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ABSTRACT 26 

A broad link exists between nucleotide substitutions in the mitochondrial genome (mtDNA) 27 

and a range of metabolic pathologies, but the exploration of the effect of specific mtDNA genotypes 28 

on phenotype is on-going. Mitochondrial DNA mutations are of particular relevance for 29 

reproductive traits because they are expected to have profound effects on male-specific processes as 30 

a result of the strict maternal inheritance of mtDNA. Sperm motility is crucially dependent on ATP 31 

in most systems studied. However, the importance of mitochondrial function in the production of 32 

the ATP necessary for sperm function remains uncertain. In this study, we test the effect of mtDNA 33 

polymorphisms upon mouse sperm performance and bioenergetics by using five conplastic inbred 34 

strains that share the same nuclear background while differing in their mitochondrial genomes. We 35 

found that, while genetic polymorphisms across distinct mtDNA haplotypes are associated with a 36 

modification in sperm performance, this effect is not related to ATP production. Furthermore, there 37 

is no association between the number of mtDNA polymorphisms and either (a) the magnitude of 38 

sperm performance decrease, or (b) performance response to specific inhibition of the main sperm 39 

metabolic pathways. The observed variability between strains may be explained in terms of additive 40 

effects of single nucleotide substitutions on mtDNA coding sequences, which have been stabilized 41 

through genetic drift in the different laboratory strains. Alternatively, the decreased sperm 42 

performance might have arisen from the disruption of the nuclear DNA / mtDNA interactions that 43 

have co-evolved during the radiation of Mus musculus subspecies. 44 

 45 

 46 

 47 

 48 

 49 
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INTRODUCTION 52 

The mammalian mitochondrial genome (mtDNA) is a closed circular double-stranded DNA 53 

molecule that encodes several crucial components of the mitochondrial oxidative phosphorylation 54 

(OXPHOS) pathway (Anderson et al. 1981). It is now widely established that mutations in the 55 

mtDNA sequence, whether via base substitutions, deletions, or insertions, can result in a variety of 56 

deleterious effects ranging from discrete disorders through to predispositions to polygenic diseases 57 

(Taylor & Turnbull 2005). However, while the broad link between mtDNA variation and pathology 58 

is established, there is still a great deal of work required to more precisely map the link between 59 

specific mtDNA genotypes and the organismal phenotype. In particular, the on-going exploration of 60 

mtDNA variability, and its effects upon cell physiology, is of significance to a variety of biomedical 61 

fields, including studies of metabolic disease, cancer, neurobiology and fertility.  62 

In mice, the most commonly observed functional response to nonsynonymous alterations in 63 

mitochondrial DNA is a decline in mitochondrial oxidative phosphorylation (Moreno-Loshuertos et 64 

al. 2006), coupled with augmented mitochondrial ROS production (Yu et al. 2009b, Weiss et al. 65 

2012), decreased ATP levels (Weiss et al. 2012), and the consequent increase in oxidative damage 66 

to DNA, proteins and lipids (Cui et al. 2012). Nonetheless, nucleotide polymorphisms in 67 

mitochondrial genes encoding for respiratory complex subunits and mitochondrial transference 68 

RNAs have resulted in other significant alterations, such as upregulation of respiratory complex 69 

activity (Bar et al. 2013, Mayer et al. 2015, Schauer et al. 2015) and expression (Bar et al. 2013), 70 

increase  of cellular ATP content (Scheffler et al. 2012, Bar et al. 2013, Mayer et al. 2015, Schauer 71 

et al. 2015), decreased ROS production (Schauer et al. 2015, Kretzschmar et al. 2016), and 72 

disruption of mitochondrial morphology (Weiss et al. 2012).  73 

These effects on cell metabolic phenotype have been shown to substantially impact the 74 

general physiology of organisms, producing symptoms compatible with metabolic syndromes such 75 

as diminished hearing (Johnson et al. 2001), impaired spatial navigation (Mayer et al. 2015), 76 

increased anxiety-related behavior (Yu et al. 2009a), insulin secretion (Scheffler et al. 2012, Weiss 77 
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et al. 2012), reduced litter size (Yu et al. 2009b), and increases in the rate of incidence of 78 

autoimmune diseases (Yu et al. 2009b), non-alcoholic steatohepatitis (Schroder et al. 2016), 79 

Alzheimer’s and Parkinson’s diseases (Shoffner et al. 1993, van der Walt et al. 2003), multiple 80 

sclerosis (Kalman & Alden 1998), and bipolar disorders (Kato et al. 2001). However, while mtDNA 81 

polymorphisms tend to produce phenotypes regarded as deleterious for the organism (see examples 82 

above), they may also result in unexpected benefits. For example, nucleotide substitutions in genes 83 

coding for respiratory complexes I and IV have been associated with less severe autoimmune 84 

encephalomyelitis (Yu et al. 2009a), lower cerebral Aβ amyloid load (Scheffler et al. 2012), 85 

resistance to type I diabetes (Mathews et al. 2005), protection against induced colitis (Bar et al. 86 

2013), and reduced tissular senescence (Schauer et al. 2015). 87 

Although the majority of studies linking mtDNA variations to phenotype have been 88 

performed in mice (Yu et al. 2009a), there is little work examining their impact on fertility. This is 89 

an important area of study because the asymmetry in fitness that arises between males and females 90 

as a result of the maternal inheritance of mtDNA (Gemmell et al. 2004) is expected to have 91 

profound effects on male specific processes, such as sperm development and function (Gemmell et 92 

al. 2004). Recent work in the fruit fly (Drosophila melanogaster) provides empirical support for 93 

this asymmetry (Innocenti et al. 2011, Yee et al. 2013, Dowling et al. 2015, Wolff et al. 2016), and 94 

there is similar support in mice (Nakada et al. 2006) although this is based on a single 95 

mitochondrial mutant line and further work is needed to test the generality of findings. 96 

The motility of mammalian sperm accounts for about 70% of total sperm ATP consumption 97 

(Bohnensack & Halangk 1986), and relies on ATP production by two main metabolic pathways 98 

compartmentalized in different regions of the cell (Ford 2006, Ruiz-Pesini et al. 2007, Storey 2008, 99 

Cummins 2009): oxidative phosphorylation (OXPHOS) which occurs in the mitochondria of the 100 

sperm midpiece, and anaerobic glycolysis which takes place in the fibrous sheath of the flagellum's 101 

principal piece. OXPHOS has been historically regarded as the main source of ATP production for 102 

sperm motility (Van Dop et al. 1977, Hammerstedt & Lardy 1983, Gopalkrishnan et al. 1995, 103 
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Ferramosca et al. 2008), and remains so in several mammalian species, in which mitochondrial 104 

membrane potential and oxygen consumption rate both are positively associated with sperm ATP 105 

content and performance (reviewed in (Ford 2006, Pasupuleti 2007, Ruiz-Pesini et al. 2007, Storey 106 

