148 research outputs found

    Scanned Potential Microscopy of Edge and Bulk Currents in the Quantum Hall Regime

    Full text link
    Using an atomic force microscope as a local voltmeter, we measure the Hall voltage profile in a 2D electron gas in the quantum Hall (QH) regime. We observe a linear profile in the bulk of the sample in the transition regions between QH plateaus and a distinctly nonlinear profile on the plateaus. In addition, localized voltage drops are observed at the sample edges in the transition regions. We interpret these results in terms of theories of edge and bulk currents in the QH regime.Comment: 4 pages, 5 figure

    Superconducting Magnetization above the Irreversibility Line in Tl2Ba2CuO6

    Full text link
    Piezolever torque magnetometry has been used to measure the magnetization of superconducting Tl2Ba2CuO6. Three crystals with different levels of oxygen overdoping were investigated in magnetic fields up to 10 Tesla. In all cases, the magnetization above the irreversibility line was found to depart from the behaviour M ~ ln(Hc2/H) of a simple London-like vortex liquid. In particular, for a strongly overdoped (Tc = 15K) crystal, the remnant superconducting order above the irreversibility line is characterized by a linear diamagnetic response (M ~ H) that persists well above Tc and also up to the highest field employed.Comment: RevTeX, 11 pages, 7 encapsulated PostScript figures, submitted to Physical Review

    Scanned Potential Microscopy of Edge States in a Quantum Hall Liquid

    Full text link
    Using a low-temperature atomic force microscope as a local voltmeter, we measure the Hall voltage profile in a quantum Hall conductor in the presence of a gate-induced non-equilibrium edge state population at n=3. We observe sharp voltage drops at the sample edges which are suppressed by re-equilibrating the edge states.Comment: 4 pages, 4 figs. To be published in Physica E (Proceedings of the 13th International Conference on the Properties of 2D Systems

    Measurement of the adhesion between single melamine-formaldehyde resin microparticles and a flat fabric surface using AFM

    Get PDF
    An understanding of the adhesion of microparticles, particularly microcapsules, containing a functional component to a fabric surface is crucial to an effective application of this component to the fibre. Fabric surface is very rough; hence, direct measurement of the adhesion of single microparticles to surfaces with a roughness greater than the particle diameter is difficult. In the study reported here, cotton films were generated by dissolving cotton powder in an organic solvent and their properties including surface roughness, thickness, contact angle and purity were characterised. The adhesive forces between single melamineformaldehyde (MF) resin microparticles and a cotton film under ambient conditions with a relative humidity of above 40% were measured using atomic force microscopy; they are considered to be dominated by capillary forces. It was found that there was little adhesion between a MF microparticle and a cotton film in an aqueous solution of sodium dodecylbenzene sulphonate as surfactant. Repulsion between them was observed, but it reduced with increase in the surfactant concentration and decrease in the pH of the solution. The repulsion contributions are thought to originate mainly from electrostatic repulsion. It is believed that the studies on the adhesion between single MF microparticles and a cotton film under ambient conditions or dispersed in surfactant solutions, are beneficial to the attempts to enhance the adhesion of microcapsules to fabric surfaces via a modification of their surface composition and morphology

    Managing Polyploidy in Ex Situ Conservation Genetics: The Case of the Critically Endangered Adriatic Sturgeon (Acipenser naccarii)

    Get PDF
    While the current expansion of conservation genetics enables to address more efficiently the management of threatened species, alternative methods for genetic relatedness data analysis in polyploid species are necessary. Within this framework, we present a standardized and simple protocol specifically designed for polyploid species that can facilitate management of genetic diversity, as exemplified by the ex situ conservation program for the tetraploid Adriatic sturgeon Acipenser naccarii. A critically endangered endemic species of the Adriatic Sea tributaries, its persistence is strictly linked to the ex situ conservation of a single captive broodstock currently decimated to about 25 individuals, which represents the last remaining population of Adriatic sturgeon of certain wild origin. The genetic variability of three F1 broodstocks available as future breeders was estimated based on mitochondrial and microsatellite information and compared with the variability of the parental generation. Genetic data showed that the F1 stocks have only retained part of the genetic variation present in the original stock due to the few parent pairs used as founders. This prompts for the urgent improvement of the current F1 stocks by incorporating new founders that better represent the genetic diversity available. Following parental allocation based on band sharing values, we set up a user-friendly tool for selection of candidate breeders according to relatedness between all possible parent-pairs that secures the use of non-related individuals. The approach developed here could also be applied to other endangered tetraploid sturgeon species overexploited for caviar production, particularly in regions lacking proper infrastructure and/or expertise

    Tracking Signals of Change in Mediterranean Fish Diversity Based on Local Ecological Knowledge

    Get PDF
    One of the expected effects of global change is increased variability in the abundance and distribution of living organisms, but information at the appropriate temporal and geographical scales is often lacking to observe these patterns. Here we use local knowledge as an alternative information source to study some emerging changes in Mediterranean fish diversity. A pilot study of thirty-two fishermen was conducted in 2009 from four Mediterranean locations along a south-north gradient. Semi-quantitative survey information on changes in species abundance was recorded by year and suggests that 59 fish species belonging to 35 families have experienced changes in their abundance. We distinguished species that increased from species that decreased or fluctuated. Multivariate analysis revealed significant differences between these three groups of species, as well as significant variation between the study locations. A trend for thermophilic taxa to increase was recorded at all the study locations. The Carangidae and the Sphyraenidae families typically were found to increase over time, while Scombridae and Clupeidae were generally identified as decreasing and Fistularidae and Scaridae appeared to fluctuate in abundance. Our initial findings strongly suggest the northward expansion of termophilic species whose occurrence in the northern Mediterranean has only been noted previously by occasional records in the scientific literature

