2,644 research outputs found

    Stretching the Dispute Settlement Understanding: U.S.—Cotton’s Relaxed Interpretation of Cross-Retaliation in the World Trade Organization

    Get PDF
    In August 2009, the World Trade Organization (“WTO”) au-thorized Brazil to impose sanctions against the United States for its continued subsidization of cotton producers in violation of the WTO Agreement on Subsidies and Countervailing Measures (“SCM Agreement”) and the Agreement on Agriculture. The WTO approved Brazil’s use of sanctions outside the General Agreement on Tariffs and Trade (“GATT”), authorizing cross-retaliation against rights owed to the United States under the Agreement on Trade-Related Aspects of Intellectual Property Rights (“TRIPS”). This is the third case of cross- retaliation authorized by a WTO arbitrator under the Understanding on Rules and Procedures Governing the Settlement of Disputes (DSU)

    Helicopter transmission research at NASA Lewis Research Center

    Get PDF
    A joint helicopter transmission research program between NASA Lewis Research Center and the U.S. Army Aviation Systems Command has existed since 1970. Program goals are to reduce weight and noise and to increase life and reliability. Reviewed are significant advances in technology for gears and transmissions and the experimental facilities at NASA Lewis for helicopter transmission testing are described. A description of each of the rigs is presented along with some significant results from the experiments

    M-theory and the string genus expansion

    Full text link
    The partition function of the membrane is investigated. In particular, the case relevant to perturbative string theory of a membrane with topology S1×ΣS^1 \times \Sigma is examined. The coupling between the string world sheet Euler character and the dilaton is shown to arise from a careful treatment of the membrane partition function measure. This demonstrates that the M-theory origin of the dilaton coupling to the string world sheet is quantum in nature.Comment: 12 pages, late

    A Generalized Porosity Formalism For Isotropic And Anisotropic Effective Opacity And Its Effects On X-Ray Line Attenuation In Clumped O Star Winds

    Get PDF
    We present a generalized formalism for treating the porosity-associated reduction in continuum opacity that occurs when individual clumps in a stochastic medium become optically thick. As in previous work, we concentrate on developing bridging laws between the limits of optically thin and thick clumps. We consider geometries resulting in either isotropic or anisotropic effective opacity, and, in addition to an idealized model in which all clumps have the same local overdensity and scale, we also treat an ensemble of clumps with optical depths set by Markovian statistics. This formalism is then applied to the specific case of boundfree absorption of X-rays in hot star winds, a process not directly affected by clumping in the optically thin limit. We find that the Markov model gives surprisingly similar results to those found previously for the single-clump model, suggesting that porous opacity is not very sensitive to details of the assumed clump distribution function. Further, an anisotropic effective opacity favours escape of X-rays emitted in the tangential direction (the venetian blind effect), resulting in a bump of higher flux close to line centre as compared to profiles computed from isotropic porosity models. We demonstrate how this characteristic line shape may be used to diagnose the clump geometry, and we confirm previous results that for optically thick clumping to significantly influence X-ray line profiles, very large porosity lengths, defined as the mean free path between clumps, are required. Moreover, we present the first X-ray line profiles computed directly from line-driven instability simulations using a 3D patch method, and find that porosity effects from such models also are very small. This further supports the view that porosity has, at most, a marginal effect on X-ray line diagnostics in O stars, and therefore that these diagnostics do indeed provide a good clumping insensitive method for deriving O star mass-loss rates

    Model Checking Control Communication of a FACTS Device

    Get PDF
    This paper concerns the design and verification of a realtime communication protocol for sensor data collection and processing between an embedded computer and a DSP. In such systems, a certain amount of data loss without recovery may be tolerated. The key issue is to define and verify the correctness in the presence of these lost data frames under real-time constraints. This paper describes a temporal verification that if the end processes do not detect that too many frames are lost, defined by comparison of error counters against given threshold values, then there will be a bounded delay between transmission of data frames and reception of control frames. This verification and others presented herein were performed with the model checkers SPIN and RT-SPIN

