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Abstract 

The transport of heat and mass from the surface of a cylinder coated with a catalyst and subject to an impinging 

flow of a Casson rheological fluid is investigated. The cylinder features circumferentially non-uniform 

transpiration and is embedded inside a homogenous porous medium. The non-equilibrium thermodynamics of the 

problem, including Soret and Dufour effects and local thermal non-equilibrium in the porous medium, are 

considered. Through the introduction of similarity variables, the governing equations are reduced to a set of non-

linear ordinary differential equations which are subsequently solved numerically. This results in the prediction of 

hydrodynamic, temperature, concentration and entropy generation fields, as well as local and average Nusselt, 

Sherwood and Bejan numbers. It is shown that, for low values of the Casson parameter and thus strong non-

Newtonian behaviour, the porous system has a significant tendency towards maintaining local thermal 

equilibrium. Furthermore, the results show a major reduction in the average Nusselt number during the transition 

from Newtonian to non-Newtonian fluid, while the reduction in the Sherwood number is less pronounced. It is 

also demonstrated that flow, thermal and mass transfer irreversibilities are significantly affected by the fluid’s 

strengthened non-Newtonian characteristics. The physical reasons for these behaviours are discussed by exploring 

the influence of the Casson parameter and other pertinent factors upon the thickness of thermal and concentration 

boundary layers. It is noted that this study is the first systematic investigation of the stagnation-point flow of 

Casson fluid in cylindrical porous media.  

Keywords: Casson fluid, Stagnation-point flow; Local thermal non-equilibrium, Entropy generation, Similarity 

solution, Soret effect, Dufour effect.  
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Nomenclature  

𝑎 cylinder radius 
�́̇�
́́
𝐷 

rate of entropy generation due to mass 

transfer 

𝑎𝑠𝑓 interfacial area per unit volume of porous 

media 
�́̇�
́́
0 

characteristic entropy generation rate 

𝐵𝑒 Bejan number 
�́̇�
́́
𝑔𝑒𝑛  

rate of entropy generation 

𝐵𝑖 Biot number 𝐵𝑖 =
ℎ𝑠𝑓𝑎𝑠𝑓.𝑎

4𝑘𝑓
 𝑆𝑟 Soret number  𝑆𝑟 =

𝐷.𝑘𝑇

𝑇∞

(𝑇𝑤−𝑇∞)

𝐶∞.𝛼
 

𝐵𝑟 Brinkman number 𝐵𝑟 =  
𝜇𝑓(�̅�.𝑎)2

𝑘𝑓(𝑇𝑤−𝑇∞)
 𝑆ℎ Sherwood number 

𝐶 fluid concentration 𝑇 temperature 

𝐶𝑝 specific heat at constant pressure 𝑇𝑚 mean fluid temperature 

𝐶𝑠 concentration susceptibility 𝑢 , 𝑤 velocity components along (𝑟 − 𝜑 − 𝑧)-

axis 

𝐷 molecular diffusion coefficient 𝑈0(𝜑) transpiration 

𝐷𝑓 Dufour number 𝐷𝑓 =
𝐷.𝑘𝑇

𝐶𝑠.𝐶𝑝

𝐶∞

(𝑇𝑤−𝑇∞)𝜐
 𝑧 axial coordinate 

𝑓(𝜂, 𝜑) function related to u-component of velocity Greek symbols 

ℎ heat transfer coefficient 𝛼 thermal diffusivity 

ℎ𝑠𝑓
 fluid-to-solid heat transfer coefficient 𝛽 Casson fluid parameter 

𝑘 thermal conductivity 𝛾 modified conductivity ratio  𝛾 =
𝑘𝑓

𝑘𝑠
 

�̅� freestream strain rate 𝛾∗ Damköhler number 𝛾∗ =
𝑘𝑅.𝑎

2𝐷

1

𝐶∞
 

𝑘𝑚 mass transfer coefficient 𝛿 constant parameter  𝛿 =
𝑅𝑔.𝐷.𝐶∞

𝑘𝑓
 

𝑘𝑅 Kinetic constant 휀 porosity 

𝑘𝑇 thermal diffusion ratio 𝜂 similarity variable, 𝜂 = (
𝑟

𝑎
)

2

 

𝑘1 permeability of the porous medium 𝜃(𝜂, 𝜑) non-dimensional temperature 

𝑁𝐺𝑇 entropy generation number due to heat 

transfer 𝑁𝐺𝑇 =
�́̇�
́́
𝑇

�́̇�
́́
0

 

