2,928 research outputs found

    Influence of Cold Maceration Time on Chromatic and Microbiological Characteristics of Cabernet Sauvignon Wines

    Get PDF
    The pre-fermentative cold soak (CS) is proposed so as to extract and stabilise polyphenolic compounds in wines. CS is applied empirically to Cabernet Sauvignon in Cuyo, Argentina; however, there is poor scientific background on this technique. The aim was analyse the effect of cold soak time on colour parameters such as total polyphenols, total anthocyanins, tannins, colour and polymerisation indexes.  Moreover, Saccharomyces and non-Saccharomyces populations were studied to evaluate their impact oncolour. Cabernet Sauvignon must (Pedernal, San Juan) was distributed into four vessels: CONTROL (CT): simultaneous maceration and alcoholic fermentation (AF) with commercial yeast D254; T1: CS for two days; T2: CS for five days; and T3: CS for seven days. T1, T2 and T3 were maintained at 4 ± 1°C during CS.  They were later inoculated with D254 (AF: 22 ± 1°C). The total polyphenol index (TPI), total anthocyanins (TA) and tannins were quantified during CS and AF. The colour index (CI) and polymerisation index (PI) were determined at the end of AF. The total yeast populations of Saccharomyces and non-Saccharomyces were quantified during CS and AF. The highest values of TA, tannins, TPI and PI were obtained by CT.This treatment also registered the highest total yeast population and the highest total yeast death. The highest CI was observed in T3. When Saccharomyces was found at the end of CS (T1 and T2), it dominatedthe alcoholic fermentation in the early stages (not observed in CT and T3). The use of the pre-fermentative CS technique in Cabernet Sauvignon wines is promising for young wines due to the increased colour obtained

    A projection hybrid high order finite volume/finite element method for incompressible turbulent flows

    Full text link
    In this paper the projection hybrid FV/FE method presented in Busto et al. 2014 is extended to account for species transport equations. Furthermore, turbulent regimes are also considered thanks to the kεk-\varepsilon model. Regarding the transport diffusion stage new schemes of high order of accuracy are developed. The CVC Kolgan-type scheme and ADER methodology are extended to 3D. The latter is modified in order to profit from the dual mesh employed by the projection algorithm and the derivatives involved in the diffusion term are discretized using a Galerkin approach. The accuracy and stability analysis of the new method are carried out for the advection-diffusion-reaction equation. Within the projection stage the pressure correction is computed by a piecewise linear finite element method. Numerical results are presented, aimed at verifying the formal order of accuracy of the scheme and to assess the performance of the method on several realistic test problems.Comment: arXiv admin note: text overlap with arXiv:1802.1058

    Adiabatic Heating of Contracting Turbulent Fluids

    Get PDF
    Turbulence influences the behavior of many astrophysical systems, frequently by providing non-thermal pressure support through random bulk motions. Although turbulence is commonly studied in systems with constant volume and mean density, turbulent astrophysical gases often expand or contract under the influence of pressure or gravity. Here, we examine the behavior of turbulence in contracting volumes using idealized models of compressed gases. Employing numerical simulations and an analytical model, we identify a simple mechanism by which the turbulent motions of contracting gases "adiabatically heat," experiencing an increase in their random bulk velocities until the largest eddies in the gas circulate over a Hubble time of the contraction. Adiabatic heating provides a mechanism for sustaining turbulence in gases where no large-scale driving exists. We describe this mechanism in detail and discuss some potential applications to turbulence in astrophysical settings

    Thermodynamic, rheological and structural properties of edible oils structured with LMOGs: Influence of gelator and oil phase