2008)).  107 

Sperm motility is crucially dependent on ATP in most animals studied including mice, 108 

however, the importance of mitochondrial function in producing the ATP needed for sperm function 109 

in mouse remains equivocal. While there is evidence suggesting that a fully active glycolytic 110 

pathway is essential to sustain sperm motility (Miki et al. 2004, Mukai & Okuno 2004, Danshina et 111 

al. 2010, Nakamura et al. 2013, Odet et al. 2013) and capacitation (Travis et al. 2001, Urner et al. 112 

2001, Tanaka et al. 2004, Goodson et al. 2012, Odet et al. 2013, Tang et al. 2013), numerous 113 

experiments show that both glycolysis and OXPHOS are able to sustain vigorous sperm motility in 114 

the presence of their specific substrates (Travis et al. 2001, Narisawa et al. 2002, Pasupuleti 2007, 115 

Goodson et al. 2012, Odet et al. 2013, Takei et al. 2014). Mouse sperm are able to maintain basal 116 

ATP content and progressive motility when treated with uncoupler agents (Goodson et al. 2012, 117 

Odet et al. 2013) or respiratory inhibitors (Pasupuleti 2007), in glucose free media. Also, a recent 118 

study comparing sperm metabolism between three closely related mouse species found that 119 

differences in the OXPHOS vs. glycolysis usage ratio were associated with variations in sperm ATP 120 

content and performance (Tourmente et al. 2015a).  121 

In this context, while mtDNA polymorphisms resulting from interspecific divergence might 122 

account for differences in sperm metabolic phenotype, the confounding effect of divergent nuclear 123 

genomes precludes precise comparisons. Furthermore, because mtDNA features numerous unique 124 

characteristics in comparison to the nuclear genome, such as an absence of recombination, 125 

exclusive maternal inheritance, high number of copies per cell, faster mutation rate and differences 126 

in codon usage (Taylor & Turnbull 2005), the engineering and integration of targeted mutations into 127 

the mitochondrial genome remains technically challenging, and relevant mammalian models tend to 128 

be scarce (Wallace & Fan 2009). As a solution to both problems, the naturally occurring and stable 129 
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mtDNA polymorphisms between common inbred mouse strains (Yu et al. 2009a, Scheffler et al. 130 

2012, Weiss et al. 2012) and closely related mouse subspecies (Yu et al. 2009a) may be used to 131 

generate conplastic mouse strains by means of directed backcrossing. These strains carry a common 132 

nuclear background and a diversity of mitochondrial genomes, which are useful for the assessment 133 

of the effects of polymorphic mtDNA (Yu et al. 2009a, Yu et al. 2009b, Scheffler et al. 2012, 134 

Weiss et al. 2012), mitochondrial plasticity (Weiss et al. 2012), and the interactions between 135 

nuclear and mitochondrial genomes (Bayona-Bafaluy et al. 2005, Wallace & Chalkia 2013), while 136 

avoiding the confounding effects of divergence in the nuclear genome. 137 

In the present study, we compared for the first time the sperm phenotype (numbers, 138 

performance, and ATP production) across five conplastic inbred mouse strains that share the same 139 

nuclear background, but whose mitochondrial genomes belong to (a) the same strain providing the 140 

nuclear genome, or (b) strains and subspecies featuring different degrees of mitochondrial 141 

divergence (i.e. number of mtDNA polymorphisms). To further assess the impact of mtDNA 142 

polymorphisms on sperm metabolism, we also examined whether sperm performance and ATP 143 

production of these strains showed different responses to the inhibition of the two main sperm ATP 144 

producing pathways (OXPHOS and glycolysis). 145 

  146 

MATERIALS AND METHODS 147 

Chemicals 148 

The base medium used for all experiments was a modified Tyrode’s medium (mT-H) (pH = 7.4, 149 

osmolality = 295 mOsm kg
-1

) (Shi & Roldan 1995) consisting of 131.89 mM NaCl (Sigma, S5886), 150 

2.68 mM KCl (Sigma, P5405), 0.49 mM MgCl2.6H2O (BDH, 10149), 0.36 mM NaH2PO4.2H2O 151 

(Merck, 106345), 5.56 mM glucose (Sigma, G6152), 20 mM HEPES (Sigma, H4034), 1.80 mM 152 

CaCl2 (BDH, 190464K), 0.02 mM phenol red (Sigma, P0290), and 0.09 mM kanamycin (Sigma, 153 

K4000). This medium was supplemented with 4mg ml
-1

 fatty acid-free BSA (Sigma, A4503), 20 154 

mM Na lactate (Sigma, L7022), 0.5 mM Na pyruvate (Sigma, P5280). The compounds added to the 155 
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mT-H medium in the experiments assessing sperm performance under metabolic inhibition were 156 

antimycin A (Sigma, A8674), rotenone (Sigma, R8875), oligomycin (Sigma, O4876), and N 157 

oxamate (Sigma, O2751). 158 

 159 

Animals and body measurements 160 

Mouse strains were derived as described by Yu et al. (Yu et al. 2009a). Briefly, females 161 

from the mtDNA donor strains were crossed with male C57BL/6J mice, and then the females of the 162 

F1 generation were backcrossed to male C57BL/6J. This procedure was performed for at least 21 163 

generations, resulting in conplastic strains that carried the C57BL/6J nuclear genome and the 164 

mitochondrial genome from donor strains. The following strains were used for this study:  165 

(a) C57BL/6J-mt
C57BL/6J

 (WT): this strain is a regular C57BL/6J inbred stock (12 166 

generations of inbreeding). Thus, this strain possesses a coevolved nuclear-167 

mitochondrial DNA complement (C57BL/6J). According to Yu et al. (Yu et al. 2009a) 168 

the mtDNA sequence of this strain (and those of the majority of the common inbred 169 

strains) is highly similar to that of Mus musculus domesticus. 170 

(b) C57BL/6J-mt
MA/MyJ

 (MA/MY): the mitochondrial genome of this strain belongs to the 171 

MA/MyJ inbred strain. The mtDNA sequence of this strain carries 3 amino acid 172 

variations, resulting from non-synonymous substitutions in 3 different genes, when 173 

compared to that of C57BL/6J (Yu et al. 2009a). 174 

(c) C57BL/6J-mt
CAST/EiJ

 (CAST): the mitochondrial genome of this strain belongs to the 175 

Mus musculus castaneus subspecies. The mtDNA sequence of this strain carries 379 176 

amino acid variations when compared to that of C57BL/6J (Yu et al. 2009a). 177 

(d) C57BL/6J-mt
PWD/PhJ

 (PWD): the mitochondrial genome of this strain belongs to the Mus 178 

musculus musculus subspecies. The mtDNA sequence of this strain carries 390 amino 179 

acid variations when compared to that of C57BL/6J (Yu et al. 2009a). 180 
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(e) C57BL/6J-mt
MOLF/EiJ

 (MOLF): the mitochondrial genome of this strain belongs to the 181 

Mus musculus molossinus subspecies. The mtDNA sequence of this strain carries 390 182 

amino acid variations when compared to that of C57BL/6J (Yu et al. 2009a). 183 

Adult males (4 months old) of the five strains were obtained from the breeding facility of the 184 

University of Lübeck, Germany. The mice were maintained under standard conditions (14 h light - 185 

