DRD2 genotype was associated with 

cognitive differences at 6 months when the ANKK1 effects were included in the multivariate 

regression. Thus, these data support the idea that DRD2 C957T may be an independent 

predictor of cognitive outcome after TBI.

A recent study by Failla et al. conducted in 108 severe TBI patients investigating rs6279, a 

gene with considerable linkage disequilibrium with rs6277, suggests that differences 

attributable to the DRD2 C957T polymorphism may not be maintained at 12 months [42]. 

Our findings showing an advantage of DRD2 C957T at 6 months raise questions as to 

whether C957T carriers may endure an altered trajectory of recovery and experience delayed 

recovery sometime within the 6–12-month interval. It also may suggest that the cognitive 

deficits are not altogether permanent. An alternative explanation is that the severity of the 

injury could interact with cognitive recovery. Specifically, the work by Failla et al. focused 

on severe TBI subjects of all races with positive intracranial pathology on CT that received 

treatment from a level I trauma center, whereas our data included data from all TBI patients 

of Caucasian race, with a mixture of CT pathology [42]. The resolving deficit in Failla et al. 

could be due to the extensive treatments that this cohort offered and may not be 

generalizable to all TBI patients [42].

Establishing that the DRD2 polymorphism is associated with cognitive outcome after TBI 

also may explain the variability in response to dopamine therapy after TBI. Indeed, there 

have been six randomized controlled trials examining the role of amantadine and/or 

bromocriptine (both dopamine-enhancing agents) in cognitive recovery after TBI; the results 

have not shown a consistent benefit of dopamine agents in cognitive recovery and are often 

discordant [43]. However, here, we show that the presence of DRD2 polymorphisms may 

influence cognitive recovery after TBI, and it is very likely that the effect of dopamine 

agents will be heavily influenced on their presence as well as those of related 

polymorphisms in dopaminergic catabolic biochemical pathways—such as catechol-o-

methyltransferase. Thus, we recommend that future studies examining dopamine agents as a 

treatment for TBI stratify patients based on the presence of the DRD2 genotype, which may 

clarify the role of dopamine therapy in TBI.

Aside from establishing a potential association between DRD2 and cognitive outcome after 

TBI, we also show that DRD2 C957T may specifically associate with improved verbal and 

working memory. This specificity is important because it shows that DRD2 genotype likely 

does not enhance global cognitive ability, such as attention and awareness, which may 

covary with many different cognitive outcomes. Instead, there may be a specific link 
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between DRD2 and verbal and working memory. This link can be explained by the fact that 

the D2 dopamine receptor has enriched expression in the basal ganglia, a region important in 

learning and memory [44]. Furthermore, dopaminergic neurons in the basal ganglia 

(substantia nigra pars compacta) project directly to the prefrontal cortex and the 

hippocampus, regions that have been heavily implicated in working and verbal memory, 

respectively [45].

Limitations

Our results provide a link between the genetic, neuroscience, and psychological markers of 

cognitive dysfunction after TBI. However, there are a number of caveats that should be 

mentioned. First, although it has been speculated that patients’ genotypes can alter the 

magnitude dopamine expression and dopamine binding, which could change the course of 

their recovery [46], other studies have shown that C957T is associated with increased risk 

for some neuropsychiatric diseases [25, 47]. Therefore, it is not clear if different DRD2 
genotypes confer a baseline difference in CVLT performance or if they signify altered 

performance after TBI. Second, our sample consisted exclusively of Caucasian patients, and 

consequently, our findings may not generalize to the population as a whole. Third, we only 

considered patients’ GCS score when producing our multivariable models. These models, 

therefore, did not factor in possible disparate courses of prior medications, post-injury 

medical treatment, or rehabilitative therapy. Furthermore, we were limited by a relatively 

small sample size of 128 patients without controls. While the NINDS CDE outcome 

domains are generally distinct, the possible overlap across cognitive symptomatologies 

attributable to DRD2 C957T will benefit from a rigorous case-control study adequately 

powered to adjust for a range of comparisons. We were also constrained to specifications of 

the NINDS CDE version 1, which were limited to 6 months post-injury; as cognitive deficits 

following TBI may change with time after injury, an analysis tracking the trajectory of 

recovery for DRD2 C957T variants constitutes an important future direction. Lastly, the true 

effect of DRD2 variants is difficult to establish due to presumed gene-gene interactions. The 

genetic variation in DRD2 genes may interact with effects induced by other genes important 

for cognitive recovery.

Conclusions

The DRD2 C957T polymorphism (rs6277) is associated with verbal memory performance at 

6 months following TBI independent of the ANKK1 TaqIA polymorphism (rs1800497), 

while no associations were seen on measures of non-verbal processing speed or mental 

flexibility, in a sample of Caucasian patients. Larger studies in more diverse populations will 

be necessary to confirm the influence of DRD2 C957T in these and other outcome domains 

following TBI. Whether a subgroup of patients with the DRD2 C957T polymorphism may 

benefit from closer clinical surveillance or targeted dopaminergic therapies remains to be 

determined and constitutes an important direction for future research.
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Table 1

Demographic and clinical characteristics of included patients, by DRD2 C957T genotype

Variable Overall (N = 128) T-Present (N = 86) T-Absent (N = 42) Sig. (p)

Age (years)

 Mean, SD 44.4 ± 16.4 45.1 ± 16.7 43.1 ± 15.9 0.527

Gender

 Male 82 (64%) 57 (66%) 25 (60%) 0.455

 Female 46 (36%) 29 (34%) 17 (40%)

Education (years)

 Mean, SD 14.3 ± 2.7 14.4 ± 2.8 14.0 ± 2.7 0.460

Mechanism of injury

 Motor vehicle crash 32 (25%) 22 (26%) 10 (24%) 0.964

 Pedestrian versus auto 26 (13%) 11 (13%) 5 (12%)

 Fall 64 (50%) 42 (49%) 22 (54%)

 Assault 13 (10%) 8 (9%) 5 (12%)

 Struck by 2 (2%) 2 (2%) 0 (0%)

Post-traumatic amnesia

 No 41 (32%) 30 (35%) 11 (26%) 0.371

 Yes 72 (56%) 48 (56%) 24 (57%)

 Unknown 15 (12%) 8 (9%) 7 (17%)

ED arrival GCS

 Mean, SD 13.5 ± 3.2 13.6 ± 3.2 13.4 ± 3.3 0.756

 Severe (3–8) 13 (10%) 10 (12%) 3 (7%)

 Moderate (9–12) 6 (5%) 1 (1%) 5 (12%)

 Mild (13–15) 109 (85%) 75 (87%) 34 (81%)

CT intracranial pathology

 No 79 (62%) 54 (63%) 25 (60%) 0.721

 Yes 49 (38%) 32 (37%) 17 (40%)

ANKK1 TaqIA genotype

 T-Present 49 (38%) 26 (30%) 23 (55%) 0.007

 T-Absent 79 (62%) 60 (70%) 19 (45%)

All distributions are reported as column percentages

CT computed tomography, DRD2 dopamine receptor D2, ED emergency department, GCS Glasgow Coma Scale, SD standard deviation
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