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Abstract

This paper concerns the design and verification of a real-
time communication protocol for sensor data collection and
processing between an embedded computer and a DSP. In
such systems, a certain amount of data loss without recov-
ery may be tolerated. The key issue is to define and ver-
ify the correctness in the presence of these lost data frames
under real-time constraints. This paper describes a tempo-
ral verification that if the end processes do not detect that
too many frames are lost, defined by comparison of error
counters against given threshold values, then there will be
a bounded delay between transmission of data frames and
reception of control frames. This verification and others
presented herein were performed with the model checkers
SPIN and RT-SPIN.

Keywords:model-checking, verification, real-time, lossy, control,
communication, protocol, FACTS

1. Introduction

The context for the development of this communication
protocol is an attempt to understand how to control electric
power flow in a power transmission system (network) by
means of Flexible A/C Transmission System (FACTS) de-
vices [1]. A FACTS device has a Digital Signal Processor
(DSP) board that is responsible for sensory data acquisi-
tion, transforming the data into a usable format, communi-
cating the data to an Embedded PC (EPC), receiving con-
trol information from a dynamic controller in the EPC, and
applying the control information to power electronics that
modify power flow on a particular power line [9]. The DSP
provides continuous sensor readings which are expected to

This research is supported in part by the NSF MRI grant CNS-
0420869 and in part by the UMR Intelligent Systems Center.

vary slowly, so some message loss is tolerable. The commu-
nication between the DSP and the EPC is via a Controller
Area Network (CAN) bus. This paper focuses on the design
and verification of a lossy communication protocol between
the DSP and the EPC over the CAN bus.

The problem of reliable data transfer has been solved by
several protocols: the alternating-bit protocol, the go-back
N protocol, the selective repeat protocol, and hybrids of
these including the method used by TCP [7]. In verification
work of the correctness properties of these protocols, Bull
and de Villiers [3] have done some work on the alternating-
bit protocol and TCP. Holzmann [5] describes a verification
of some standard safety properties and two liveness proper-
ties for the go-back N protocol. The first liveness property
is that sent messages are eventually received, and the sec-
ond liveness property is that messages are delivered in the
order sent.

For this paper, there are two reasons why the protocols
just discussed are inappropriate. First, there is no need for

reliability of the communication, because the con-
trol loop need not furnish new settings every cycle; it can
use settings from the previous cycle without much harm be-
ing done to the integrity of the system. Second, and more
important, is that the CAN bus bandwidth is inadequate
to support message retransmission. Therefore, a protocol
which allows some message (data) loss but which guards
against excessive losses is called for. Perfect functioning is
defined as operating without message loss, normal function-
ing as operating with not too much message loss (quantified
later in this paper), and malfunctioning as operating with
too much message loss.

A formal correctness argument for a protocol, particu-
larly one embedded as deeply as the proposed EPC-DSP
protocol in a FACTS device, is vital for correct operation of
the system. Simply using the features of the CAN protocol,
which has an inherent reliability, still does not provide con-
fidence in data and control exchange. Verification provides
this increased level of confidence. However, there appears
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to be little prior published work on formal verification of
a protocol that meets real-time constraints in a sensor net-
work communication by allowing a tolerable level of data
loss. Protocol design and verification of its correctness are
the tasks undertaken in this paper.

The organization of this paper is as follows. In section 2,
the protocol is described. In section 3, the correctness spec-
ification and the actual method of verification is explained.
In section 4, we mention a validation of the fact that Asser-
tion 1 expresses the desired property and show what hap-
pens when some of the error counters are disabled. Finally,
the discussion is concluded in section 5.

2. Protocol Description

The DSP and the EPC are two independent comput-
ers with independent clocks, and, thus, have no inherent
synchronization. Each end process communicates asyn-
chronously over the CAN bus that connects them. In the
protocol operation (see Figure 1), the DSP periodically re-
ceives a control setting (ctrl) from the EPC over the CAN
bus and applies this to embedded power electronics (not
shown). The DSP also returns data frame sets (3 data) re-
garding the state of the power electronics to the EPC. The
EPC periodically receives these data frame sets, computes
new control information obtained from a dynamic controller
(not shown), and sends this control setting to the DSP.