10 h darkness, 22 - 24ºC), with food and water available. Each male was housed in an individual 186 

cage for at least two weeks before the experiments took place. All procedures in this study were 187 

carried out according to guidelines and standards for experimental animals use set by the Spanish 188 

Animal Protection Regulation RD53/2013 and European Union Regulation 2010/63.  189 

The individuals were euthanized by cervical dislocation, and their body mass (g) and length 190 

(mm) were measured testes removal and weighing. Relative testes size (RTS) was estimated by 191 

dividing the actual testes mass by the predicted testes mass, obtained from the allometric relation 192 

between testes mass and body mass predicted for rodents (Kenagy & Trombulak 1986): testes mass 193 

= 0.031 x body mass
0.77

. Body condition (BC) was estimated as the residual of a linear log-log 194 

regression between body length and body mass. These calculations were performed to allow 195 

detection of possible biases in sperm quality related to gross testicular development or nutritional 196 

status differences between strains. 197 

 198 

Sperm collection and incubation  199 

Mature sperm were collected from the distal portion of the caudae epididymides. The 200 

epididymal cauda was excised after removing all blood vessels, fat and surrounding connective 201 

tissues, and placed in a Petri dish containing 1 ml of mT-H medium prewarmed to 37º C. Incisions 202 

were performed in the excised cauda and sperm were allowed to swim out for 5 minutes, after 203 

which, the sperm suspension was transferred to a plastic tube. Total sperm numbers were estimated 204 

using a modified Neubauer chamber, and sperm concentration was adjusted to ~20 x10
6
 sperm ml

-1
 205 

by the further addition of medium.  206 
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Sperm parameters (detailed in the following subsection) were assessed immediately after 207 

collection (hereafter, “basal” conditions). In order to test the effect of metabolic inhibitors in sperm 208 

of the different mouse strains, the sperm suspensions were subsequently divided into 4 aliquots (300 209 

µl per aliquot) and each aliquot received an addition of: (a) culture medium (“control” group), (b) 5 210 

µM oligomycin (an inhibitor of the mitochondrial ATP synthase) (Fraser & Quinn 1981), (c) 1 µM 211 

antimycin A + 1 µM rotenone (inhibitors of the mitochondrial respiratory complexes III and I, 212 

respectively) (Gerez de Burgos et al. 1978, Burgos et al. 1982), (d) 30 mM sodium oxamate (an 213 

inhibitor of Lactate Dehydrogenase 4 (LDH4), an enzyme essential for glycolysis) (Odet et al. 214 

2011). After these additions, the sperm suspensions were incubated at 37º C under air for 30 215 

minutes, and sperm parameters were measured. 216 

 217 

Sperm motility, velocity and ATP content 218 

 Sperm parameters were assessed in at least 5 males of each strain (6 in the case of WT). The 219 

percentage of motile sperm (MOT) was evaluated by examining 10 µl of sperm suspension between 220 

a pre-warmed slide and a coverslip at 100x magnification under phase-contrast optics. This 221 

parameter was estimated subjectively by at least two independent, experienced observers; 222 

estimations from the different observers were averaged and rounded to the nearest 5% value. 223 

Additionally, the quality (Q) of sperm movement was ranked in a scale from 1 to 5 (from least to 224 

most vigorous movement). A sperm motility index (SMI) was calculated using the following 225 

equation: SMI = (Q * 20 + MOT) / 2.  226 

Sperm swimming velocity was assessed by placing an aliquot of sperm suspension in a pre-227 

warmed, microscopy chamber of 20 µm depth, (Leja, Nieuw-Vennep, Netherlands). Individual 228 

sperm trajectories were recorded using a phase contrast microscope connected to a digital video 229 

camera (Basler A312fc, Vision Technologies, Glen Burnie, MD, USA). The following parameters 230 

were estimated for each sperm trajectory using a computer aided sperm analyzer (CASA) (Sperm 231 

Class Analyzer, Microptic SL, Barcelona, Spain): curvilinear velocity (VCL, µm s
-1

), straight-line 232 
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velocity (VSL, µm s
-1

), average path velocity (VAP, µm s
-1

), linearity (LIN = VSL/VCL), 233 

straightness (STR = VSL/VAP), wobble coefficient (WOB = VAP/VCL), amplitude of lateral head 234 

displacement (ALH, µm), and beat-cross frequency (BCF, Hz).  The final value for each of these 235 

parameters was calculated as the mean of all the individual trajectories for each sample. All video 236 

captures were manually curated and trajectories corresponding to drifting particles, drifting 237 

immotile sperm, sperm that were motile but not progressive (stuck in place), and occasional sperm 238 

aggregations, were removed from analysis.   239 

 Sperm ATP content was measured using a luciferase-based ATP bioluminescent assay kit 240 

(Roche, ATP Bioluminescence Assay Kit HS II) (Tourmente et al. 2015a). A 100 µl-aliquot of 241 

diluted sperm suspension was added to 100 µl of Cell Lysis Reagent and incubated at room 242 

temperature for 5 minutes. The resulting cell lysate was centrifuged at 12000 g for 2 minutes, and 243 

the supernatant was recovered and frozen in liquid N2. The bioluminescence of the samples was 244 

measured in triplicate in 96-well plates using a luminometer (Synergy HT, Biotek Instruments Inc.). 245 

Using the auto-injection function, 50 µl of Luciferase reagent was added to 50 µl of sample in each 246 

well, and light emission was measured over a 5 s integration period, after a delay of 1 s. Standard 247 

curves were calculated using solutions containing known concentrations of ATP diluted in mT-H 248 

and Cell Lysis Reagent in a proportion equivalent to that of the samples. ATP content was 249 

expressed as amol sperm
-1

. 250 

 251 

Data analysis 252 

Principal component analyses. Because the sperm trajectory parameters measured by the 253 

CASA system tend to be highly correlated (Gomez Montoto et al. 2011b), we summarized these 254 

data by performing a principal component analysis (PCA). The loadings and correlation coefficients 255 

of each of the eight individual parameters (VCL, VSL, VAP, LIN, STR, WOB, ALH, and BCF) 256 

with their respective principal components (PCs) are shown in Table 1. The first principal 257 

component (PC1) accounted for 68.4% of the variability of the original parameters, while the 258 
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second principal component (PC2) accounted for 25.5%. All variables showed a significant positive 259 

correlation with PC1, with the exception of ALH for which the correlation was negative. The 260 

variables that showed higher loading values and stronger correlation with PC1 (i.e., accounted for 261 

the majority of the variability comprised on this axis) were VSL, STR, BCF, and LIN. Because all 262 

of these variables are positively associated with the amount of progressive displacement of a given 263 

sperm trajectory, we chose to term PC1 “progressive velocity”. In the case of PC2, five out of the 264 

original eight variables (ALH, VCL, WOB, VAP, and LIN) were significantly correlated with the 265 

component axis. Of these variables, ALH and VCL showed distinctively higher loading values and 266 

stronger correlations with the principal component. As these two variables tend to increase in 267 

proportion with the amount of lateral displacement on a given sperm trajectory, we termed PC2 268 

“lateral velocity”. 269 

 Statistical analyses. Body mass (g), body length (mm), combined testes mass (g), RTS, and 270 