Λ dimensionless temperature difference 

 Λ =
(𝑇𝑤−𝑇∞)

𝑇∞
 

𝑁𝐺𝐹 entropy generation number due to fluid 

friction 𝑁𝐺𝐹 =
�́̇�
́́
𝑓

�́̇�
́́
0

 

𝜆 Permeability parameter, 𝜆 =
𝑎2

4𝑘1
 

𝑁𝐺𝐷 entropy generation number due to mass 

transfer 𝑁𝐺𝐷 =
�́̇�
́́
𝐷

�́̇�
́́
0

 

𝜇 dynamic viscosity 

𝑁𝑢 Nusselt number 𝜇𝐵 plastic dynamic viscosity of the 

considered fluid 

𝑝 fluid pressure 𝜐 kinematic viscosity 
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𝑃 non-dimensional fluid pressure 𝜋 component of deformation rate 

𝑃0 initial fluid pressure 𝜋𝑐 critical value of deformation rate 

𝑃𝑟 Prandtl number 𝜌 fluid density 

𝑝𝑦 yield stress of the fluid 𝜏 component of the stress tensor 

𝑞𝑚 mass flow at the wall 𝜎 shear stress 

𝑞𝑤 heat flow at the wall 𝜙 non-dimensional fluid concentration 

𝑟 radial coordinate 𝜑 angular coordinate 

𝑅𝑒 Freestream Reynolds number  𝑅𝑒 =
�̅�.𝑎2

2𝜐
  

Subscripts 
𝑅𝑔 gas constant 

𝑆(𝜑) transpiration rate function  𝑆(𝜑) =
𝑈0(𝜑)

�̅�.𝑎
 𝑤 condition on the surface of the cylinder 

𝑆𝑐 Schmidt number 𝑆𝑐 =
𝜐

𝐷
 ∞ far field 

�́̇�
́́
𝑓 

rate of entropy generation due to fluid friction 𝑓 fluid 

�́̇�
́́
𝑇 

rate of entropy generation due to heat transfer 𝑠 solid 

 

1. Introduction 

 The flow of non-Newtonian fluid through porous media has recently been highlighted as an area with a substantial 

need for further exploration [1]. This is primarily due to the wide and increasing applications of non-Newtonian 

fluids in a number of technological fields [2]. It also stems from scientific curiosity due to the rich behaviour of 

non-Newtonian fluids, which are still not fully understood [3]. Stagnation-point flows in porous media are also of 

high importance, particularly in the context of heat and mass transfer. This problem has already been investigated 

extensively, while major emphasis has been placed on the heat transfer process, see e.g. [4, 5, 6]. However, the 

specific problems of the impinging external flow of a non-Newtonian fluid upon stretching surfaces and porous 

inserts are relatively new and still significantly unexplored. A survey of literature in this area is presented below 

in which, for reasons of brevity, only studies specifically of Casson fluid are discussed.  

        The problem of the stagnation-point flow and heat transfer of Casson fluid over a stretching sheet was 

investigated by Mustafa et al. [7]. Their study was concerned with the heat transfer characteristics of such a 

configuration. These authors used similarity parameters to reduce the governing equations to coupled ordinary 

differential equations, and subsequently applied homotopy analysis7. Hayat et al [8] studied the Soret and Dufour 

effects on magnetohydrodynamic flow of Casson fluid on a stretching plate. It was demonstrated that decreases 

in the Casson parameter led to reductions in temperature and concentration. Malik et al. [9].  carried out a study 

on the boundary layer flow of a Casson nanofluid over a radially stretching cylinder. Nadeem et al. [10] presented 

the boundary layer flow of a Casson nanofluid flow over a stretching plate. Magnetohydrodynamic effects were 

included and three-dimensional equations were solved numerically. Comparing the Newtonian and non-

Newtonian fluids, an increase of about 5% was reported in the value of the Nusselt number in the case of Casson 

fluid [10]. Entropy generation in the flow of Casson fluid in a boundary layer was first modelled by Abolbashari 

et al. [11]. Abolbashari et al. showed that increasing the Casson fluid parameter led to a reduction in fluid velocity. 

Furthermore, it caused a slight enhancement in the thickness of the thermal and concentration boundary layers 

[11]. Moreover, decreasing the Casson parameter, and thus strengthening the non-Newtonian characteristics of 
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the fluid, intensified the generation of entropy within the system. The unsteady natural convection of Casson fluid 

passing through a vertical porous insert subject to constant wall temperature was investigated by Khalid et al. 