    Persistence of phylogeographic footprints helps to understand cryptic diversity detected in two marine amphipods widespread in the Mediterranean basin

    Get PDF
    Amphipods of the genus Gammarus are a vital component of macrozoobenthic communities in European inland and coastal, marine and brackish waters of the Mediterranean and the Black Sea. Exceptional levels of cryptic diversity have been revealed for several widespread freshwater Gammarus species in Europe. No comprehensive assessment has yet been made for brackishwater counterparts, such as Gammarus aequicauda and G. insensibilis, which are among the most widely dispersed members of the so-called “G. locusta group” in the Mediterranean and in the Black Sea. Here we probe the diversity of these morphospecies examining the partitioning of mtDNA and nDNA across multiple populations along their distribution range and discuss it within the regional paleogeographic framework. We gathered molecular data from a collection of 166 individuals of G. aequicauda and G. insensibilis from 47 locations along their distribution range in the Mediterranean including the Black Sea. They were amplified for both mitochondrial COI and 16S rRNA as well as the nuclear 28S rRNA. All five MOTU delimitation methods (ABGD, BIN, bPTP, GMYC single and multiple threshold models) applied revealed deep divergence between Black Sea and Mediterranean populations in both G. aequicauda and G. insensibilis. There were eight distinct MOTUs delimited for G. aequicauda (6–18% K2P) and 4 MOTUs for G. insensibilis (4–14% K2P). No sympatric MOTUs were detected throughout their distribution range. Multimarker time-calibrated phylogeny indicated that divergence of both G. aequicauda and G. insensibilis species complexes started already in the late Oligocene/early Miocene with the split between clades inhabiting eastern and western part of the Mediterranean occurring in both species at the similar time. Our results indicate a high cryptic diversity within Mediterranean brackishwater Gammarus, similar to that observed for freshwater counterparts. Moreover, the phylogenetic history combined with the current geographic distribution indicate that the evolution of botThis work was supported by Polish National Science Center (projects no. 2014/15/B/NZ8/00266 and 2015/17/N/NZ8/01628) and partially by the statutory funds of the Department of Invertebrate Zoology and Hydrobiology of University of Lodz. F. Costa and the University of Minho contribution was supported by the strategic programme UID/BIA/04050/2013 (POCI-01-0145-FEDER-007569) funded by national funds through the FCT I.P. and by the ERDF through the COMPETE2020 - Programa Operacional Competitividade e Internacionalização (POCI). There was no additional external funding received for this study. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Fin Spine Bone Resorption in Atlantic Bluefin Tuna, Thunnus thynnus, and Comparison between Wild and Captive-Reared Specimens

    Get PDF
    Bone resorption in the first spine of the first dorsal fin of Atlantic bluefin tuna (ABFT) has long been considered for age estimation studies. In the present paper spine bone resorpion was assessed in wild (aged 1 to 13 years) and captive-reared (aged 2 to 11 years) ABFT sampled from the Mediterranean Sea. Total surface (TS), solid surface (SS) and reabsorbed surface (RS) were measured in spine transverse sections in order to obtain proportions of SS and RS. The spine section surface was found to be isometrically correlated to the fish fork length by a power equation. The fraction of solid spine bone progressively decreased according to a logarithmic equation correlating SS/TS to both fish size and age. The values ranged from 57% in the smallest examined individuals to 37% in the largest specimens. This phenomenon was further enhanced in captive-reared ABFT where SS/TS was 22% in the largest measured specimen. The difference between the fraction of SS of wild and captive-reared ABFT was highly significant. In each year class from 1- to 7-year-old wild specimens, the fraction of spine reabsorbed surface was significantly higher in specimens collected from March to May than in those sampled during the rest of the year. In 4-year-old fish the normal SS increase during the summer did not occur, possibly coinciding with their first sexual maturity. According to the correlations between SS/TS and age, the rate of spine bone resorption was significantly higher, even almost double, in captive-reared specimens. This could be attributed to the wider context of systemic dysfunctions occurring in reared ABFT, and may be related to a number of factors, including nutritional deficiencies, alteration of endocrine profile, cortisol-induced stress, and loss of spine functions during locomotion in rearing conditions.Versión del editor4,411

    Advances in atomic force microscopy

    Get PDF
    This article reviews the progress of atomic force microscopy (AFM) in ultra-high vacuum, starting with its invention and covering most of the recent developments. Today, dynamic force microscopy allows to image surfaces of conductors \emph{and} insulators in vacuum with atomic resolution. The mostly used technique for atomic resolution AFM in vacuum is frequency modulation AFM (FM-AFM). This technique, as well as other dynamic AFM methods, are explained in detail in this article. In the last few years many groups have expanded the empirical knowledge and deepened the theoretical understanding of FM-AFM. Consequently, the spatial resolution and ease of use have been increased dramatically. Vacuum AFM opens up new classes of experiments, ranging from imaging of insulators with true atomic resolution to the measurement of forces between individual atoms.Comment: In press (Reviews of Modern Physics, scheduled for July 2003), 86 pages, 44 figure
    corecore