BC were compared between strains by means of ANOVA with strain as factor, and a post-hoc test 271 

(Di Rienzo et al. 2002) was used to determine pairwise differences between strains. The same 272 

statistical approach was used to compare basal values for sperm numbers, motility, SMI, ATP 273 

content, and sperm velocity principal components. 274 

 In order to test the effect of metabolic inhibitors on sperm performance, the values of SMI, 275 

ATP content, sperm velocity variables and their summarized principal components were compared 276 

for each strain by means of a repeated-measures ANOVA, with treatment as a factor with four 277 

levels (control, oligomycin, antimycin + rotenone, oxamate). All variables were log10-transformed, 278 

with the exception of the percentage values for MOT, LIN, STR and WOB which were arcsine-279 

transformed. Differences between strains and treatments were compared using Di Rienzo - Guzmán 280 

- Casanoves (DGC) tests (Di Rienzo et al. 2002). Analyses were performed using InfoStat v.2015p 281 

(Grupo Infostat, Universidad Nacional de Córdoba, Córdoba, Argentina) with α = 0.05. 282 

 283 

RESULTS 284 
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Body measurements and basal sperm traits 285 

The mean values for body measurements, sperm numbers, and basal sperm descriptors for the five 286 

conplastic mouse strains analyzed in this study are shown in Table 2. There were no significant 287 

differences between strains for body mass (p=0.1423, F=1.93), body length (p=0.0677, F=2.57), 288 

and absolute testes mass (p=0.1058, F=2.18, Table 2). However, CAST and PWD strains animals 289 

had significantly higher relative testes size (p=0.0075, F=4.67) (Table 2), but this was not 290 

associated with increased sperm production because total sperm numbers were not significantly 291 

different between strains (p=0.1409, F=1.94) (Table 2). 292 

The percentage of motile cells (p=0.1116, F=2.14) and the sperm motility index (p=0.3916, 293 

F=1.08) did not vary significantly between strains at basal conditions (Table 2, Fig. 1a). The values 294 

obtained for the eight sperm velocity parameters, upon which the PCs were constructed, are 295 

summarized in Table 3. When the first principal components for sperm velocity were compared, the 296 

WT strain showed a significantly higher progressive velocity (p=0.0016, F=6.39) than the 297 

remaining strains (Fig. 1b). Lateral velocity scores were not significantly different between strains 298 

(p=0.6049, F=0.69) (Fig. 1c). Finally, sperm ATP content presented similar values between the 299 

analyzed strains, with the exception of the PWD strain, which showed significantly lower ATP 300 

values (p=0.0491, F=2.86) (Table 2, Fig. 1d). 301 

 302 

Effect of metabolic inhibitors on sperm performance and ATP content 303 

The inhibition of OXPHOS, by either the oligomycin or antimycin + rotenone treatment, showed no 304 

significant effect on the sperm motility index for all strains with the exception of CAST, for which 305 

antimycin + rotenone elicited a significant decrease (Table 4, Fig. 2a). ATP levels significantly 306 

decreased in response to OXPHOS inhibition in the five strains (Table 4, Fig. 2b).  307 

The effect of OXPHOS inhibition on sperm velocity principal components varied depending 308 

on the step of the process that was inhibited. The values of the sperm velocity variables obtained for 309 

each strain upon metabolic inhibition are summarized in Table 5. The inhibition of mitochondrial 310 
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ATP synthase by the addition of 5 µM oligomycin significantly decreased sperm progressive 311 

velocity in the WT, MA/MY, and MOLF strains, but not in the CAST and PWD strains (Table 4, 312 

Fig. 3a).  The presence of oligomycin also caused a significant increase in sperm lateral velocity in 313 

the MA/MY strain (Table 4, Fig. 3b). 314 

The inhibition of the mitochondrial respiratory chain, by the addition of antimycin (inhibitor 315 

of complex III) and rotenone (inhibitor of complex I), significantly decreased sperm progressive 316 

velocity in all strains apart from CAST in which this trend was non-significant (Table 4, Fig. 3a). 317 

The addition of these inhibitors again also had a significant effect on sperm lateral velocity in the 318 

MA/MY strain (Table 4, Fig. 3b). 319 

Oxamate treatment, inhibiting the key glycolytic enzyme LDH4, had a more severe effect on 320 

sperm performance measures than OXPHOS inhibition, significantly reducing sperm motility index 321 

in the five strains (Table 4, Fig. 2a). Sperm progressive velocity also decreased significantly in all 322 

strains apart from CAST for which the trend was marginally significant (marginally significant) 323 

(Table 4, Fig. 3a). Moreover, the decline in progressive velocity promoted by oxamate was higher 324 

than that caused by OXPHOS inhibition for the WT, MA/MY, and MOLF strains. LDH4 inhibition 325 

also promoted a significant increase in sperm lateral velocity for the WT, MA/MY, and MOLF 326 

strains (Table 4, Fig. 3b).  These consistent effects occurred despite significant reduction in ATP 327 

content occurring only in WT and MA/MY strains (Table 4, Fig. 2b). Indeed, sperm ATP content 328 

was significantly higher under LDH4 inhibition than under OXPHOS inhibition for the WT, CAST, 329 

PWD, and MOLF strains (Table 4, Fig. 2b). 330 

 331 

DISCUSSION 332 

This study demonstrates clearly (i.e. while controlling for any confounding effects of 333 

variation in the nuclear genome) that non-synonymous mutations in the mitochondrial genome 334 

result in diminished sperm performance in mice. However, the effects on sperm swimming abilities 335 

were not related to ATP production, and there is no clear trend linking the number of mtDNA 336 
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polymorphisms present with either the intensity of decrease in sperm swimming parameters or the 337 

response of sperm performance to specific inhibition of the main sperm metabolic pathways. 338 

A clear decrease in sperm swimming performance (progressive velocity) was detected in the 339 

conplastic strains (i.e., the strains carrying non-synonymous polymorphisms in their mitochondrial 340 

genomes) in comparison to non-conplastic control (i.e., the strain possessing a mitochondrial 341 

genome that corresponded to its original nuclear complement). This is in line with previously 342 

reported evidence associating single amino acid mutations in mtDNA deletions with decreases in 343 

human sperm motility (O’Connell et al. 2003, Selvi Rani et al. 2006). However, while numerous 344 

studies have reported that nonsynonymous alterations in mtDNA appear to affect cell physiology 345 

through a decrease in OXPHOS related ATP production (Trounce et al. 1994, Cui et al. 2012, 346 

Weiss et al. 2012, Schroder et al. 2016), we found no such trend. In our study, only the PWD strain 347 

had significantly lower sperm ATP content than other conplastic strains (including WT), and this 348 

was not associated with differences in sperm velocity or trajectory shape. Furthermore, the higher 349 

sperm swimming performance observed for the WT strain was apparently achieved without 350 

increased ATP production.  351 

One possible explanation for this discrepancy is that a different mechanism is involved. 352 

Recent studies have revealed that particular mtDNA mutations alter mitochondrial morphology (Yu 353 

et al. 2009b) and increase reactive oxygen species (ROS) production rates (Yu et al. 2009b, 354 

