77 research outputs found

    Analytic Approximations for Three Neutrino Oscillation Parameters and Probabilities in Matter

    Get PDF
    The corrections to neutrino mixing parameters in the presence of matter of constant density are calculated systematically as series expansions in terms of the mass hierarchy \dm{21}/\dm{31}. The parameter mapping obtained is then used to find simple, but nevertheless accurate formulas for oscillation probabibilities in matter including CP-effects. Expressions with one to one correspondence to the vacuum case are derived, which are valid for neutrino energies above the solar resonance energy. Two applications are given to show that these results are a useful and powerful tool for analytical studies of neutrino beams passing through the Earth mantle or core: First, the ``disentanglement problem'' of matter and CP-effects in the CP-asymmetry is discussed and second, estimations of the statistical sensitivity to the CP-terms of the oscillation probabilities in neutrino factory experiments are presented.Comment: 17 pages, 3 figure

    CP Violation and Matter Effect in Long Baseline Neutrino Oscillation Experiments

    Get PDF
    We show simple methods how to separate pure CP violating effect from matter effect in long baseline neutrino oscillation experiments with three generations of neutrinos. We give compact formulae for neutrino oscillation probabilities assuming one of the three neutrino masses (presumably tau-neutrino mass) to be much larger than the other masses and the effective mass due to matter effect. Two methods are shown: One is to observe envelopes of the curves of oscillation probabilities as functions of neutrino energy; a merit of this method is that only a single detector is enough to determine the presence of CP violation. The other is to compare experiments with at least two different baseline lengths; this has a merit that it needs only narrow energy range of oscillation data.Comment: 17 pages + 9 eps figures, LaTeX, errors are correcte

    CP and T violation test in neutrino oscillation

    Get PDF
    We examine how large violation of CP and T is allowed in long base line neutrino experiments. When we attribute only the atmospheric neutrino anomaly to neutrino oscillation we may have large CP violation effect. When we attribute both the atmospheric neutrino anomaly and the solar neutrino deficit to neutrino oscillation we may have a sizable T violation effect proportional to the ratio of two mass differences; it is difficult to see CP violation since we can't ignore the matter effect. We give a simple expression for T violation in the presence of matter.Comment: 12 pages + 2 eps figures, Latex, In order to avoid misunderstanding we have refined our English and rewritten the parts which might be misleading. Several typographical errors are correcte

    On the Evolution of the Neutrino State inside the Sun

    Get PDF
    We reexamine the conventional physical description of the neutrino evolution inside the Sun. We point out that the traditional resonance condition has physical meaning only in the limit of small values of the neutrino mixing angle, theta<<1. For large values of theta, the resonance condition specifies neither the point of the maximal violation of adiabaticity in the nonadiabatic case, nor the point where the flavor conversion occurs at the maximal rate in the adiabatic case. The corresponding correct conditions, valid for all values of theta including theta>pi/4, are presented. An adiabaticity condition valid for all values of theta is also described. The results of accurate numerical computations of the level jumping probability in the Sun are presented. These calculations cover a wide range of Delta m^2, from the vacuum oscillation region to the region where the standard exponential approximation is good. A convenient empirical parametrization of these results in terms of elementary functions is given. The matter effects in the so-called "quasi-vacuum oscillation regime" are discussed. Finally, it is shown how the known analytical results for the exponential, 1/x, and linear matter distributions can be simply obtained from the formula for the hyperbolic tangent profile. An explicit formula for the jumping probability for the distribution N_e ~ (coth(x/l) +- 1) is obtained.Comment: 34 pages, 8 figure

    How precisely can we reduce the three-flavor neutrino oscillation to the two-flavor one only from (\delta m^2_{12})/(\delta m^2_{13}) <~ 1/15 ?

