30 research outputs found

    Prevalence Rates and Risk Factors for Primary Open Angle Glaucoma in the Middle East

    Get PDF
    Glaucoma is a multifactorial disease and a leading cause of irreversible blindness worldwide. Current data has demonstrated the approximate distribution of primary openangle glaucoma (POAG) in patients of European, African, Hispanic, and Eastern Asian descent. However, a significant gap in the literature exists regarding the prevalence of POAG in Middle Eastern (ME) populations. Current studies estimate ME POAG prevalence based on a European model. Herein we screened 65 total publications on ME prevalence of POAG and specific risk factors using keywords: “glaucoma”, “prevalence”, “incidence”, “risk factor”, “Middle East”, “Mideast”, “Persian”, “Far East”, as well as searching by individual ME countries through PubMed, Embase, Ovid, Scopus, and Trip searches with additional reference list searches from relevant articles published up to and including March 1, 2021. Fifty qualifying records were included after 15 studies identified with low statistical power, confounding co-morbid ophthalmic diseases, and funding bias were excluded. Studies of ME glaucoma risk factors that identify chromosomes, familial trend, age/gender, socioeconomic status, lifestyle, intraocular pressure, vascular influences, optic disc hemorrhage, cup-to-disc ratio, blood pressure, obstructive sleep apnea, and diabetes mellitus were included in this systematic review. We conclude that the prevalence of POAG in the ME is likely higher than the prevalence rate that European models suggest, with ME specific risk factors likely playing a role. However, these findings are severely limited by the paucity of population-level data in the ME. Well-designed, longitudinal population-based studies with rigorous inclusion and exclusion criteria are ultimately needed to accurately assess the epidemiology and specific mechanistic risk factors of glaucoma in ME populations

    Combined heat and mass transfer and thermodynamic irreversibilities in the stagnation-point flow of Casson rheological fluid over a cylinder with catalytic reactions and inside a porous medium under local thermal nonequilibrium

    Get PDF
    The transport of heat and mass from the surface of a cylinder coated with a catalyst and subject to an impinging flow of a Casson rheological fluid is investigated. The cylinder features circumferentially non-uniform transpiration and is embedded inside a homogeneous porous medium. The non-equilibrium thermodynamics of the problem, including Soret and Dufour effects and local thermal non-equilibrium in the porous medium, are considered. Through the introduction of similarity variables, the governing equations are reduced to a set of non-linear ordinary differential equations which are subsequently solved numerically. This results in the prediction of hydrodynamic, temperature, concentration and entropy generation fields, as well as local and average Nusselt, Sherwood and Bejan numbers. It is shown that, for low values of the Casson parameter and thus strong non-Newtonian behaviour, the porous system has a significant tendency towards maintaining local thermal equilibrium. Furthermore, the results show a major reduction in the average Nusselt number during the transition from Newtonian to non-Newtonian fluid, while the reduction in the Sherwood number is less pronounced. It is also demonstrated that flow, thermal and mass transfer irreversibilities are significantly affected by the fluid’s strengthened non-Newtonian characteristics. The physical reasons for these behaviours are discussed by exploring the influence of the Casson parameter and other pertinent factors upon the thickness of thermal and concentration boundary layers. It is noted that this study is the first systematic investigation of the stagnation-point flow of Casson fluid in cylindrical porous media

    Morphological and physiological responses of in vitro-grown cucurbita sp. landraces seedlings under osmotic stress by mannitol and PEG

    Get PDF
    Screening and identification of tolerant genotypes using osmotic materials under in vitro culture could be rapid, easy, and even accurate. In this research, three Iranian landraces of Cucurbita sp. included Tanbal Ajili (Cucurbita maxima Duch.), Ajili Razan (Cucurbita pepo L.), and Balghabakhi (Cucurbita moschata Duch.) seeds were cultured in 1/4 MS medium. After germination, plantlets were transferred to MS media containing mannitol and PEG 6000. Mannitol and PEG at three concentrations of 0.1, 0.2, and 0.4 M and 0.009, 0.012, and 0.015 M, respectively, were added into the MS medium, while the MS medium without any adding was used as control. Our findings revealed that osmotic treatments significantly increased shoot and root dry weight (DW), malondialdehyde (MDA), and proline content, but significantly reduced coleoptile length, shoot and root fresh weight, and photosynthesis pigments content. Protein content, phenols, and flavonoids content, enzymatic and non-enzymatic antioxidant including ascorbate peroxidase (APX), guaiacol peroxidase (GPX), superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) activity, reduced ascorbate (AsA), reduced ascorbate/dehydroascorbic acid (AsA/DHA), reduced glutathione (GSH), dehydroascorbic acid (DHA) and oxidized glutathione (GSSG), and reduced glutathione/oxidized glutathione (GSH/GSSG) were significantly increased at moderate osmotic stress induced by mannitol and PEG. In contrast, the previous physiological parameters were significantly reduced at higher water deficit conditions. With respect to most attributes and concentrations, mannitol simulated osmotic stress better than PEG. Our results revealed that applying PEG and mannitol under in vitro conditions could be an efficient way to evaluate and screen cucurbit genotypes for future breeding programs.IGA/FT/2022/004; University of MaraghehUniversity of Maragheh, Iran; [IGA/FT/2022/004