Kretzschmar et al. 2016). Such increases can reduce sperm velocity and motility (Moazamian et al. 355 

2015, Ozkosem et al. 2015, Ozkosem et al. 2016) independent of the activities of the respiratory 356 

complexes (Yu et al. 2009b) or intracellular ATP levels (Yu et al. 2009b, Kretzschmar et al. 2016). 357 

Thus, differing sperm performance among conplastic strains in our study, without related 358 

differences in basal ATP levels, may rather be due to differences in intracellular ROS production 359 

rates. 360 

Numerous studies analyzing the impact of mtDNA polymorphisms on cell phenotype have 361 

focused on disentangling the effects of particular single-amino acid mutations (Taylor & Turnbull 362 
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2005, Wallace 2005, Wallace & Fan 2009, Wallace & Chalkia 2013). In the case of strains that 363 

carry few amino acid substitutions, like the MA/MY strain in our study, mtDNA polymorphisms 364 

may be envisioned as discrete agents of physiological alteration that lead to modifications in sperm 365 

performance. In particular, the MA/MY strain has three amino acid substitutions located in genes 366 

that encode for three different subunits (mtNd1, mtNd4L, mtNd5) of the NADH dehydrogenase 367 

(respiratory complex I). Previous research in different cellular models have shown that single 368 

nucleotide mutations in these genes tend to be related to reductions in complex I function (Bai et al. 369 

2000, Potluri et al. 2009), and disruption of ROS regulation (Kretzschmar et al. 2016). 370 

Furthermore, a study in human sperm associated a single amino acid mutation in mt-Nd4, albeit on a 371 

different position than in MA/MY, to a decrease in human sperm motility (Selvi Rani et al. 2006).  372 

Alternatively, our results may be due to disruption of the adaptive coevolution between 373 

nDNA and mtDNA. The other strains used in this study constitute a much higher degree of 374 

divergence from the WT strain, having accumulated between 379 (CAST: M. m. castaneus) and 390 375 

(PWD: M. m. musculus, MOLF: M. m. molossinus) single amino acid mutations in their mtDNA 376 

during the process of evolutionary radiation from a common Mus musculus ancestor. In mammals, 377 

the nuclear genome encodes a large number of polypeptides that interact with 13 mitochondrial-378 

encoded polypeptides in order to construct a fully functional OXPHOS pathway, while also 379 

providing the biosynthetic apparatus to assemble the proteins of four respiratory complexes 380 

(Bayona-Bafaluy et al. 2005). As a consequence of this interaction, both genomes undergo adaptive 381 

coevolution in which changes in one of the genomes complement or counterbalance the changes in 382 

the other, maintaining the functionality of the OXPHOS chain at adaptive levels (Grossman et al. 383 

2001, Goldberg et al. 2003, Ruiz-Pesini et al. 2004). In this context, the creation of new nDNA-384 

mtDNA combinations by crossbreeding between closely related species (Bayona-Bafaluy et al. 385 

2005) and populations (Wallace & Chalkia 2013) may disrupt this equilibrium by promoting 386 

positive feedback mechanisms or additive effects that produce defective phenotypes in complex 387 

traits (Roubertoux et al. 2003, Gusdon et al. 2007). Numerous studies have supported this 388 
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hypothesis by revealing that, stable and functional genetic variations in one genome that do not 389 

severely compromise mitochondrial function but confer susceptibility to a disease, may be 390 

synergistically aggravated by a polymorphism in the other genome (Mathews et al. 2005, Yu et al. 391 

2009b, Weiss et al. 2012, Schroder et al. 2016). In particular, studies in primates (Grossman et al. 392 

2001, Bayona-Bafaluy et al. 2005) and rodents (Dey et al. 2000, McKenzie & Trounce 2000) have 393 

shown that xenomitochondrial cybrids have reduced activity in multiple respiratory complexes. 394 

Additionally, a recent study in D. melanogaster provided evidence that sperm competitiveness was 395 

higher when mtDNA haplotypes were expressed alongside a coevolved, rather than evolutionary 396 

novel, nuclear genetic background (Yee et al. 2013). Thus, the decrease in sperm performance 397 

observed here in conplastic strains that have nuclear and mitochondrial genomes from different 398 

subspecies (CAST, PWD, and MOLF) might not stem from the accumulation of discrete deleterious 399 

effects, but from the disruption of mtDNA-nDNA adaptive coevolution. Our findings are consistent 400 

with this hypothesis because the only strain with coevolved mito-nuclear genotype (WT) generally 401 

had higher sperm velocity parameters. 402 

As a further step to elucidate the impact of mtDNA polymorphisms in mouse sperm 403 

performance, we tested the effect of metabolic inhibition in sperm motility, swimming velocity, and 404 

ATP content. The pattern of response of these sperm traits to metabolic inhibition was remarkably 405 

similar between strains, showing only a few strain-specific variations in intensity and significance. 406 

The intensity of the effect of OXPHOS inhibition on sperm performance was dependent on which 407 

step of the process was affected. In general, inhibition of the mitochondrial ATP synthase (by 408 

oligomycin) produced a lower decrease in sperm velocity than inhibition of the mitochondrial 409 

respiratory chain. A possible explanation of this pattern may be ATP synthase reversal, a common 410 

phenomenon in many cellular types (Chen et al. 2014). The decrease of mitochondrial membrane 411 

potential associated to the inhibition of the electron transport chain may provoke a reversal in the 412 

activity of the F1-F0 ATP synthase, which consumes ATP to deliver protons into the 413 

intermembrane space (Ruas et al. 2016). Although this matter has not been yet examined in sperm, 414 
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ATP synthase inhibition by oligomycin would prevent the reversal of its activity, thus avoiding 415 

artificial ATP depletion. 416 

Inhibition of the glycolytic pathway (by sodium oxamate) produced a stronger decrease in 417 

sperm performance variables than the inhibition of OXPHOS components. Such inhibition caused a 418 

significant decrease in the sperm motility index, with slower swimming sperm in four of the five 419 

strains and less linear trajectories in three of them. In comparison, OXPHOS inhibition did not 420 

significantly decreased sperm motility in general, with only a slight decrease in the CAST strain 421 

upon inhibition of the mitochondrial respiratory chain (by antimycin + rotenone). This difference is 422 

surprising, because respiratory inhibition promoted a general decrease in sperm ATP content while 423 

glycolysis inhibition had a less potent effect (non-significant in 3 of the 5 strains). This suggests 424 

that the effect of the inhibition on the glycolytic pathway upon sperm swimming performance is, at 425 

least to some extent, independent of its impact on ATP production. Such finding challenges 426 

previous studies that suggest glycolysis is the main metabolic pathway sustaining the motility of 427 

mouse spermatozoa (Miki et al. 2004, Mukai & Okuno 2004).  428 

While these results appear to be contradictory, they could be explained by a novel 429 

interpretation of the role of glycolysis in sperm flagellum. A recent study analyzing the 430 

intraflagellar distribution of adenine nucleotides in mouse sperm showed that glycolysis may act as 431 

a spatial ATP buffering system, transferring high energy phosphoryls (ATP) synthesized by 432 

mitochondrial OXPHOS from the base of the flagellum to its distal sections (Takei et al. 2014). 433 

