47 research outputs found

    Complex interactions between sperm viability and female fertility

    Get PDF
    This is the final version. Available from Nature Research via the DOI in this record.The datasets generated and analysed during the current study have been uploaded on Dryad and are available for download: https://doi.org/10.5061/dryad.n8pk0p2qz.Sperm viability is a major male fitness component, with higher sperm viability associated with enhanced sperm competitiveness. While many studies have focussed on sperm viability from the male fitness standpoint, its impact on female fitness is less clear. Here we used a panel of 32 isogenic Drosophila simulans lines to test for genetic variation in sperm viability (percentage of viable cells). We then tested whether sperm viability affected female fitness by mating females to males from low or high sperm viability genotypes. We found significant variation in sperm viability among genotypes, and consistent with this, sperm viability was highly repeatable within genotypes. Additionally, females mated to high sperm viability males laid more eggs in the first seven hours after mating, and produced more offspring in total. However, the early increase in oviposition did not result in more offspring in the 8 hours following mating, suggesting that mating with high sperm-viability genotypes leads to egg wastage for females shortly after copulation. Although mating with high sperm-viability males resulted in higher female fitness in the long term, high quality ejaculates would result in a short-term female fitness penalty, or at least lower realised fitness, potentially generating sexual conflict over optimal sperm viability.European Union’s Horizon 202

    Unraveling the sperm bauplan: Relationships between sperm head morphology and sperm function in rodents

    Get PDF
    This is the author accepted manuscript. The final version is available from the Society for the Study of Reproduction via the DOI in this record.Rodents have spermatozoa with features not seen in other species. Sperm heads in many rodent species bear one or more apical extensions known as "hooks." The process by which hooks have evolved, together with their adaptive significance, are still controversial issues. In order to improve our understanding of the biological meaning of these sperm head adaptations, we analyzed hook curvature angles, hook length, and overall hook shape in muroid rodents by using geometric morphometrics. We also searched for relationships between hook design and measurements of intermale competition to assess whether postcopulatory sexual selection was an important selective force driving changes in this sperm structure. Finally, we sought possible links between aspects of sperm hook design and sperm velocity as a measure of sperm performance. Results showed that one hook curvature angle is under strong selective pressure. Similarly, hook length appears to be strongly selected by sexual selection, with this selective force also exhibiting a stabilizing role reducing intermale variation in this trait. The adaptive significance of changes in hook structure was supported by the finding that there are strong and significant covariations between hook dimensions and shape and between hook design and sperm swimming velocity. Overall, this study strongly suggests that postcopulatory sexual selection has an important effect on the design of the sperm head that, in turn, is important for enhancing sperm velocity, a function crucial to reaching the vicinity of the female gamete and winning fertilizations under competitive situations

    Gone with the breeze: A subsonic outflow solution to the Fermi bubbles problem

    Full text link
    The origin of the Fermi bubbles, which constitute two gamma-rays emitting lobes above and below the Galactic plane, remains unclear. The possibility that the Fermi bubble gamma-rays emission originates from hadronic cosmic-rays advected by a subsonic Galactic outflow is explored. Such a solution is called a Galactic breeze. This model is motivated by UV absorption line observations of cold clouds expanding from the Galactic center to high latitudes. For this purpose the hydrodynamical code PLUTO has been used in combination with a cosmic ray transport code. A model of the Galactic gravitational potential has been determined through constraints derived from the Gaia second data release. It is found that a Galactic breeze can be collimated by the surrounding gas and is indeed able to reproduce the observed Fermi-LAT energy flux at high Galactic latitudes. Following these results a prediction concerning the gamma-rays emission for 1-3~TeV photons is made for future comparison with CTA/SWGO measurements

    mtDNA polymorphism and metabolic inhibition affect sperm performance in conplastic mice

