30 research outputs found

    Relationship and genetic structure among autoecious and heteroecious populations of Cronartium pini in northern Fennoscandia

    Get PDF
    Epidemics of Scots pine blister rust, caused by Cronartium pini, have become an increasing problem in northern Finland and Sweden. The biology of the rust fungus is complex, with two different life cycle forms that cannot be morphologically distinguished, and it is unclear to what extent the two forms contribute to the epidemics. Genetic structure of fourteen populations of C. pini were investigated in Fennoscandia. Distinction between the two life cycle forms, a heteroecious and an autoecious one, was made by determining zygosity using microsatellite markers, and AFLP markers were developed to analyse population genetic relationships. The results showed that the two life cycle forms are clearly differentiated and occur in separate populations. Within the life cycle forms, geographic differentiation was evident, probably due to restricted gene flow as well as connection with different alternating hosts. The host-alternating form dominated in the epidemic regions in northern Fennoscandia. Implications for silvicultural practices are discussed

    Genotype-by-environment interactions and the dynamic relationship between tree vitality and height in northern Pinus sylvestris

    Get PDF
    Tree health and growth rate must both be considered in Scots pine breeding for harsh areas such as northern Sweden. Univariate (UV) and multivariate (MV) multi-environment trial (MET) analyses of tree vitality (a measure of tree health) and height (a measure of growth rate) were conducted for four series of open-pollinated Scots pine progeny trials (20 trials total), to evaluate age trends, patterns, and drivers of genotype-by-environment interaction (G × E). The lowest standard errors were obtained for the MV MET analyses, indicating that MVanalyses are preferable to UVanalyses. By incorporating factor-analytic structures, the most complex data sets could be handled, suggesting that factor-analytic analyses are preferred for evaluation of forest progeny trials. We detected strong patterns of G × E for both tree vitality and height, and the driver of G × E was found mainly to be differences in degree day temperature sum, such that G × E was higher between trials with more contrasting temperature sums. The genetic correlations, between vitality and height within sites, were generally positive and were driven by the harshness of the trial; mild trials had lower genetic correlations than did harsh trials. The sign of the across-site genetic correlations between vitality and height changed from positive to negative in some cases, as the differences between the temperature sum of the trials increased. These findings support the hypothesis that tree height assessed in harsh environments with low survival is likely to reflect health and survival ability to a greater extent than growth capacity

    Patterns of Plant Biomass Partitioning Depend on Nitrogen Source

    Get PDF
    Nitrogen (N) availability is a strong determinant of plant biomass partitioning, but the role of different N sources in this process is unknown. Plants inhabiting low productivity ecosystems typically partition a large share of total biomass to belowground structures. In these systems, organic N may often dominate plant available N. With increasing productivity, plant biomass partitioning shifts to aboveground structures, along with a shift in available N to inorganic forms of N. We tested the hypothesis that the form of N taken up by plants is an important determinant of plant biomass partitioning by cultivating Arabidopsis thaliana on different N source mixtures. Plants grown on different N mixtures were similar in size, but those supplied with organic N displayed a significantly greater root fraction. 15N labelling suggested that, in this case, a larger share of absorbed organic N was retained in roots and split-root experiments suggested this may depend on a direct incorporation of absorbed amino acid N into roots. These results suggest the form of N acquired affects plant biomass partitioning and adds new information on the interaction between N and biomass partitioning in plants

    Tamm Review: On the nature of the nitrogen limitation to plant growth in Fennoscandian boreal forests