    Get PDF
    Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.foostr.2018.03.003.The effect of different oil phases and low molecular weight organogelators (LMOGs) structures on edible oils was investigated through differential scanning calorimetry (DSC), rheology and small-angle X-ray scattering (SAXS). Different gelators (glyceryl tristearateGT; sorbitan tristearateST; sorbitan monostearateSM and glyceryl monostearate-GM) were tested in medium-chain triglycerides and high oleic sunflower (named MCT and LCT). Systems were thermoreversible and their thermodynamic properties were dependent on the combined effect of the interactions of structurants polar head with other constituents and the sterical effect of their hydrophobic tails. The crystallization onset temperature was higher for GM and SM, possibly due to the lower sterical effect of their tails. However, the corresponding enthalpy and entropy change values were influenced by the hydrophilic head group: glycerol-based organogelator molecules were able to interact strongly than sorbitans, increasing these values. Rheological studies showed that gels produced with LCT were stronger than with MCT. Moreover, cooling and heating cycles showed more than one transition and shear dependence. Stronger structures were more sensitive to temperature, possibly because of their more organized structure that destabilizes more easily with the increase of molecular mobility. These results were in agreement with the SAXS analyses. At 50°C, the stronger networks lost their initial structure, and at 70°C they collapsed. Thus, molecular interactions and structurant self-assembly were dependent on the structurant+solvent combination, leading to different physicochemical properties and thermal stability. It is expected that these results will allow customizing properties of structured oil for diverse applications, spanning from food to cosmetic and pharmaceutical industries.LuizH.FasolinthanksthescholarshipCapes/FCTprogram(349/13) for the research exchange and Rosiane Lopes Cunha thanks CNPq (CNPq 307168/2016-6) for the productivity grant. The authors also would like to thank Fapesp (EMU 09/54137-1), CNPq and Capes for their financial support and the Brazilian Synchrotron Light Laboratory (LNLS) for the opportunity to carry out SAXS measurements. This study was also supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/ 04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684) and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020 – Programa Operacional Regional do Norte. and of the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462).info:eu-repo/semantics/publishedVersio

    Free volatie compounds of cv. Pedro Giménez (Vitis vinifera L.) white grape must grown in San Juan, Argentina.

    Get PDF
    The free aromatic composition of must from Pedro Giménez grapes, grown in San Juan, Argentina, was characterised. Samples from the vintages of 2008 and 2009 were analysed by gas chromatography-mass spectrometry-solid phase microextraction (GC-MS-SPME). Higher alcohols, terpenes, C13-norisoprenoids, esters, aldehydes and ketones were quantifed. The calculation of the odour activity values (OAVs) revealed that β-damascenone, α-ionone, β-linalool, geraniol, ethyl butanoate, hexanoate and octanoate were the most prevalent aroma-active compounds of the grape variety. However, the remaining 42 aromatic compounds that registered OAVs less than 1 could potentially contribute to the favour of Pedro Giménez grapes. The measured monoterpene levels indicate that the Pedro Giménez grape can be considered a neutral variety. This is the frst report describing the main potential free aroma contributors of Pedro Giménez grapes in two consecutive years.Fil: Maturano, Yolanda Paola. Universidad Nacional de San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Biotecnología; ArgentinaFil: Nally, Maria Cristina. Universidad Nacional de San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Biotecnología; ArgentinaFil: Toro, Maria Eugenia. Universidad Nacional de San Juan; ArgentinaFil: Castellanos, Lucia Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Vazquez, Fabio. Universidad Nacional de San Juan; Argentin

    Selection of Native Non-Saccharomyces Yeasts with Biocontrol Activity against Spoilage Yeasts in Order to Produce Healthy Regional Wines

    Get PDF
    Two major spoilage yeasts in the wine industry, Brettanomyces bruxellensis and Zygosaccharomyces rouxii, produce off-flavors and gas, causing considerable economic losses. Traditionally, SO2 has been used in winemaking to prevent spoilage, but strict regulations are in place regarding its use due to its toxic and allergenic effects. To reduce its usage researchers have been searching for alternative techniques. One alternative is biocontrol, which can be used either independently or in a complementary way to chemical control (SO2). The present study analyzed 122 native non-Saccharomyces yeasts for their biocontrol activity and their ability to be employed under fermentation conditions, as well as certain enological traits. After the native non-Saccharomyces yeasts were assayed for their biocontrol activity, 10 biocontroller yeasts were selected and assayed for their ability to prevail in the fermentation medium, as well as with respect to their corresponding positive/negative contribution to the wine. Two yeasts that satisfy these characteristics were Wickerhamomyces anomalus BWa156 and Metschnikowia pulcherrima BMp29, which were selected for further research in application to mixed fermentations.Fil: Kuchen, Benjamín. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; ArgentinaFil: Maturano, Yolanda Paola. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; ArgentinaFil: Mestre Furlani, María Victoria. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; ArgentinaFil: Combina, Mariana. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Mendoza-San Juan. Estación Experimental Agropecuaria Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Toro, Maria Eugenia. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Biotecnología; ArgentinaFil: Vazquez, Fabio. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Biotecnología; Argentin

