Abstract

We propose a simple prescription to calculate the solar neutrino survival probability P_{ee} in the quasivacuum oscillation (QVO) regime. Such prescription is obtained by matching perturbative and exact analytical results, which effectively take into account the density distribution in the Sun as provided by the standard solar model. The resulting analytical recipe for the calculation of P_{ee} is shown to reach its highest accuracy |\Delta P_{ee}| < 2.6 x 10^{-2} in the whole QVO range) when the familiar prescription of choosing the solar density scale parameter r_0 at the Mikheyev-Smirnov-Wolfenstein (MSW) resonance point is replaced by a new one, namely, when r_0 is chosen at the point of ``maximal violation of adiabaticity'' (MVA) along the neutrino trajectory in the Sun. The MVA prescription admits a smooth transition from the QVO regime to the MSW transition one. We discuss in detail the phase acquired by neutrinos in the Sun, and show that it might be of relevance for the studies of relatively short timescale variations of the fluxes of the solar \nu lines in the future real-time solar neutrino experiments. Finally, we elucidate the role of matter effects in the convective zone of the Sun.Comment: 25 pages (RevTeX) + 11 figures (postscript

    Similar works