DSP

DSP clock

ctrl

3 data

ctrl

3 data

Thread sleeps Thread sleeps

Tp = 1 msec Tp = 1 msec

Td = Tp + epsilon
Td = Tp + epsilon

EPC clock

EPC

Timer is reset

Figure 1. EPC-DSP Protocol Operation.

The basic protocol operation is complicated by a number
of factors. The DSP and the EPC operate on two indepen-
dent, but interleaved, cycles (of length and respec-
tively). If information (control or data) is lost or delayed,
each side must have the ability to continue operation and
not block. If information is missing, however, both the DSP
and EPC can continue asynchronously, using data/control
from a previous cycle. There is a tolerable bound on the
amount of data/control loss and a specific upper bound on
the gap between control and data frames that the protocol
can tolerate. The protocol design must deal with all these
issues.

For the message-passing, each end process has variables
to store the received values (Figures 2 and 3). On the

START

d <= 10
EPC_to_DSP?(seq_in[0],seq_in[1])

d = 0

d == 11
EPC_to_DSP?(lost0,lost1)

d = 0

else
increment error
error < threshold

seq_in[0]==seq_out
seq_in[0]==seq_in[1]

cfr = seq_out
decrement error

pass Assertion 2
increment seq_out

d == 1
DSP_to_EPC!(seq_out, cfr)

increment error
error < threshold
increment seq_out

d == 1
DSP_to_EPC!(seq_out,cfr)

Figure 2. Timed Automaton: DSP Board with
receive errors modeled.

START

b == 9
EPC_to_DSP!(cf, dfr)

b = 0

b == 8
DSP_to_EPC?(dum0, dum1)

b = 0

data[0] = dum0
cfr = dum1

skip

data[1] = dum0
cfr = dum1

skip

else
increment error
error < threshold
pass Assertion 3

b == 2
cf = expd
EPC_to_DSP!(cf, dfr)
increment expd
b = 0

cfr + 1 == expd
decrement error
pass Assertion 3data[0]==data[1]

data[0]==expd
dfr = expd else

increment error
error < threshold
pass Assertion 3

Figure 3. Timed Automaton: EPC with receive
errors modeled.

EPC side, there is an array data[] for storing data frame
sequence numbers, and a variable cfr for storing the se-
quence number of the last control frame that the DSP re-
ceived. For verification purposes, the model used only two
data frames (instead of three) in order to reduce the com-
plexity without affecting the essential features of the de-
sign. There is also a variable expd (expected), which is
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DSP (){
byte error = 0; byte threshold = 5;
byte lost; byte cfr = 1;
*[atomic{when{d<=10} reset{d}

EPC_to_DSP?msg(seq_in[0],seq_in[1])->
[((seq_in[1]==seq_out)

&&(seq_in[0]==seq_in[1]))->
cfr = seq_out;
[(error > 0) ->

error = error - 1
[]else -> skip]

[]else ->
error = error + 1;
[(error>=threshold)->QUIT
[]else -> skip]];

/* Assertion 2 */
seq_out=(seq_out+1)%wrap}

progress: atomic{when{d==1}
DSP_to_EPC!msg (seq_out,cfr)}

[]atomic{when{d==11} reset{d}
EPC_to_DSP?msg(lost, lost) ->
error = error + 1;
[(error>=threshold)->QUIT
[]else -> skip];
seq_out=(seq_out+1)%wrap}
atomic{when{d==1} skip ->
DSP_to_EPC!msg (seq_out, cfr)}]}

Figure 4. Pseudocode: DSP Board.

incremented in each cycle. The EPC will send a control
frame with two sequence numbers: the first is simply equal
to expd, and the other is the sequence number of the most
recently received data frame set (which enables the DSP to
know how fresh the control information is). On the DSP
side, there is an array seq in[] for the control frame se-
quence number received and the sequence number of the
last fresh control frame sent, and a variable seq out for
the current data frame sequence number of a set. The de-
fined constant wrap was set at 128, and instead of incre-
menting sequence numbers by one each cycle, they were
incremented by eight units to reduce the state space.