This is supported by additional evidence that shows mouse sperm can maintain motility using both 434 

OXPHOS and glycolysis (Goodson et al. 2012), and that inhibition of glycolysis has a negative 435 

impact on sperm motility even in the presence of respiratory substrates (Mukai & Okuno 2004).  In 436 

the light of this evidence, our results suggest that glycolysis inhibition would prevent ATP 437 

consumption along the flagellum as a consequence of an impairment of ATP transport by glycolytic 438 

enzymes. Thus, the observed changes in the pattern of movement and track-shape might be caused 439 

by local ATP depletion instead of by a decrease in global intracellular ATP content.  440 

Page 17 of 37

reproduction@bioscientifica.com

Manuscript submitted for review to Reproduction



For Review
 O

nly

18 

 

In conclusion, our results revealed that the presence of genetic polymorphisms in the 441 

mitochondrial genome is associated with variations of sperm performance in a group of conplastic 442 

mouse strains. However, there is no evident pattern of association between the different origin 443 

(genetic drift of laboratory strains vs evolutionary radiation of subspecies) and number of 444 

polymorphisms, and the intensity of sperm performance decrease. Furthermore, while the mtDNA-445 

mediated differences in sperm performance are likely to be attributable to non-synonymous 446 

variation in the mitochondrial genome of the different mouse strains, we cannot map the effects to 447 

the level of the SNP, and thus cannot rule out synonymous variation or regulatory variation in the 448 

control region of the mtDNA from contributing to the observed phenotypic variations. Moreover, 449 

the presence of mtDNA polymorphisms did not promote variation in the general patterns of 450 

response of sperm performance upon inhibition of OXPHOS and glycolysis. Because the observed 451 

variability may be explained in terms of additive effects of single nucleotide substitutions, or by a 452 

disruption of nDNA-mtDNA coevolution, a more complete understanding of this phenomenon 453 

might be achieved through two different paths: (I) a more detailed description of the effects of the 454 

amino acid substitution in mitochondrial and cellular phenotype by creating conplastic strains in 455 

which all mtDNA haplotypes derive from the same sub-species, and have arisen under processes of 456 

'mutation-accumulation' in the lab, and (II) an increase in the number of conplastic strains generated 457 

from different mouse subspecies and species using a common nuclear background, particularly 458 

from species presenting previously identified differences in sperm performance (Gomez Montoto et 459 

al. 2011b), quality (Gomez Montoto et al. 2011a), and metabolism (Tourmente et al. 2013, 460 

Tourmente et al. 2015a, Tourmente et al. 2015b). 461 
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FIGURE LEGENDS 720 

 721 

Figure 1 Basal sperm traits in five conplastic mouse strains. Bars represent averages from a least 5 722 

males per species, whiskers represent SE. (a) Sperm motility index. (b) Progressive velocity (first 723 

principal component of a PCA using the 8 variables measured by the Sperm Class Analyzer 724 

software). (c) Lateral velocity (second principal component of a PCA using the 8 variables 725 

measured by the Sperm Class Analyzer software). (d) Sperm ATP content (amol cell
-1

). Different 726 

letters indicate significant differences (p< 0.05) between species in a parametric DGC post-hoc test. 727 

 728 

Figure 2 Effect of metabolic inhibitors on sperm motility and ATP content in five conplastic mouse 729 

strains. Bars represent averages from a least 5 males per species, whiskers represent SE. (a) Sperm 730 

motility index. (b) Sperm ATP content (amol cell
-1

). Different letters indicate significant differences 731 

(p< 0.05) between species in a parametric DGC post-hoc test. Black bars: “Control group” (mT-H 732 

added to sperm suspension). White bars: “Oligomycin group” (5 µM oligomycin added to sperm 733 

suspension). Grey bars: “A + R group” (1 µM antimycin A + 1 µM rotenone added to sperm 734 

suspension. Crossed bars: “Oxamate group” (30 mM sodium oxamate added to  sperm suspension). 735 

 736 

Figure 3 Effect of metabolic inhibitors on sperm velocity. Bars represent averages from a least 5 737 

males per species, whiskers represent SE. (a) Progressive velocity (first principal component of a 738 

PCA using the 8 variables measured by the Sperm Class Analyzer software). (b) Lateral velocity 739 

(second principal component of a PCA using the 8 variables measured by the Sperm Class Analyzer 740 

software). Different letters indicate significant differences (p< 0.05) between species in a parametric 741 

DGC post-hoc test. Black bars: “Control group” (mT-H added to sperm suspension). White bars: 742 

“Oligomycin group” (5 µM oligomycin added to sperm suspension). Grey bars: “A + R group” (1 743 

µM antimycin A + 1 µM rotenone added to sperm suspension. Crossed bars: “Oxamate group” (30 744 

mM sodium oxamate added to  sperm suspension). 745 
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TABLES 746 

 747 

Table 1 Loadings and correlation of sperm parameters with principal components of sperm velocity and 748 

trajectory shape.  749 

 750 

 751 

 752 

 753 

 754 

 755 

Values presented are Pearson’s correlation coefficients. Significant correlation coefficients (p < 0.05) are 756 

shown in bold. PC1: principal component 1. PC2: principal component 2. VCL: curvilinear velocity (µm s
-1

). 757 

VSL: straight-line velocity (µm s
-1

). VAP: average path velocity (µm s
-1

). LIN: linearity (VSL/VCL). STR: 758 

straightness (VSL/VAP). WOB: wobble coefficient (VAP/VCL). ALH: amplitude of lateral head displacement 759 

(µm). BCF: beat-cross frequency (Hz). 760 

 761 

 762 

 763 

 764 

 765 

 766 

 767 

 768 

 769 

 770 

 771 

 772 

 773 

 774 

 775 

Variable 
PC1 PC2 

Loading r Loading r 

     
VCL 0.25 0.58 0.56 0.80 

VSL 0.42 0.98 0.13 0.19 

VAP 0.37 0.87 0.33 0.47 

LIN 0.40 0.93 -0.24 -0.34 

STR 0.41 0.95 -0.10 -0.15 

WOB 0.33 0.77 -0.38 -0.54 

ALH -0.18 -0.43 0.58 0.83 

BCF 0.40 0.95 0.12 0.17 
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Table 2 Comparison of body measures and basal sperm traits between five conplastic mouse strains. 776 

Strain BM BL TM RTS BC NSPZ MOT SMI PV LV ATP 

            