    Get PDF
    We derive the reduction formula, which expresses the survival rate for the three-flavor neutrino oscillation by the two-flavor one, to the next-to-leading order in case there is one resonance due to the matter effect. We numerically find that the next-to-leading reduction formula is extremely accurate and the improvement is relevant for the precision test of solar neutrino oscillation and the indirect measurment of CP violation in the leptonic sector. We also derive the reduction formula, which is slightly different from that previously obtained, in case there are two resonances. We numerically verify that this reduction formula is quite accurate and is valid for wider parameter region than the previously obtained ones are.Comment: 28pages, 8figures, revtex4. to appear in PR

    Solar Mikheyev-Smirnov-Wolfenstein Effect with Three Generations of Neutrinos

    Get PDF
    Under the assumption that the density variation of the electrons can be approximated by an exponential function, the solar Mikheyev-Smirnov-Wolfenstein effect is treated for three generations of neutrinos. The generalized hypergeometric functions that result from the exact solution of this problem are studied in detail, and a method for their numerical evaluation is presented. This analysis plays a central role in the determination of neutrino masses, not only the differences of their squares, under the assumption of universal quark-lepton mixing.Comment: 22 pages, LaTeX, including 2 figure

    Analytical description of quasivacuum oscillations of solar neutrinos

    Get PDF
    We propose a simple prescription to calculate the solar neutrino survival probability P_{ee} in the quasivacuum oscillation (QVO) regime. Such prescription is obtained by matching perturbative and exact analytical results, which effectively take into account the density distribution in the Sun as provided by the standard solar model. The resulting analytical recipe for the calculation of P_{ee} is shown to reach its highest accuracy |\Delta P_{ee}| < 2.6 x 10^{-2} in the whole QVO range) when the familiar prescription of choosing the solar density scale parameter r_0 at the Mikheyev-Smirnov-Wolfenstein (MSW) resonance point is replaced by a new one, namely, when r_0 is chosen at the point of ``maximal violation of adiabaticity'' (MVA) along the neutrino trajectory in the Sun. The MVA prescription admits a smooth transition from the QVO regime to the MSW transition one. We discuss in detail the phase acquired by neutrinos in the Sun, and show that it might be of relevance for the studies of relatively short timescale variations of the fluxes of the solar \nu lines in the future real-time solar neutrino experiments. Finally, we elucidate the role of matter effects in the convective zone of the Sun.Comment: 25 pages (RevTeX) + 11 figures (postscript

    Large-Theta(13) Perturbation Theory of Neutrino Oscillation for Long-Baseline Experiments

    Full text link
    The Cervera et al. formula, the best known approximate formula of neutrino oscillation probability for long-baseline experiments, can be regarded as a second-order perturbative formula with small expansion parameter epsilon \equiv Delta m^2_{21} / Delta m^2_{31} \simeq 0.03 under the assumption s_{13} \simeq epsilon. If theta_{13} is large, as suggested by a candidate nu_{e} event at T2K as well as the recent global analyses, higher order corrections of s_{13} to the formula would be needed for better accuracy. We compute the corrections systematically by formulating a perturbative framework by taking theta_{13} as s_{13} \sim \sqrt{epsilon} \simeq 0.18, which guarantees its validity in a wide range of theta_{13} below the Chooz limit. We show on general ground that the correction terms must be of order epsilon^2. Yet, they nicely fill the mismatch between the approximate and the exact formulas at low energies and relatively long baselines. General theorems are derived which serve for better understanding of delta-dependence of the oscillation probability. Some interesting implications of the large theta_{13} hypothesis are discussed.Comment: Fig.2 added, 23 pages. Matches to the published versio

    Nonlinear level crossing models

    Get PDF
    We examine the effect of nonlinearity at a level crossing on the probability for nonadiabatic transitions PP. By using the Dykhne-Davis-Pechukas formula, we derive simple analytic estimates for PP for two types of nonlinear crossings. In the first type, the nonlinearity in the detuning appears as a {\it perturbative} correction to the dominant linear time dependence. Then appreciable deviations from the Landau-Zener probability PLZP_{LZ} are found to appear for large couplings only, when PP is very small; this explains why the Landau-Zener model is often seen to provide more accurate results than expected. In the second type of nonlinearity, called {\it essential} nonlinearity, the detuning is proportional to an odd power of time. Then the nonadiabatic probability PP is qualitatively and quantitatively different from PLZP_{LZ} because on the one hand, it vanishes in an oscillatory manner as the coupling increases, and on the other, it is much larger than PLZP_{LZ}. We suggest an experimental situation when this deviation can be observed.Comment: 9 pages final postscript file, two-column revtex style, 5 figure
    corecore