[12], who showed that the Nusselt number decreased as time elapsed.  

         Abbas et al. discussed the combined heat and mass transfer in an unsteady, chemically reactive boundary 

layer flow over a stretching surface [13]. A linear model of thermal radiation together with temperature- dependent 

Arrhenius chemical kinetics were added to the unsteady, two-dimensional equations of mass, momentum, energy 

and chemical species transport. It was observed that increases in the Casson fluid parameter (approaching 

Newtonian fluid) led to decreases in the thickness of the momentum, thermal and concentration boundary layers 

[13]. It was also shown that the thickness of the concentration boundary layer decreased with the augmentation of 

the chemical reaction rate and increasing the temperature difference between the wall and free fluid13. In a 

theoretical investigation, Hakeem et al. analysed the boundary layer flow of Casson fluid in the presence of 

magnetic effects and thermal radiation [14]. The authors argued that skin friction increases with the Casson and 

velocity slip parameters and that these parameters reduce the Nusselt number and increase wall temperature. Rauf 

et al. [15] investigated the three-dimensional double-diffusive convection of the chemically reactive boundary 

layer flow of Casson fluid with magnetic effects over a stretching surface. This study revealed that enhancements 

of the Casson parameter increased the shear stress induced on the surface [15].     

          In recent work, Khan et al. [16] considered the boundary layer flow of a Casson fluid over a stretching 

surface with a catalytic chemical reaction on the surface together with a homogenous autocatalytic reaction within 

the fluid. The heat of reaction and magnetohydrodynamic effects were also added to this analysis. Using a 

similarity solution procedure, it was shown that the surface drag force increased with larger magnetic intensity, 

while the heat transfer rate decayed at higher values of the Prandtl number [16]. In an attempt to develop a model 

for the motion of dusty fluids, Ramesh et al. [17] investigated the forced convection of Casson fluid on the surface 

a stretching cylinder. The authors also added the effects of a secondary particle phase, an imposed magnetic field 

and thermal radiation. It was demonstrated that an increase in the Casson parameter led to the reduction of the 

temperature in the two phases investigated. Mixed convection in an oblique stagnation flow of Casson fluid was 

recently investigated by Rana et al. [18]. This work included partial slip as well as heterogenous and homogenous 

chemical reactions which provide internal heating. Amongst other findings, Rana et al. showed that increases in 

the slip parameter reduced the concentration of chemical species on the surface [18]. Most recently, the 

magnetohydrodynamics of Casson fluid flow over a rotating disk with the inclusion of chemical reactions, 

exothermicity and thermal diffusion of chemical species have been analysed by Rehman et al [19]. 

        A few prominent points follow from the above review of the literature. Firstly, a vast majority of existing 

studies of the stagnation flow of Casson fluid are concerned with flat surfaces in the form of stretching surfaces 

or rotating disks. Investigations of Casson fluid flows over curved surfaces are much scarcer. Secondly, with the 

exception of the study of Khalid et al. [12], there is no work on stagnation-point flow over surfaces covered with 

porous media. Furthermore, the limited number of studies on Casson fluid flow in porous media have considered 

local thermal equilibrium and hence the influence of non-Newtonian behaviour upon the local thermodynamic 

equilibrium has been totally ignored. Thirdly, the effects of surface transpiration have hardly been studied at all 

in the context of the stagnation-point flow of Casson fluid. Finally, the generation of entropy in these flow 

configurations, and in particular the influence of non-Newtonian behaviour on the irreversibilities encountered, 

are still almost completely unexplored. To address these shortcomings, the current study considers a stagnation-
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point flow of Casson fluid over a cylinder covered by a catalytic coating, featuring circumferentially non-uniform 

transpiration and embedded in a porous medium. Analyses of combined heat and mass transfer as well as entropy 

generation are conducted. An attempt is then made to explain the pertinent physical processes.      

2. Theoretical and numerical methods 

2.1. Problem configuration, assumptions and governing equations 

Figure 1 shows a schematic view of the problem under investigation. This includes a cylinder with radius a centred 

at r=0 covered by a porous medium. The external surface of the cylinder may include uniform or non-uniform 

fluid transpiration in the form of blowing and suction, with prescribed circumferential distributions, and with the 

temperature of the external surface of the cylinder kept constant. An external axisymmetric radial stagnation-point 

flow of a non-Newtonian fluid (Casson fluid) with strain rate of k  impinges on the cylinder. Due to the non-

uniformity of transpiration, the flow configuration around the cylinder could be non-axisymmetric. The 

assumptions made throughout this work are as follows:  

 The flow is steady, incompressible and laminar and the cylinder is assumed to be infinitely long. 