    Get PDF
    This is the author accepted manuscript. The final version is available from BioScientifica via the DOI in this record.A broad link exists between nucleotide substitutions in the mitochondrial genome (mtDNA) and a range of metabolic pathologies, but the exploration of the effect of specific mtDNA genotypes is on-going. Mitochondrial DNA mutations are of particular relevance for reproductive traits, because they are expected to have profound effects on male specific processes as a result of the strict maternal inheritance of mtDNA. Sperm motility is crucially dependent on ATP in most systems studied. However, the importance of mitochondrial function in the production of the ATP necessary for sperm function remains uncertain. In this study, we test the effect of mtDNA polymorphisms upon mouse sperm performance and bioenergetics by using five conplastic inbred strains that share the same nuclear background while differing in their mitochondrial genomes. We found that, while genetic polymorphisms across distinct mtDNA haplotypes are associated with modification in sperm progressive velocity, this effect is not related to ATP production. Furthermore, there is no association between the number of mtDNA polymorphisms and either (a) the magnitude of sperm performance decrease, or (b) performance response to specific inhibition of the main sperm metabolic pathways. The observed variability between strains may be explained in terms of additive effects of single nucleotide substitutions on mtDNA coding sequences, which have been stabilized through genetic drift in the different laboratory strains. Alternatively, the decreased sperm performance might have arisen from the disruption of the nuclear DNA / mtDNA interactions that have co-evolved during the radiation of Mus musculus subspecies.This work was supported by a Smart Ideas grant from the Ministry of Business, Innovation and Employment (MBIE), New Zealand Government (NJG, DMT, DKD), grants from the Spanish Ministry of Economy and Competitiveness (CGL2011-26341, and CGL2016-80577-P to ERSR), and from the German Science Foundation grant (ExC 306/2 to MH and SI)

    Postcopulary sexual selection increases ATP content in rodent spermatozoa

    Get PDF
    Sperm competition often leads to increase in sperm numbers and sperm quality, and its effects on sperm function are now beginning to emerge. Rapid swimming speeds are crucial for mammalian spermatozoa, because they need to overcome physical barriers in the female tract, reach the ovum, and generate force to penetrate its vestments. Faster velocities associate with high sperm competition levels in many taxa and may be due to increases in sperm dimensions, but they may also relate to higher adenosine triphosphate (ATP) content. We examined if variation in sperm ATP levels relates to both sperm competition and sperm swimming speed in rodents. We found that sperm competition associates with variations in sperm ATP content and sperm-size adjusted ATP concentrations, which suggests proportionally higher ATP content in response to sperm competition. Moreover, both measures were associated with sperm swimming velocities. Our findings thus support the idea that sperm competition may select for higher ATP content leading to faster sperm swimming velocity.This work was supported by the Spanish Ministry of Economy and Competitiveness (grants CGL2011-26341 to ERSR and CSD2007-00020 and SAF2010-20256 to ER).Peer Reviewe

    Metabolic rate limits the effect of sperm competition on mammalian spermatogenesis.

    Get PDF
    Sperm competition leads to increased sperm production in many taxa. This response may result from increases in testes size, changes in testicular architecture or changes in the kinetics of spermatogenesis, but the impact of each one of these processes on sperm production has not been studied in an integrated manner. Furthermore, such response may be limited in species with low mass-specific metabolic rate (MSMR), i.e., large-bodied species, because they cannot process energy and resources efficiently enough both at the organismic and cellular levels. Here we compare 99 mammalian species and show that higher levels of sperm competition correlated with a) higher proportions of seminiferous tubules, b) shorter seminiferous epithelium cycle lengths (SECL) which reduce the time required to produce sperm, and c) higher efficiencies of Sertoli cells (involved in sperm maturation). These responses to sperm competition, in turn, result in higher daily sperm production, more sperm stored in the epididymides, and more sperm in the ejaculate. However, the two processes that require processing resources at faster rates (SECL and efficiency of Sertoli cells) only respond to sperm competition in species with high MSMR. Thus, increases in sperm production with intense sperm competition occur via a complex network of mechanisms, but some are constrained by MSMR