    Polyethylene glycol and sorbitol-mediated in vitro screening for drought stress as an efficient and rapid tool to reach the tolerant cucumis melo l. genotypes

    Get PDF
    An efficient method to instantly assess drought-tolerant plants after germination is using osmoregulation in tissue culture media. In this study, the responses of three Iranian melon genotypes to sorbitol (0.1, 0.2, and 0.4 M) or polyethylene glycol (PEG) (0.009, 0.012, and 0.015 M) were evaluated as drought stress simulators in MS medium. 'Girke' (GIR), 'Ghobadloo' (GHO), and 'Toghermezi' (TOG) were the genotypes. GIR is reputed as a drought-tolerant genotype in Iran. The PEG or sorbitol decreased the coleoptile length, fresh weight, and photosynthetic pigments content while enhancing proline and malondialdehyde (MDA) contents. Protein content and antioxidant enzyme activity were utterly dependent on genotype, osmotic regulators, and their concentration. Coleoptile length, root and shoot fresh weight, root dry weight, proline and MDA content, and guaiacol peroxidase (GPX) activity can be used as indicators for in vitro screening of Cucumis melo L. genotypes. The results showed that sorbitol mimics drought stress better than PEG. Overall, our findings suggest that in vitro screening could be an accurate, rapid, and reliable methodology for evaluating and identifying drought-tolerant genotypes.IGA/FT/2023/003; University of MaraghehUniversity of Maragheh, Iran; TBU in Zlin [IGA/FT/2023/003

    Global prevalence of nosocomial infection: A systematic review and meta-analysis

    Get PDF
    Objectives: Hospital-acquired infections (HAIs) are significant problems as public health issues which need attention. Such infections are significant problems for society and healthcare organizations. This study aimed to carry out a systematic review and a meta-analysis to analyze the prevalence of HAIs globally.   Methods: We conducted a comprehensive search of electronic databases including EMBASE, Scopus, PubMed and Web of Science between 2000 and June 2021. We found 7031 articles. After removing the duplicates, 5430 studies were screened based on the titles/abstracts. Then, we systematically evaluated the full texts of the 1909 remaining studies and selected 400 records with 29,159,630 participants for meta-analysis. Random-effects model was used for the analysis, and heterogeneity analysis and publication bias test were conducted.   Results: The rate of universal HAIs was 0.14 percent. The rate of HAIs is increasing by 0.06 percent annually. The highest rate of HAIs was in the AFR, while the lowest prevalence were in AMR and WPR. Besides, AFR prevalence in central Africa is higher than in other parts of the world by 0.27 (95% CI, 0.22-0.34). Besides, E. coli infected patients more than other micro-organisms such as Coagulase-negative staphylococci, Staphylococcus spp. and Pseudomonas aeruginosa. In hospital wards, Transplant, and Neonatal wards and ICU had the highest rates. The prevalence of HAIs was higher in men than in women.   Conclusion: We identified several essential details about the rate of HAIs in various parts of the world. The HAIs rate and the most common micro-organism were different in various contexts. However, several essential gaps were also identified. The study findings can help hospital managers and health policy makers identify the reason for HAIs and apply effective control programs to implement different plans to reduce the HAIs rate and the financial costs of such infections and save resources

    Neuroretinitis Masquerader: Hypertrophic Pachymeningitis

    No full text
    Neuroretinitis is an optic neuropathy that classically presents with unilateral vision loss, optic disc edema, and a macular star. Hypertrophic Pachymeningitis (HP) is a rare inflammatory condition most commonly presenting with headache or neuro-ophthalmic findings. To our knowledge, this is the first reported case of HP initially presenting with unilateral optic nerve head edema and macular exudates

    The Effect of Dust Storm on Sea Surface Temperature in the Western Basin of Persian Gulf

