62 research outputs found
Approximate input physics for stellar modelling
We present a simple and efficient, yet reasonably accurate, equation of
state, which at the moderately low temperatures and high densities found in the
interiors of stars less massive than the Sun is substantially more accurate
than its predecessor by Eggleton, Faulkner & Flannery. Along with the most
recently available values in tabular form of opacities, neutrino loss rates,
and nuclear reaction rates for a selection of the most important reactions,
this provides a convenient package of input physics for stellar modelling. We
briefly discuss a few results obtained with the updated stellar evolution code.Comment: uuencoded compressed postscript. The preprint are also available at
http://www.ast.cam.ac.uk/preprint/PrePrint.htm
The C-flash and the ignition conditions of type Ia supernovae
Thanks to a stellar evolution code able to compute through the
C-flash we link the binary population synthesis of single degenerate
progenitors of type Ia supernovae (SNe Ia) to their physical condition at the
time of ignition. We show that there is a large range of possible ignition
densities and we detail how their probability distribution depends on the
accretion properties. The low density peak of this distribution qualitatively
reminds of the clustering of the luminosities of Branch-normal SNe Ia. We
tighten the possible range of initial physical conditions for explosion models:
they form a one-parameter family, independent of the metallicity. We discuss
how these results may be modified if we were to relax our hypothesis of a
permanent Hachisu wind or if we were to include electron captures.Comment: 10 pages, 14 figures, MNRAS accepte
The Binarity of Eta Carinae and its Similarity to Related Astrophysical Objects
I examine some aspects of the interaction between the massive star Eta
Carinae and its companion, in particular during the eclipse-like event, known
as the spectroscopic event or the shell event. The spectroscopic event is
thought to occur when near periastron passages the stellar companion induces
much higher mass loss rate from the primary star, and/or enters into a much
denser environment around the primary star. I find that enhanced mass loss rate
during periastron passages, if it occurs, might explain the high eccentricity
of the system. However, there is not yet a good model to explain the presumed
enhanced mass loss rate during periastron passages. In the region where the
winds from the two stars collide, a dense slow flow is formed, such that large
dust grains may be formed. Unlike the case during the 19th century Great
Eruption, the companion does not accrete mass during most of its orbital
motion. However, near periastron passages short accretion episodes may occur,
which may lead to pulsed ejection of two jets by the companion. The companion
may ionize a non-negligible region in its surrounding, resembling the situation
in symbiotic systems. I discuss the relation of some of these processes to
other astrophysical objects, by that incorporating Eta Car to a large class of
astrophysical bipolar nebulae.Comment: Updated version. ApJ, in pres
Unresolved stellar companions with Gaia DR2 astrometry
ABSTRACT
For stars with unresolved companions, motions of the centre of light and that of mass decouple, causing a single-source astrometric model to perform poorly. We show that such stars can be easily detected with the reduced χ2 statistic, or renormalized unit weight error (RUWE), provided as part of Gaia DR2. We convert RUWE into the amplitude of the image centroid wobble, which, if scaled by the source distance, is proportional to the physical separation between companions (for periods up to several years). We test this idea on a sample of known spectroscopic binaries and demonstrate that the amplitude of the centroid perturbation scales with the binary period and the mass ratio as expected. We apply this technique to the Gaia DR2 data and show how the binary fraction evolves across the Hertzsprung–Russell diagram. The observed incidence of unresolved companions is high for massive young stars and drops steadily with stellar mass, reaching its lowest levels for white dwarfs. We highlight the elevated binary fraction for the nearby blue stragglers and blue horizontal branch stars. We also illustrate how unresolved hierarchical triples inflate the relative velocity signal in wide binaries. Finally, we point out a hint of evidence for the existence of additional companions to the hosts of extrasolar hot Jupiters.</jats:p
Structure and evolution of rotationally and tidally distorted stars
This paper aims to study the configuration of two components caused by
rotational and tidal distortions in the model of a binary system. The
potentials of the two distorted components can be approximated to 2nd-degree
harmonics. Furthermore, both the accretion luminosity () and the
irradiative luminosity are included in stellar structure equations. The
equilibrium structure of rotationally and tidally distorted star is exactly a
triaxial ellipsoids. A formula describing the isobars is presented, and the
rotational velocity and the gravitational acceleration at the primary surface
simulated. The results show the distortion at the outer layers of the primary
increases with temporal variation and system evolution. Besides, it was
observed that the luminosity accretion is unstable, and the curve of the
energy-generation rate fluctuates after the main sequence in rotation
sequences. The luminosity in rotation sequences is slightly weaker than that in
non-rotation sequences. As a result, the volume expands slowly. Polar ejection
is intensified by the tidal effect. The ejection of an equatorial ring may be
favoured by both the opacity effect and the -effect in
the binary system.Comment: 10 pages, 17 figures,Accepted by Astronomy and Astrophysic
Accretion Disks and Dynamos: Toward a Unified Mean Field Theory
Conversion of gravitational energy into radiation in accretion discs and the
origin of large scale magnetic fields in astrophysical rotators have often been
distinct topics of research. In semi-analytic work on both problems it has been
useful to presume large scale symmetries, necessarily resulting in mean field
theories. MHD turbulence makes the underlying systems locally asymmetric and
nonlinear. Synergy between theory and simulations should aim for the
development of practical mean field models that capture essential physics and
can be used for observational modeling. Mean field dynamo (MFD) theory and