    Sperm competition and the evolution of sperm design in mammals

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The influence of sperm competition upon sperm size has been a controversial issue during the last 20 years which remains unresolved for mammals. The hypothesis that, when ejaculates compete with rival males, an increase in sperm size would make sperm more competitive because it would increase sperm swimming speed, has generated contradictory results from both theoretical and empirical studies. In addition, the debate has extended to which sperm components should increase in size: the midpiece to accommodate more mitochondria and produce more energy to fuel motility, or the principal piece to generate greater propulsion forces.</p> <p>Results</p> <p>In this study we examined the influence of sperm competition upon sperm design in mammals using a much larger data set (226 species) than in previous analyses, and we corrected for phylogenetic effects by using a more complete and resolved phylogeny, and more robust phylogenetic control methods. Our results show that, as sperm competition increases, all sperm components increase in an integrated manner and sperm heads become more elongated. The increase in sperm length was found to be associated with enhanced swimming velocity, an adaptive trait under sperm competition.</p> <p>Conclusions</p> <p>We conclude that sperm competition has played an important role in the evolution of sperm design in mammals, and discuss why previous studies have failed to detect it.</p

    Sperm Competition, Sperm Numbers and Sperm Quality in Muroid Rodents

    Get PDF
    Sperm competition favors increases in relative testes mass and production efficiency, and changes in sperm phenotype that result in faster swimming speeds. However, little is known about its effects on traits that contribute to determine the quality of a whole ejaculate (i.e., proportion of motile, viable, morphologically normal and acrosome intact sperm) and that are key determinants of fertilization success. Two competing hypotheses lead to alternative predictions: (a) sperm quantity and quality traits co-evolve under sperm competition because they play complementary roles in determining ejaculate's competitive ability, or (b) energetic constraints force trade-offs between traits depending on their relevance in providing a competitive advantage. We examined relationships between sperm competition levels, sperm quantity, and traits that determine ejaculate quality, in a comparative study of 18 rodent species using phylogenetically controlled analyses. Total sperm numbers were positively correlated to proportions of normal sperm, acrosome integrity and motile sperm; the latter three were also significantly related among themselves, suggesting no trade-offs between traits. In addition, testes mass corrected for body mass (i.e., relative testes mass), showed a strong association with sperm numbers, and positive significant associations with all sperm traits that determine ejaculate quality with the exception of live sperm. An “overall sperm quality” parameter obtained by principal component analysis (which explained 85% of the variance) was more strongly associated with relative testes mass than any individual quality trait. Overall sperm quality was as strongly associated with relative testes mass as sperm numbers. Thus, sperm quality traits improve under sperm competition in an integrated manner suggesting that a combination of all traits is what makes ejaculates more competitive. In evolutionary terms this implies that a complex network of genetic and developmental pathways underlying processes of sperm formation, maturation, transport in the female reproductive tract, and preparation for fertilization must all evolve in concert

    Sexual Selection Halts the Relaxation of Protamine 2 among Rodents

    Get PDF
    Sexual selection has been proposed as the driving force promoting the rapid evolutionary changes observed in some reproductive genes including protamines. We test this hypothesis in a group of rodents which show marked differences in the intensity of sexual selection. Levels of sperm competition were not associated with the evolutionary rates of protamine 1 but, contrary to expectations, were negatively related to the evolutionary rate of cleaved- and mature-protamine 2. Since both domains were found to be under relaxation, our findings reveal an unforeseen role of sexual selection: to halt the degree of degeneration that proteins within families may experience due to functional redundancy. The degree of relaxation of protamine 2 in this group of rodents is such that in some species it has become dysfunctional and it is not expressed in mature spermatozoa. In contrast, protamine 1 is functionally conserved but shows directed positive selection on specific sites which are functionally relevant such as DNA-anchoring domains and phosphorylation sites. We conclude that in rodents protamine 2 is under relaxation and that sexual selection removes deleterious mutations among species with high levels of sperm competition to maintain the protein functional and the spermatozoa competitive
    corecore