WT 27.8 ± 0.7 94.9 ± 0.9 0.198 ± 0.006 0.494 ± 0.013
a
 -0.008 44 ± 5 75 ± 1 71.7 ± 1.0 2.23 ± 1.09

b
 1.87 ± 0.67 314 ± 18

b
 

MA/MY 27.9 ± 0.3 92.6 ± 1.4 0.198 ± 0.005 0.492 ± 0.016
a
 0.009 47 ± 2 75 ± 2 68.5 ± 1.9 -1.49 ± 0.39

a
 1.77 ± 0.28 280 ± 20

b
 

CAST 27.8 ± 1.0 93.1 ± 0.9 0.216 ± 0.006 0.541 ± 0.007
b
 0.003 39 ± 3 75 ± 2 71.5 ± 1.9 -0.64 ± 0.20

a
 1.27 ± 0.43 314 ± 36

b
 

PWD 25.9 ± 0.3 90.7 ± 0.8 0.208 ± 0.003 0.549 ± 0.005
b
 -0.010 52 ± 4 68 ± 3 68.0 ± 2.0 -1.22 ± 0.21

a
 1.33 ± 0.75 226 ± 25

a
 

MOLF 28.8 ± 1.1 94.8 ± 1.4 0.210 ± 0.006 0.511 ± 0.015
a
 0.007 50 ± 2 72 ± 1 70.0 ± 1.4 -0.95 ± 0.36

a
 0.63 ± 0.65 306 ± 16

b
 

F 1.93 2.57 2.18 4.67 0.87 1.94 2.14 1.08 6.39 0.69 2.86 

p 0.1423 0.0677 0.1058 0.0075 0.4997 0.1409 0.1116 0.3916 0.0016 0.6049 0.0491 

                        

 777 

Values represent averages from a least 5 males per strain ± standard error. F and p values correspond to 778 

one way ANOVAs using strain as a factor. BM: body mass (g). BL: body length (mm). TM: testes mass (g). 779 

RTS: relative testes mass. BC: body condition. NSPZ: total sperm numbers (10
6
 sperm). MOT: percentage of 780 

motile sperm (%). SMI: sperm motility index. PV: progressive velocity (PC1). LV: latera velocity (PC2). ATP: 781 

sperm ATP content (amol cell
-1

). Significant differences between strains (p< 0.05) are shown in bold. 782 

Different letters in superscript indicate significant differences in a Di Rienzo-Guzmán-Casanoves (DGC) 783 

post-hoc test. 784 

 785 

 786 

 787 

 788 

 789 

 790 

 791 

 792 

 793 

 794 

 795 

 796 

 797 

 798 

 799 

 800 

 801 
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Table 3 Sperm velocity parameters between five conplastic mouse strains.  802 

Strain VCL VSL VAP LIN STR WOB ALH BCF 

WT 194.7 ± 7.1  86.2 ± 5.5 113.0 ± 4.5 0.442 ± 0.013 0.746 ± 0.018 0.586 ± 0.006 5.92 ± 0.12 10.01 ± 0.79 

MA/MY 180.6 ± 2.0 70.2 ± 1.4 102.3 ± 1.3 0.392 ± 0.006 0.680 ± 0.006 0.573 ± 0.005 6.24 ± 0.08 7.70 ± 0.14 

CAST 182.2 ± 3.2 72.6 ± 0.9 103.3 ± 1.6 0.399 ± 0.004 0.688 ± 0.004 0.574 ± 0.001 5.86 ± 0.10 8.50 ± 0.23 

PWD 180.1 ± 4.7 70.6 ± 1.0 102.6 ± 2.0 0.396 ± 0.007 0.682 ± 0.005 0.576 ± 0.006 6.04 ± 0.19 7.75 ± 0.12 

MOLF 175.3 ± 4.7 71.0 ± 1.2 100.4 ± 2.3 0.407 ± 0.010 0.696 ± 0.011 0.578 ± 0.003 5.88 ± 0.13 7.95 ± 0.17 

                  

 803 

Values represent averages from a least 5 males per strain. VCL: curvilinear velocity (µm s
-1

). VSL: straight-804 

line velocity (µm s
-1

). VAP: average path velocity (µm s
-1

). LIN: linearity (VSL/VCL). STR: straightness 805 

(VSL/VAP). WOB: wobble coefficient (VAP/VCL). ALH: amplitude of lateral head displacement (µm). BCF: 806 

beat-cross frequency (Hz). 807 

 808 

 809 

 810 

 811 

 812 

 813 

 814 

 815 

 816 

 817 

 818 

 819 

 820 

 821 

 822 

 823 

 824 

 825 

 826 

 827 
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Table 4 Effect of metabolic inhibitors on sperm performance and ATP content in five conplastic mouse 828 

strains. 829 

Strain Treatment SMI ATP PV LV 

      
WT Control 70.0 ± 0.7

b
 237 ± 18

c
 3.69 ± 1.19

d
 0.49 ± 0.64

a
 

 
Oligomycin 65.8 ± 1.5

b
 170 ± 12

a
 2.89 ± 0.76

c
 -0.47 ± 0.51

a
 

 
A + R 67.9 ± 0.8

b
 162 ± 15

a
 2.04 ± 0.48

b
 -0.02 ± 0.56

a
 

 
Oxamate 60.4 ± 0.8

a
 215 ± 20

b
 -0.37 ± 0.77

a
 1.49 ± 0.74

b
 

 
F 22.99 34.56 12.46 9.29 

 
p <0.0001 <0.0001 0.0002 0.0010 

      
MA/MY Control 66.0 ± 1.7

b
 177 ± 17

b
 2.71 ± 0.63

d
 -1.35 ± 0.30

a
 

 
Oligomycin 65.0 ± 1.4

b
 135 ± 12

a
 0.64 ± 0.43

c
 -0.47 ± 0.30

b
 

 
A + R 60.5 ± 3.4

b
 131 ± 18

a
 -0.86 ± 0.92

b
 -0.48 ± 0.29

b
 

 
Oxamate 55.5 ± 2.0

a
 147 ± 20

a
 -3.80 ± 0.79

a
 0.67 ± 0.38

c
 

 
F 7.24 5.88 33.05 9.57 

 
p 0.0050 0.0104 <0.0001 0.0017 

      
CAST Control 66.5 ± 0.6

b
 193 ± 28

c
 1.46 ± 0.36 -0.50 ± 0.34 

 
Oligomycin 64.0 ± 1.5

b
 160 ± 27

b
 -0.06 ± 0.65 -0.48 ± 0.37 

 
A + R 59.0 ± 2.6

a
 120 ± 22

a
 -1.27 ± 1.10 -1.47 ± 0.36 

 
Oxamate 58.5 ± 1.5

a
 214 ± 25

c
 -1.65 ± 0.86 -0.38 ± 0.38 

 
F 7.49 12.42 3.45 2.78 

 
p 0.0044 0.0005 0.0514 0.0867 

      
PWD Control 61.0 ± 1.9

b
 120 ± 13

b
 0.33 ± 0.57

b
 -0.24 ± 0.62 

 
Oligomycin 60.0 ± 0.0

b
 93 ± 7

a
 0.32 ± 0.47

b
 -1.27 ± 0.41 

 
A + R 62.5 ± 1.6

b
 84 ± 6

a
 -1.79 ± 0.93

a
 0.63 ± 0.45 

 
Oxamate 57.0 ± 1.2

a
 114 ± 12

b
 -2.43 ± 0.38

a
 0.30 ± 0.50 

 
F 4.82 13.65 7.99 2.79 

 
p 0.0199 0.0004 0.0034 0.0858 

      
MOLF Control 67.5 ± 1.1

b
 174 ± 13

b
 0.96 ± 0.71

c
 -1.40 ± 0.34

a
 

 
Oligomycin 66.0 ± 1.0

b
 145 ± 13

a
 -0.09 ± 0.27

b
 -1.27 ± 0.28

a
 

 
A + R 66.5 ± 1.9

b
 148 ± 10

a
 -0.50 ± 0.35

b
 -1.09 ± 0.20

a
 

 
Oxamate 62.0 ± 2.1

a
 186 ± 17

b
 -2.23 ± 0.57

a
 -0.23 ± 0.28

b
 

 
F 3.51 6.30 16.57 5.30 

 
p 0.0494 0.0082 0.0001 0.0148 

            