 A zeroth order, temperature-independent, heterogenous chemical reaction [20, 21] takes place on the 

external surface of the cylinder. 

 The thermal diffusion of chemical species (Soret effect) and transport of energy through mass diffusion 

(Dufour effect) are considered [22, 23].  

 The porous medium is homogenous, isotropic and at local thermal non-equilibrium. 

 The radiation heat transfer and viscous dissipation of kinetic energy of the flow are ignored. 

 Physical properties such as porosity, specific heat, density and thermal conductivity are assumed to be 

constant and hence thermal dispersion effects are negligible. 

 A moderate range of the pore-scale Reynolds number is considered in the porous medium, and hence 

non-linear effects in momentum transfer are negligibly small. 

The rheological equation for an isotopical, incompressible flow of a Casson fluid is [24]: 

𝜏𝑖𝑗 = {

2 (𝜇𝐵 +
𝑝𝑦

√2𝜋
) 𝑒𝑖𝑗                𝜋 > 𝜋𝑐

2 (𝜇𝐵 +
𝑝𝑦

√2𝜋𝑐
) 𝑒𝑖𝑗                𝜋 < 𝜋𝑐

 

 

 

(1) 

 

Here, 𝜏𝑖𝑗 is the (i, j)-th component of the stress tensor, 𝜋𝑖𝑗 = 𝑒𝑖𝑗𝑒𝑖𝑗and 𝑒𝑖𝑗 are the (i, j)-th component of the 

deformation rate, 𝜋 is the product of the component of deformation rate with itself, 𝜋𝑐 is a critical value of this 

product based on the non-Newtonian model, 𝜇𝐵 is the plastic dynamic viscosity of the considered fluid and 𝑝𝑦 is 

the yield stress of the fluid. Therefore, if the applied shear stress is less than the yield stress, the non-Newtonian 

fluid behaves like a solid, whereas if it is greater then it starts to move. A two-dimensional Darcy-Brinkman model 

of transport of momentum [5, 25-31] together with the two-equation model of the transport of thermal energy in 

porous media [32, 33] are used in this work. The governing equations and boundary conditions, in the cylindrical 

coordinate system shown in Fig. 1, can be summarised as follows. 

The continuity of mass reads, 

𝜕(𝑟𝑢)

𝜕𝑟
+ 𝑟

𝜕𝑤

𝜕𝑧
= 0 

(2) 

 

The transport of momentum in the radial direction is given the Darcy-Brinkman model:  
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𝜌

휀2
(𝑢

𝜕𝑢

𝜕𝑟
+ 𝑤

𝜕𝑢

𝜕𝑧
) =  −

𝜕𝑝

𝜕𝑟
+

𝜇

휀
(1 +

1

𝛽
) (

𝜕2𝑢

𝜕𝑟2
+

1

𝑟

𝜕𝑢

𝜕𝑟
−

𝑢

𝑟2
+

1

𝑟2

𝜕2𝑢

𝜕𝜑2
+

𝜕2𝑢

𝜕𝑧2
 ) −

𝜇

𝑘1

(1 +
1

𝛽
) 𝑢. 

(3) 

 

Similarly, the transport of momentum in the axial direction takes the form of: 

𝜌

휀2
(𝑢

𝜕𝑤

𝜕𝑟
+ 𝑤

𝜕𝑤

𝜕𝑧
) =  −

𝜕𝑝

𝜕𝑧
+

𝜇

휀
(1 +

1

𝛽
) (

𝜕2𝑤

𝜕𝑟2
+

1

𝑟

𝜕𝑤

𝜕𝑟
+

1

𝑟2

𝜕2𝑤

𝜕𝜑2
+

𝜕2𝑤

𝜕𝑧2
 ) −

𝜇

𝑘1

(1 +
1

𝛽
) 𝑤 

(4) 

 

The transport of thermal energy in the fluid phase is expressed by [22, 23, 33], 

𝑢
𝜕𝑇𝑓

𝜕𝑟
+ 𝑤

𝜕𝑇𝑓

𝜕𝑧
= 𝛼𝑓 (

𝜕2𝑇𝑓

𝜕𝑟2
+

1

𝑟

𝜕𝑇𝑓

𝜕𝑟
+

1

𝑟2

𝜕2𝑇𝑓

𝜕𝜑2
+

𝜕2𝑇𝑓

𝜕𝑧2
 ) + ℎ𝑠𝑓 . 𝑎𝑠𝑓(𝑇𝑠 − 𝑇𝑓)