During normal operation, messages will be received se-
quentially in order without gaps, and error counters will be
decremented by one unit per cycle (with zero as a minimum
value). To address the issues of lost or delayed data/control,
the gap between data/control, and to ensure the protocol
does not block, error counters and timers are maintained
locally in each end process. The clock variables b and d
regulate the timing. They simulate local clocks for the two
end processes which run at exactly the same rate, but which
can be reset independently.

EPC (){
byte error = 0; byte threshold = 5;
byte dum0, dum1; byte cf = start;
byte dfr = start; byte cfr = 0;
atomic{expd=expd+1;
when{b==9} reset{b}
EPC_to_DSP!msg (cf, dfr)}

*[atomic{when{b==8} reset{b}
DSP_to_EPC?msg (dum0, dum1)->

[(1) -> data[0] = dum0; cfr = dum1
[](1) -> skip];

[(1) -> data[1] = dum0; cfr = dum1
[](1) -> skip];

[((data[0]==data[1])
&&(data[0]==expd))->
dfr = expd;
[((cfr+1)%wrap!=expd)->

error = error + 1;
[(error>=threshold)->QUIT
[]else]

[]else ->
[(error > 0) ->

error = error - 1
[]else]]

[]else ->
error = error + 1;
[(error>=threshold)->QUIT
[]else -> skip]]

cf = expd;
/* Assertion 3 */
expd=(expd + 1)%wrap}
atomic{when{b==2} reset{b}
skip->EPC_to_DSP!msg (cf, dfr)}]}

Figure 5. Pseudocode: Embedded PC.

The error counters play a major role in the correctness
and are designed to limit the amount of timeouts that can
occur. Since timeouts occur due to lost, missing, or delayed
data/control, the error counters form a record of the number
of accumulated errors. An error counter will be incremented
by the DSP when control frames are delayed or lost causing
a timeout at milliseconds ( may be taken to
be milliseconds) or when the current control frame re-
ceived is not fresh. The EPC will increment its error counter
when message loss or delay causes a situation in which a
complete data frame set with expected sequence number is
not available in a cycle or when it receives an indication
that the DSP did not receive a fresh control frame its previ-
ous cycle. In each cycle of the EPC, a control frame is sent
with sequence number echoing the expected value back via
the CAN bus to the DSP. If either error counter reaches a
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given threshold value, the protocol QUITs in an error state.
The resetting of timeouts based on successful receipt of

messages has the effect of synchronizing the interleaved cy-
cles of the EPC and DSP.

3. Correctness and Verification of Models

We define a fresh control frame as one which has just
been computed based on a complete data frame set, so both
sequence numbers which it contains are equal.

Correctness of this protocol is defined by ensuring that a
fresh control frame follows a complete set of data frames,
that there is (on the DSP side) a bounded gap between fresh
control frames received and data frames sent, that there is
also (on the EPC side) a similar bounded gap between ac-
knowledged fresh control frames and control frames sent,
and that the protocol does not block. Four formal asser-
tions, taken together, comprise this definition of correct-
ness, which is shown by verifying that if the error counters
stay below a threshold, the protocol satisfies the four asser-
tions.

Assertion 1 states, formally, that a fresh control frame is
only generated from a complete set of data from that cycle.

Assertion 1

Figure 6. The control frame based on se-
quence number data[0] is not received by
the DSP before the embedded PC receives a
complete data frame set with that sequence
number.