 830 

Values represent averages from a least 5 males per strain ± standard error. F and p values correspond to 831 

one way repeated measures ANOVAs using treatment as a factor. Treatments are defined by the addition of 832 

either culture medium (Control), 5 µM oligomycin (Oligomycin), 1 µM antimycin A + 1 µM rotenone (A + R), 833 

30 mM sodium oxamate (Oxamate) to the sperm suspension. MOT: percentage of motile sperm (%). SMI: 834 

sperm motility index. PV: progressive velocity (PC1). LV: lateral velocity (PC2). ATP: sperm ATP content 835 

(amol cell
-1

). Significant differences between strains (p< 0.05) are shown in bold. Different letters in 836 

superscript indicate significant differences in a Di Rienzo-Guzmán-Casanoves (DGC) post-hoc test. 837 

 838 
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Table 5 Effect of metabolic inhibitors on sperm velocity parameters in five conplastic mouse strains.  839 

Strain Treatment VCL VSL VAP LIN STR WOB ALH BCF 

          
WT Control 188.0 ± 7.9  91.0 ± 5.9 113.5 ± 5.7 0.475 ± 0.013 0.776 ± 0.013 0.604 ± 0.007 5.61 ± 0.08 10.82 ± 0.81 

 
Oligomycin 177.1 ± 5.1 85.7 ± 3.8 108.6 ± 3.5 0.478 ± 0.010 0.767 ± 0.011 0.615 ± 0.004 5.63 ± 0.10  9.47 ± 0.40 

 
A + R 177.8 ± 4.9 82.7 ± 2.8 107.4 ± 2.9 0.463 ± 0.006 0.752 ± 0.006 0.607 ± 0.004 5.76 ± 0.10 8.94 ± 0.21 

 
Oxamate 180.4 ± 5.9 75.3 ± 3.6 102.7 ± 3.4 0.416 ± 0.011 0.717 ± 0.011 0.574 ± 0.007 6.18 ± 0.15 8.28 ± 0.38  

          
MA/MY Control 170.3 ± 2.5 83.0 ± 2.4 104.8 ± 2.3 0.485 ± 0.010 0.771 ± 0.007 0.620 ± 0.008 5.49 ± 0.07  9.24 ± 0.23 

 
Oligomycin 169.1 ± 1.7 76.2 ± 1.1 101.1 ± 1.5 0.448 ± 0.007 0.735 ± 0.005 0.603 ± 0.006 5.81 ± 0.09 8.29 ± 0.25 

 
A + R 164.4 ± 1.9 70.3 ± 2.9 96.6 ± 2.2 0.428 ± 0.014 0.713 ± 0.012 0.594 ± 0.009 5.93 ± 0.12 7.66 ± 0.46 

 
Oxamate 164.2 ± 3.5 61.3 ± 2.7 90.9 ± 2.4 0.376 ± 0.010 0.667 ± 0.012 0.560 ± 0.005 6.25 ± 0.12 6.70 ± 0.33 

          
CAST Control 175.0 ± 3.1 78.9 ± 2.6 103.6 ± 2.1 0.445 ± 0.005 0.739 ± 0.004 0.594 ± 0.004 5.42 ± 0.06 9.50 ± 0.25 

 
Oligomycin 169.0 ± 1.4 73.4 ± 2.1 100.5 ± 1.8 0.432 ± 0.011 0.713 ± 0.009 0.598 ± 0.009 5.72 ± 0.10 7.99 ± 0.23 

 
A + R 158.1 ± 4.2 68.2 ± 4.2 93.4 ± 3.8 0.428 ± 0.015 0.714 ± 0.012 0.593 ± 0.010 5.67 ± 0.10 7.33 ± 0.41 

 
Oxamate 164.3 ± 2.7 67.4 ± 2.9 95.3 ± 2.2 0.410 ± 0.013 0.694 ± 0.012 0.585 ± 0.008 5.86 ± 0.10 7.48 ± 0.37 

          
PWD Control 172.4 ± 3.4 75.2 ± 1.9 101.1 ± 1.6 0.434 ± 0.012 0.724 ± 0.007 0.590 ± 0.010 5.65 ± 0.13 8.52 ± 0.27 

 
Oligomycin 164.1 ± 2.1 73.6 ± 1.4 98.6 ± 1.1 0.445 ± 0.009 0.729 ± 0.007 0.605 ± 0.007 5.60 ± 0.10 8.16 ± 0.27 

 
A + R 170.8 ± 3.9 68.6 ± 3.2 98.0 ± 1.9 0.403 ± 0.014 0.689 ± 0.019 0.580 ± 0.004 6.12 ± 0.17 7.25 ± 0.43 

 
Oxamate 166.5 ± 3.6 65.7 ± 1.5 94.1 ± 1.5 0.394 ± 0.005 0.684 ± 0.006 0.571 ± 0007 6.02 ± 0.09 7.24 ± 0.32 

          
MOLF Control 166.5 ± 3.9 76.6 ± 2.7 100.3 ± 2.8 0.451 ± 0.009 0.738 ± 0.008 0.601 ± 0.006 5.38 ± 0.05 8.69 ± 0.38 

 
Oligomycin 163.7 ± 2.1 72.0 ± 1.1 97.6 ± 1.5 0.437 ± 0.003 0.719 ± 0.001 0.599 ± 0.004 5.54 ± 0.06 8.10 ± 0.11 

 
A + R 163.5 ± 2.2 70.7 ± 1.1 96.9 ± 1.4 0.432 ± 0.004 0.715 ± 0.004 0.597 ± 0.003 5.64 ± 0.02 7.78 ± 0.29 

 
Oxamate 164.2 ± 2.8 65.7 ± 2.8 93.9 ± 2.2 0.399 ± 0.009 0.686 ± 0.009 0.576 ± 0.006 5.86 ± 0.03 7.23 ± 0.22 

                    

 840 

Values represent averages from a least 5 males per strain. Treatments are defined by the addition of either 841 

culture medium (Control), 5 µM oligomycin (Oligomycin), 1 µM antimycin A + 1 µM rotenone (A + R), 30 mM 842 

sodium oxamate (Oxamate) to the sperm suspension. VCL: curvilinear velocity (µm s
-1

). VSL: straight-line 843 

velocity (µm s
-1

). VAP: average path velocity (µm s
-1

). LIN: linearity (VSL/VCL). STR: straightness 844 

(VSL/VAP). WOB: wobble coefficient (VAP/VCL). ALH: amplitude of lateral head displacement (µm). BCF: 845 

beat-cross frequency (Hz). 846 
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