alpha-viscosity accretion theory exemplify such ongoing pursuits. 21st century
MFD theory has more nonlinear predictive power compared to 20th century MFD
theory, whereas accretion theory is still in a 20th century state. In fact,
insights from MFD theory are applicable to accretion theory and the two are
artificially separated pieces of what should be a single theory. I discuss
pieces of progress that provide clues toward a unified theory. A key concept is
that large scale magnetic fields can be sustained via local or global magnetic
helicity fluxes or via relaxation of small scale magnetic fluctuations, without
the kinetic helicity driver of 20th century textbooks. These concepts may help
explain the formation of large scale fields that supply non-local angular
momentum transport via coronae and jets in a unified theory of accretion and
dynamos. In diagnosing the role of helicities and helicity fluxes in disk
simulations, each disk hemisphere should be studied separately to avoid being
misled by cancelation that occurs as a result of reflection asymmetry. The
fraction of helical field energy in disks is expected to be small compared to
the total field in each hemisphere as a result of shear, but can still be
essential for large scale dynamo action.Comment: For the Proceedings of the Third International Conference and
Advanced School "Turbulent Mixing and Beyond," TMB-2011 held on 21 - 28
August 2011 at the Abdus Salam International Centre for Theoretical Physics,
Trieste, http://users.ictp.it/~tmb/index2011.html Italy, To Appear in Physica
Scripta (corrected small items to match version in print
A binary model for the UV-upturn of elliptical galaxies (MNRAS version)
The discovery of a flux excess in the far-ultraviolet (UV) spectrum of
elliptical galaxies was a major surprise in 1969. While it is now clear that
this UV excess is caused by an old population of hot helium-burning stars
without large hydrogen-rich envelopes, rather than young stars, their origin
has remained a mystery. Here we show that these stars most likely lost their
envelopes because of binary interactions, similar to the hot subdwarf
population in our own Galaxy. We have developed an evolutionary population
synthesis model for the far-UV excess of elliptical galaxies based on the
binary model developed by Han et al (2002, 2003) for the formation of hot
subdwarfs in our Galaxy. Despite its simplicity, it successfully reproduces
most of the properties of elliptical galaxies with a UV excess: the range of
observed UV excesses, both in and , and their evolution
with redshift. We also present colour-colour diagrams for use as diagnostic
tools in the study of elliptical galaxies. The model has major implications for
understanding the evolution of the UV excess and of elliptical galaxies in
general. In particular, it implies that the UV excess is not a sign of age, as
had been postulated previously, and predicts that it should not be strongly
dependent on the metallicity of the population, but exists universally from
dwarf ellipticals to giant ellipticals.Comment: accepted for publication in MNRAS, 24 pages, 15 figures, 2 table
Mass Transfer by Stellar Wind
I review the process of mass transfer in a binary system through a stellar
wind, with an emphasis on systems containing a red giant. I show how wind
accretion in a binary system is different from the usually assumed Bondi-Hoyle
approximation, first as far as the flow's structure is concerned, but most
importantly, also for the mass accretion and specific angular momentum loss.
This has important implications on the evolution of the orbital parameters. I
also discuss the impact of wind accretion, on the chemical pollution and change
in spin of the accreting star. The last section deals with observations and
covers systems that most likely went through wind mass transfer: barium and
related stars, symbiotic stars and central stars of planetary nebulae (CSPN).
The most recent observations of cool CSPN progenitors of barium stars, as well
as of carbon-rich post-common envelope systems, are providing unique
constraints on the mass transfer processes.Comment: Chapter 7, in Ecology of Blue Straggler Stars, H.M.J. Boffin, G.
Carraro & G. Beccari (Eds), Astrophysics and Space Science Library, Springe
Description of the Scenario Machine
We present here an updated description of the "Scenario Machine" code. This
tool is used to carry out a population synthesis of binary stars. Previous
version of the description can be found at
http://xray.sai.msu.ru/~mystery//articles/review/contents.htmlComment: 32 pages, 3 figures. Corrected typo
The stellar and sub-stellar IMF of simple and composite populations
The current knowledge on the stellar IMF is documented. It appears to become
top-heavy when the star-formation rate density surpasses about 0.1Msun/(yr
pc^3) on a pc scale and it may become increasingly bottom-heavy with increasing
metallicity and in increasingly massive early-type galaxies. It declines quite
steeply below about 0.07Msun with brown dwarfs (BDs) and very low mass stars
having their own IMF. The most massive star of mass mmax formed in an embedded
cluster with stellar mass Mecl correlates strongly with Mecl being a result of
gravitation-driven but resource-limited growth and fragmentation induced
starvation. There is no convincing evidence whatsoever that massive stars do
form in isolation. Various methods of discretising a stellar population are
introduced: optimal sampling leads to a mass distribution that perfectly
represents the exact form of the desired IMF and the mmax-to-Mecl relation,
while random sampling results in statistical variations of the shape of the
IMF. The observed mmax-to-Mecl correlation and the small spread of IMF
power-law indices together suggest that optimally sampling the IMF may be the
more realistic description of star formation than random sampling from a
universal IMF with a constant upper mass limit. Composite populations on galaxy
scales, which are formed from many pc scale star formation events, need to be
described by the integrated galactic IMF. This IGIMF varies systematically from
top-light to top-heavy in dependence of galaxy type and star formation rate,
with dramatic implications for theories of galaxy formation and evolution.Comment: 167 pages, 37 figures, 3 tables, published in Stellar Systems and
Galactic Structure, Vol.5, Springer. This revised version is consistent with
the published version and includes additional references and minor additions
to the text as well as a recomputed Table 1. ISBN 978-90-481-8817-
- …