Assertions 2 and 3 are composed of three cases. Con-
sider Assertion 2. If seq in[1] is not about to wrap-
around, then the data frame sequence number is larger than
seq in[1], but not more than max gap larger. Sim-
ilarly, if the data frame sequence number has not just
wrapped around, then seq in[1] is small, but not more
than max gap smaller than seq out. The third case is the
exception and asserts that the data frame sequence number
is not too far past zero relative to the difference between the
seq in[1] and wrap, which is the wrap-around modu-
lus (1 + the maximum sequence number). Assertion 3 is
similar.

Assertion 2
if
::(seq_in[1]<(wrap-max_gap)) ->

assert(seq_in[1]+max_gap>=seq_out);
assert(seq_out>=seq_in[1])

::(seq_out>=max_gap + 1) ->
assert(seq_out-max_gap<=seq_in[1]);
assert(seq_in[1]<=seq_out)

::else ->
assert(seq_in[1] >=

seq_out+(wrap-max_gap))
fi;

Figure 7. The difference between the data
frame sequence number and most recent
fresh control frame sequence number is
bounded by max gap.

Assertion 3
if
::((cfr+1)%wrap<(wrap-max_gap)) ->

assert((cfr+1)%wrap+max_gap>=expd);
assert(expd>=(cfr+1)%wrap)

::(expd>=max_gap+1) ->
assert(expd-max_gap<=(cfr+1)%wrap);
assert((cfr+1)%wrap<=expd)

::else ->
assert((cfr+1)%wrap >=

seq_out+(wrap-max_gap))
fi;

Figure 8. The DSP acknowledges at least in-
termittent receipt of control frames. The EPC
will be assured that the DSP is not experienc-
ing too many cycles without a fresh control
frame.

Assertion 4 No non-progress cycles: if the protocol runs
without terminating due to an error condition, then the DSP
will successfully receive control frames infinitely often.

Assertion 4 is necessary to show that the protocol does
not block, and more importantly, that Assertion 2 is checked
infinitely often. The error occurrences relate to time be-
cause each end process operates (at least approximately) on
a periodic cycle. Thus, no long period of time can pass
without an exchange between the EPC and the DSP. This
synchronization relates the data to the control frames.
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Both SPIN and RT-SPIN were used to perform ver-
ifications of the assertions which are described above.
Promela [6] and RT-Promela [10] are used as the model-
ing languages. SPIN is well-known and easier to use than
RT-SPIN, but lacks inherent timing features; without some
timing assumptions or control of interleaving, the model can
exhibit many interactions that are not representative of the
protocol’s timed operation.

To build timing into the Promela model, [4] presents an
attractive approach to adding timers to the model to regulate
the timing of the end process cycles. This leads to a rough
scheduler which gives the DSP and EPC opportunities to ex-
ecute in an alternating manner (creating some implicit syn-
chronization), but with the additional possibility of one of
them drifting ahead and executing more frequently (see Fig-
ure 9). the DSP CLK message initiates the DSP cycle, and
the EPC CLK message initiates the EPC cycle.

active proctype CLK ()
{

byte P = 128;
end0: do

::atomic{DSP_CLK!msg(0)->
P = P - 1;
if
:: (P<=127) -> break
:: else
fi}

:: atomic{EPC_CLK!msg(0)->
P = P + 1;
if
:: (P>=130) -> break
:: else
fi}

od
}

Figure 9. Scheduler for SPIN Verification.

For the SPIN verification, an untimed, multiple data
frame model using channels (one channel for each data
frame) was created in Promela and was verified against As-
sertions 1, 2, and 4 using SPIN. By varying the number of
channels that could potentially lose messages, the complex-
ity grew dramatically. To reduce the complexity of verifi-
cation, thresholds for the error counters and the amount of
drift between the cycles of the EPC and the DSP were lim-
ited to small values.