    No full text
    A dust storm is one of the costliest and most destructive events in many desert regions. This research investigates the effect of dust storm on sea surface temperature (SST) in the western zone of the Persian Gulf, especially Bushehr Province and its beaches in the years 2008 and 2009. Therefore, some climate and sea parameters such as SST, salinity, air temperature, wind velocity and direction, evaporation, horizontal visibility, sunshine hours and radiation, simultaneously measured in a specific period of time, were analyzed by comparing each of them with satellite data. Sea surface temperature analysis in summer shows that the maximum SST in Persian Gulf along neighbor waters to Bushehr County and central regions in northern section of Persian Gulf is about 34–36 °C. The SST amplitude variation in these places in summer ranges from 28 to 34 °C and when there are dust phenomena, it is from 29.5 to 31 °C. The outcome of this study shows that the SST increases during dusting phenomena and this causes an increase in vapor and as a result a decrease in temperature occurs. On the other hand, vapor increase leads to a growth in the amount and layer of earth’s cloud cover and finally it causes an effective decrease in short-wave sunshine and the temperature and the vapor on surface decrease. As a result, the decrease in sea surface temperature terminates

    Morphological and Physiological Responses of In Vitro-Grown <i>Cucurbita</i> sp. Landraces Seedlings under Osmotic Stress by Mannitol and PEG

    No full text
    Screening and identification of tolerant genotypes using osmotic materials under in vitro culture could be rapid, easy, and even accurate. In this research, three Iranian landraces of Cucurbita sp. included Tanbal Ajili (Cucurbita maxima Duch.), Ajili Razan (Cucurbita pepo L.), and Balghabakhi (Cucurbita moschata Duch.) seeds were cultured in ÂĽ MS medium. After germination, plantlets were transferred to MS media containing mannitol and PEG 6000. Mannitol and PEG at three concentrations of 0.1, 0.2, and 0.4 M and 0.009, 0.012, and 0.015 M, respectively, were added into the MS medium, while the MS medium without any adding was used as control. Our findings revealed that osmotic treatments significantly increased shoot and root dry weight (DW), malondialdehyde (MDA), and proline content, but significantly reduced coleoptile length, shoot and root fresh weight, and photosynthesis pigments content. Protein content, phenols, and flavonoids content, enzymatic and non-enzymatic antioxidant including ascorbate peroxidase (APX), guaiacol peroxidase (GPX), superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) activity, reduced ascorbate (AsA), reduced ascorbate/dehydroascorbic acid (AsA/DHA), reduced glutathione (GSH), dehydroascorbic acid (DHA) and oxidized glutathione (GSSG), and reduced glutathione/oxidized glutathione (GSH/GSSG) were significantly increased at moderate osmotic stress induced by mannitol and PEG. In contrast, the previous physiological parameters were significantly reduced at higher water deficit conditions. With respect to most attributes and concentrations, mannitol simulated osmotic stress better than PEG. Our results revealed that applying PEG and mannitol under in vitro conditions could be an efficient way to evaluate and screen cucurbit genotypes for future breeding programs

    Morphological and Physiological Responses of In Vitro-Grown Cucurbita sp. Landraces Seedlings under Osmotic Stress by Mannitol and PEG

    No full text
    Screening and identification of tolerant genotypes using osmotic materials under in vitro culture could be rapid, easy, and even accurate. In this research, three Iranian landraces of Cucurbita sp. included Tanbal Ajili (Cucurbita maxima Duch.), Ajili Razan (Cucurbita pepo L.), and Balghabakhi (Cucurbita moschata Duch.) seeds were cultured in &frac14; MS medium. After germination, plantlets were transferred to MS media containing mannitol and PEG 6000. Mannitol and PEG at three concentrations of 0.1, 0.2, and 0.4 M and 0.009, 0.012, and 0.015 M, respectively, were added into the MS medium, while the MS medium without any adding was used as control. Our findings revealed that osmotic treatments significantly increased shoot and root dry weight (DW), malondialdehyde (MDA), and proline content, but significantly reduced coleoptile length, shoot and root fresh weight, and photosynthesis pigments content. Protein content, phenols, and flavonoids content, enzymatic and non-enzymatic antioxidant including ascorbate peroxidase (APX), guaiacol peroxidase (GPX), superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) activity, reduced ascorbate (AsA), reduced ascorbate/dehydroascorbic acid (AsA/DHA), reduced glutathione (GSH), dehydroascorbic acid (DHA) and oxidized glutathione (GSSG), and reduced glutathione/oxidized glutathione (GSH/GSSG) were significantly increased at moderate osmotic stress induced by mannitol and PEG. In contrast, the previous physiological parameters were significantly reduced at higher water deficit conditions. With respect to most attributes and concentrations, mannitol simulated osmotic stress better than PEG. Our results revealed that applying PEG and mannitol under in vitro conditions could be an efficient way to evaluate and screen cucurbit genotypes for future breeding programs
    corecore