    Wind Channeling, Magnetospheres, And Spindown Of Magnetic Massive Stars

    Get PDF
    A subpopulation (~10%) of hot, luminous, massive stars have been revealed through spectropolarimetry to harbor strong (hundreds to tens of thousand Gauss), steady, large-scale (often significantly dipolar) magnetic fields. This review focuses on the role of such fields in channeling and trapping the radiatively driven wind of massive stars, including both in the strongly perturbed outflow from open field regions, and the wind-fed “magnetospheres” that develop from closed magnetic loops. For B-type stars with weak winds and moderately fast rotation, one finds “centrifugal magnetospheres”, in which rotational support allows magnetically trapped wind to accumulate to a large density, with quite distinctive observational signatures, e.g. in Balmer line emission. In contrast, more luminous O-type stars have generally been spun down by magnetic braking from angular momentum loss in their much stronger winds. The lack of centrifugal support means their closed loops form a “dynamical magnetosphere”, with trapped material falling back to the star on a dynamical timescale; nonetheless, the much stronger wind feeding leads to a circumstellar density that is still high enough to give substantial Balmer emission. Overall, this review describes MHD simulations and semi-analytic dynamical methods for modeling the magnetospheres, the magnetically channeled wind outflows, and the associated spin-down of these magnetic massive stars

    Time-resolved photoelectron imaging of excited state relaxation dynamics in phenol, catechol, resorcinol and hydroquinone

    Get PDF
    Time-resolved photoelectron imaging was used to investigate the dynamical evolution of the initially prepared S1 (\u3c0\u3c0*) excited state of phenol (hydroxybenzene), catechol (1,2-dihydroxybenzene), resorcinol (1,3-dihydroxybenzene), and hydroquinone (1,4-dihydroxybenzene) following excitation at 267 nm. Our analysis was supported by ab initio calculations at the coupled-cluster and CASSCF levels of theory. In all cases, we observe rapid (<1 ps) intramolecular vibrational redistribution on the S1potential surface. In catechol, the overall S1 state lifetime was observed to be 12.1 ps, which is 1\u20132 orders of magnitude shorter than in the other three molecules studied. This may be attributed to differences in the H atom tunnelling rate under the barrier formed by a conical intersection between the S1 state and the close lying S2 (\u3c0\u3c3*) state, which is dissociative along the O\u2013H stretching coordinate. Further evidence of this S1/S2 interaction is also seen in the time-dependent anisotropy of the photoelectron angular distributions we have observed. Our data analysis was assisted by a matrix inversion method for processing photoelectron images that is significantly faster than most other previously reported approaches and is extremely quick and easy to implement.Peer reviewed: YesNRC publication: Ye

    A Mass-Loss Rate Determination For Zeta Puppis From The Quantitative Analysis Of X-Ray Emission-Line Profiles

    Get PDF
    We fit every emission line in the high-resolution Chandra grating spectrum of. Pup with an empirical line profile model that accounts for the effects of Doppler broadening and attenuation by the bulk wind. For each of 16 lines or line complexes that can be reliably measured, we determine a best-fitting fiducial optical depth, tau(*) equivalent to kappa(M) over dot/4 pi R(*)upsilon(infinity), and place confidence limits on this parameter. These 16 lines include seven that have not previously been reported on in the literature. The extended wavelength range of these lines allows us to infer, for the first time, a clear increase in tau(*) with line wavelength, as expected from the wavelength increase of bound-free absorption opacity. The small overall values of tau(*), reflected in the rather modest asymmetry in the line profiles, can moreover all be fitted simultaneously by simply assuming a moderate mass-loss rate of 3.5 +/- 0.3 x 10(-6) M(circle dot) yr(-1), without any need to invoke porosity effects in the wind. The quoted uncertainty is statistical, but the largest source of uncertainty in the derived mass-loss rate is due to the uncertainty in the elemental abundances of zeta Pup, which affects the continuum opacity of the wind, and which we estimate to be a factor of 2. Even so, the mass-loss rate we find is significantly below the most recent smooth-wind H alpha mass-loss rate determinations for zeta Pup, but is in line with newer determinations that account for small-scale wind clumping. If zeta Pup is representative of other massive stars, these results will have important implications for stellar and Galactic evolution

    Chandra HETGS Multiphase Spectroscopy Of The Young Magnetic O Star Theta(1) Orionis C

    Get PDF
    We report on four Chandra grating observations of the oblique magnetic rotator theta(1) Ori C (O5.5 V), covering a wide range of viewing angles with respect to the star\u27s 1060 G dipole magnetic field. We employ line-width and centroid analyses to study the dynamics of the X-ray - emitting plasma in the circumstellar environment, as well as line-ratio diagnostics to constrain the spatial location, and global spectral modeling to constrain the temperature distribution and abundances of the very hot plasma. We investigate these diagnostics as a function of viewing angle and analyze them in conjunction with new MHD simulations of the magnetically channeled wind shock mechanism on theta(1) Ori C. This model fits all the data surprisingly well, predicting the temperature, luminosity, and occultation of the X-ray - emitting plasma with rotation phase
    • 

    corecore