    Edible oleogels in molecular gastronomy

    Get PDF
    AbstractExperimental chefs and researchers have limited options when structuring lipid-based materials present in foods to include: liquids, solids, foams or emulsions. However, the application of gel technology for lipids is on the cusp of advancing into experimental culinary kitchens around the world. The possibility of utilizing edible oils (and even ethanol) to extract a hydrophobic flavor and then gel the material in a similar fashion as hydrocolloids gel water is now a reality. This review covers the three primary oleogels: ethyl cellulose, mixtures of γ-oryzanol and β-sitosterol and candelilla wax

    Free Volatile Compounds of cv. Pedro Giménez (Vitis vinifera L.) White Grape Must Grown in San Juan, Argentina

    Get PDF
    The free aromatic composition of must from Pedro Giménez grapes, grown in San Juan, Argentina, was characterised. Samples from the vintages of 2008 and 2009 were analysed by gas chromatography–mass spectrometry–solid phase microextraction (GC–MS–SPME). Higher alcohols, terpenes, C13-norisoprenoids, esters, aldehydes and ketones were quantified. The calculation of the odour activity values (OAVs) revealed that β-damascenone, α-ionone, β-linalool, geraniol, ethyl butanoate, hexanoate and octanoate were the most prevalent aroma-active compounds of the grape variety. However, the remaining 42 aromatic compounds that registered OAVs less than 1 could potentially contribute to the flavour of Pedro Giménez grapes. The measured monoterpene levels indicate that the Pedro Giménez grape can be considered a neutral variety.  This is the first report describing the main potential free aroma contributors of Pedro Giménez grapes in two consecutive years

    The pluripotency transcription factor OCT4 represses heme oxygenase-1 gene expression

    Get PDF
    In embryonic stem (ES) cells, oxidative stress control is crucial for genomic stability, self-renewal, and cell differentiation. Heme oxygenase-1 (HO-1) is a key player of the antioxidant system and is also involved in stem cell differentiation and pluripotency acquisition. We found that the HO-1 gene is expressed in ES cells and induced after promoting differentiation. Moreover, downregulation of the pluripotency transcription factor (TF) OCT4 increased HO-1 mRNA levels in ES cells, and analysis of ChIP-seq public data revealed that this TF binds to the HO-1 gene locus in pluripotent cells. Finally, ectopic expression of OCT4 in heterologous systems repressed a reporter carrying the HO-1 gene promoter and the endogenous gene. Hence, this work highlights the connection between pluripotency and redox homeostasis.Fil: Petrone Parcero, María Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Toro, Ayelen Rayen. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Vazquez Echegaray, Camila. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Francia, Marcos Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Solari, Claudia María. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Cosentino, María Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Vazquez, Elba Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Guberman, Alejandra Sonia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentin

    Selection of non-Saccharomyces yeasts to be used in grape musts with high alcoholic potential: A strategy to obtain wine with reduced etanol content

    Get PDF
    Ethanol content of wine has increased over the last decades as consequence of searching phenolic maturity, requiring increased grape maturity. This may result in the production of wines with excessive alcohol levels (sometimes more than 15% (v/v)), sluggish and stuck fermentations and excessive volatile acidity. Many strategies to reduce ethanol in wines are being studied, and microbial methods have some additional advantages. However, because of the broad intra- and interspecies variability, new selection criteria should be included. Therefore, the goal of the present work was to design and evaluate a simple and integral procedure for non-Saccharomyces yeast selection. This strategy allowed selection of yeasts that presented successful implantation in grape must with high alcohol potential and their use in co-cultures could reduce the ethanol in wines. A total of 114 native non-Saccharomyces yeasts were assayed to determine their respiratory, fermentative and physiological characteristics of enological interest. Hanseniaspora uvarum BHu9 and BHu11, H. osmophila BHo51, Starmerella bacillaris BSb55 and Candida membranaefaciens BCm71 were selected as candidates to design co-culture startersEEA MendozaFil: Mestre Furlani, Maria Victoria. Universidad Nacional de San Juan. Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Maturano, Yolanda Paola. Universidad Nacional de San Juan. Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Combina, Mariana. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Mercado, Laura Analia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Mendoza; ArgentinaFil: Toro, Maria Eugenia. Universidad Nacional de San Juan. Instituto de Biotecnología; ArgentinaFil: Vazquez, Fabio. Universidad Nacional de San Juan. Instituto de Biotecnología; Argentin
    corecore