As a validation of the difficulty and complexity of veri-
fication of a communication protocol, a comparison to the
work of [2], which focuses on model checking of a zero-cost

secured protocol (ZCSP) using SPIN was made. That work
also mentions difficulties with the capability of SPIN model
checking software to handle complicated models. The num-
ber of states visited was comparable for the ZCSP verifica-
tion (on the order of states) and the SPIN verification
(on the order of states).

Next, a real-time model was developed based on the un-
timed model. RT-SPIN allows better modeling of the real-
time aspects of the system. It was a simple task to modify
the untimed models for use with RT-SPIN, by substituting
a timing constraint for the signal from the scheduler (Fig-
ure 9).

In the RT-Promela model (Figures 4 and 5), timing con-
straints that were introduced force the DSP and the EPC
to operate on cycles with periods of either 10 or 11 units,
where units represent tenths of milliseconds. For both the
untimed and timed models, the complexity of the verifica-
tions of Assertion 1 is similar to the complexity of the veri-
fications of Assertion 4 (progress). The untimed and timed
model verifications were found to have similar complexity.

With RT-SPIN, it was eventually possible to explore the
entire state space for infinite runs despite complexity con-
siderations, so progress verifications were possible. This
was accomplished by replacing the explicit CAN bus pro-
cess with buffered channels. The issue of deadlock was also
considered for the final verifications, and neither SPIN nor
RT-SPIN discovered any invalid end-states in the safety ver-
ifications.

The RT-SPIN verification uses Assertion 2 to check that
(during normal operation) control frames received by the
DSP have a sequence number (seq in[1], which may be
interpreted as an acknowledgement number) within a cer-
tain range relative to the most recent sequence number of
data frame sets sent by the DSP. Taken together, if the com-
munication continues forever, it will do so correctly.
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Figure 10. Complexity of Safety Verification
for RT-SPIN.
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Figure 11. Complexity of Progress Verifica-
tion for RT-SPIN.

The complexity of the real-time model verification is
shown in Figures 10 and 11. A parameter set with a
threshold value of 4 was used with max gap equal to 6
for 4srt.dat and 4nprt.dat. The verifications for 5srt.dat and
5nprt.dat used a threshold of 5 with max gap equal to 7,
and for 6srt.dat and 6nprt.dat a threshold of 6 was used with
max gap equal to 7 as well. These parameter sets were
chosen to demonstrate the increased complexity of the veri-
fications when the threshold is increased; it is also apparent
that the complexity increases as more message channels are
allowed to become lossy.

4. Validation

Because Assertion 1 expresses a non-trivial temporal
property, it was validated against a simpler model program
with simpler predicates (p and t), but with the same tempo-
ral formula.

The Table 1 shows how the error counters in the DSP
and EPC are independently capable of detecting the error
state and how without at least one of them unacceptable er-
rors can occur.

Error Counter(s) Disabled Result
EPC Assertions 2 and 3 passed
DSP Assertions 2 and 3 passed
Both DSP, EPC Assertions 2 and 3 violated

Table 1. Result of disabling error counters.

5. Conclusion

The software used in the modeling and model checking
in this paper provides a method for design and some sim-

ple verifications. RT-Promela and RT-SPIN are enhance-
ments of the popular model checker SPIN, which is an ad-
vantage. The GUI XSPIN was very useful during the sim-
ulation phase of the project. As some expertise was de-
veloped, simulation became less important, and verification
was done relying on XSPIN only for LTL formula conver-
sion. One major advantage that any real-time model checker
could offer is the possibility of partial-order reduction, the
theoretical foundation of which has been laid by Minea [8].
This could significantly increase the capability of any model
checking software.

Despite some limitations of SPIN and RT-SPIN, it has
been verified that with a reasonable definition of normal
operation (possibly with some message loss), which can be
monitored by the end processes, an acceptable level of in-
formation integrity can be guaranteed in the CAN bus com-
munication protocol (EPC-DSP) which may be used in a
FACTS device. This protocol and verification can be used
for continuous sensor readings and control to tolerate some
degree of message loss.
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