    Get PDF
    The supply of nitrogen commonly limits plant production in boreal forests and also affects species composition and ecosystem functions other than plant growth. These interrelations vary across the landscapes, with the highest N availability, plant growth and plant species richness in ground-water discharge areas (GDAs), typically in toe-slope positions, which receive solutes leaching from the much larger groundwater recharge areas (GRAs) uphill. Plant N sources include not only inorganic N, but, as heightened more recently, also organic N species. In general, also the ratio inorganic N over organic N sources increase down hillslopes. Here, we review recent evidence about the nature of the N limitation and its variations in Fennoscandian boreal forests and discuss its implications for forest ecology and management. The rate of litter decomposition has traditionally been seen as the determinant of the rate of N supply. However, while N-rich litter decomposes faster than N-poor litter initially, N-rich litter then decomposes more slowly, which means that the relation between N % of litter and its decomposability is complex. Moreover, in the lower part of the mor-layer, where the most superficial mycorrhizal roots first appear, and N availability matters for plants, the ratio of microbial N over total soil N is remarkably constant over the wide range in litter and soil C/N ratios of between 15 and 40 for N-rich and N-poor sites, respectively. Nitrogen-rich and -poor sites thus differ in the sizes of the total N pool and the microbial N pool, but not in the ratio between them. A more important difference is that the soil microbial N pool turns over faster in N-rich systems because the microbes are more limited by C, while microbes in N-poor systems are a stronger sink for available N. Furthermore, litter decomposition in the most superficial soil horizon (as studied by the so-called litter-bag method) is associated with a dominance of saprotrophic fungi, and absence of mycorrhizal fungi. The focal zone in the context of plant N supply in N-limited forests is further down the soil profile, where ectomycorrhizal (ECM) roots become abundant. Molecular evidence and stable isotope data indicate that in the typical N-poor boreal forests, nitrogen is retained in saprotrophic fungi, likely until they run out of energy (available C-compounds). Then, as heightened by recent research, ECM fungi, which are supplied by photosynthate from the trees, become the superior competitors for N. In N-poor boreal soils strong N retention by microorganisms keeps levels of available N very low. This is exacerbated by an increase in tree C allocation to mycorrhizal fungi (TCAM) relative to net primary production (NPP) with decreasing soil N supply, which causes ECM fungi to retain much of the available soil N for their own growth and transfer little to their tree hosts. The transfer of N through the ECM fungi, and not the rate of litter decomposition, is likely limiting the rate of tree N supply under such conditions. All but a few stress-tolerant less N-demanding plant species, like the ECM trees themselves and ericaceous dwarf shrubs, are excluded. With increasing N supply, a weakening of ECM symbiosis caused by the relative decline in TCAM contributes to shifts in soil microbial community composition from fungal dominance to bacterial dominance. Thus, bacteria, which are less C-demanding, but more likely to release N than fungi, take over. This, and the relatively high pH in GDA, allow autotrophic nitrifying bacteria to compete successfully for the NH4+ released by C-limited organisms and causes the N cycle to open up with leaching of nitrate (NO3−) and gaseous N losses through denitrification. These N-rich conditions allow species-rich communities of N-demanding plant species. Meanwhile, ECM fungi have a smaller biomass, are supplied with N in excess of their demand and will export more N to their host trees. Hence, the gradient from low to high N supply is characterized by profound variations in plant and soil microbial physiologies, especially their relations to the C-to-N supply ratio. We propose how interactions among functional groups can be understood and modelled (the plant-microbe carbon-nitrogen model). With regard to forest management these perspectives explain why the creation of larger tree-free gaps favors the regeneration of tree seedlings under N-limited conditions through reduced belowground competition for N, and why such gaps are less important under high N supply (but when light might be limiting). We also discuss perspectives on the relations between N supply, biodiversity, and eutrophication of boreal forests from N deposition or forest fertilization

    Genetic expression of Scots pine growth and survival in varying environments

    Get PDF
    The aim of the studies underlying this thesis was to quantify the genetic variability of important traits used for ranking candidate trees in northern Swedish Scots pine (Pinus sylvestris L.) breeding populations, with special focus on growth and survival and the genetic association between these traits. The thesis reports studies based on simulated data, field data from 28 progeny trials, and early test data from four artificial freezing experiments. The field and freezing experiments comprised half-sib progenies of Swedish and Finnish Scots pine plus-trees. The field trials (9–21 years old) were established in a wide range of environmental conditions. The traits analyzed were survival, tree height, spike knot frequency, branch diameter, branch angle, stem straightness, and susceptibility to infections of the fungi Phacidium infestans, Gremmeniella abietina, Melampsora pinitorqua and Lophodermella sulcigena. In the freezing experiments cold hardiness of 1-year-old seedlings was assessed after freezing in a climate chamber. In the simulation study the accuracy of single- and multiple-trait REML procedures was examined by studying estimates of within-individual genetic correlations between a categorical trait and a continuous trait with selectively deleted records. The average bias generated by multiple-trait REML was generally low, whereas single-trait REML systematically provided too moderate estimates. The variation among the correlations was generally high, showing that single-site estimates might be seriously misleading. The average within-site genetic correlation between tree height and field survival was generally positive, whereas corresponding between-site estimates were positive when the tree heights were assessed in harsh environments, but negative if the tree heights were assessed in mild environments (0.05 and –0.25, respectively). The genetic correlation between cold hardiness and field survival was on average positive (0.30), while the average correlation between cold hardiness and tree height was negative (–0.23). For the quality characters and susceptibility to infections of the pathogens, genetic associations with cold hardiness could not be verified. The most notable result was the contrasting correlation patterns across environments between tree height and field survival in the material sampled. The results show that tree heights from young trials located in harsh areas may reflect tree health and survival ability to a greater extent than growth capacity
    corecore