+
𝐷 𝑘𝑇

𝐶𝑠 . 𝐶𝑝

(
𝜕2𝐶

𝜕𝑟2
+

1

𝑟

𝜕𝐶

𝜕𝑟
+

1

𝑟2

𝜕2𝐶

𝜕𝜑2
+

𝜕2𝐶

𝜕𝑧2
 ), 

(5) 

 

while the transport of thermal energy in the solid phase is written as [32, 33]: 

𝑘𝑠 (
𝜕2𝑇𝑠

𝜕𝑟2
+

1

𝑟

𝜕𝑇𝑠

𝜕𝑟
+

1

𝑟2

𝜕2𝑇𝑠

𝜕𝜑2
+

𝜕2𝑇𝑠

𝜕𝑧2
 ) − ℎ𝑠𝑓  . 𝑎𝑠𝑓(𝑇𝑠 − 𝑇𝑓) = 0. 

(6) 

 

The transport of the chemical species is governed by the following advective-diffusive model which takes into 

account contributions from the Soret and Dufour effects in addition to the Fickian diffusion of species [21, 22]: 

 

𝑢
𝜕𝐶

𝜕𝑟
+ 𝑤

𝜕𝐶

𝜕𝑧
= 𝐷 (

𝜕2𝐶

𝜕𝑟2
+

1

𝑟

𝜕𝐶

𝜕𝑟
+

1

𝑟2

𝜕2𝐶

𝜕𝜑2
+

𝜕2𝐶

𝜕𝑧2
 ) +

𝐷 𝑘𝑇

 𝑇𝑚

(
𝜕2𝑇𝑓

𝜕𝑟2
+

1

𝑟

𝜕𝑇𝑓

𝜕𝑟
+

1

𝑟2

𝜕2𝑇𝑓

𝜕𝜑2
+

𝜕2𝑇𝑓

𝜕𝑧2
 ). 

(7) 

 

 

As also defined in the nomenclature, in Eqs. (2-7) 𝑝,  𝜌, 𝜇, 𝑇, 𝛼𝑓, 𝑘𝑇, 𝛽 = 𝜇𝐵
√2𝜋𝐶

𝑃𝑦
, are the pressure, density, 

kinematic viscosity of the fluid, temperature, thermal diffusivity of the fluid, thermal diffusion ratio, Casson fluid 

parameter, respectively. Further, 휀 and 𝑘1 represent porosity and permeability of the porous medium, respectively. 

The flow characteristics are evaluated inside the boundary layer and in the vicinity of the flow impingement point. 

In Eq. (5-7) the subscripts “f” and “s”, refer to fluid and solid properties, respectively. 

       The velocity boundary conditions for the momentum Eqs. (3,4) are as follows.  

𝑟 = 𝑎:     𝑤 = 0 ,    𝑢 = −𝑈0(𝜑), (8) 

 

𝑟 = ∞:     𝑤 = 2�̅�𝑧 ,   𝑢 = −�̅� (𝑟 −
𝑎2

𝑟
). 

(9) 

 

Further, the two boundary conditions with respect to 𝜑 (angular coordinate) are expressed as: 

𝑢(𝑟, 0) = 𝑢(𝑟, 2𝜋) ,   
𝜕𝑢(𝑟, 0)

𝜕𝜑
=

𝜕𝑢(𝑟, 2𝜋)

𝜕𝜑
. 

(10) 

 

Equation 8 represents the no-slip condition on the external surface of the cylinder. Furthermore, Eq. 9 indicates 

that the viscous flow solution approaches, in a manner analogous to the Hiemenz flow, the potential flow solution 

as 𝑟 → ∞  [26, 27, 30, 31, 34]. This can be verified by starting from the continuity equation in the following, 

−
1

𝑟

𝜕(𝑟𝑢)

𝜕𝑟
=

𝜕𝑤

𝜕𝑧
 Constant = 2�̅�𝑧 and integrating in the 𝑟 and 𝑧 directions with boundary conditions, 𝑤 = 0 when 

𝑧 = 0 and 𝑢 = −𝑈0(𝜑) when 𝑟 = 𝑎. 

      The boundary conditions for the transport of thermal energy Eqs. (5,6) is given by 

𝑟 = 𝑎:     𝑇𝑓 = 𝑇𝑤 = Constant,  
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               𝑇𝑠 = 𝑇𝑤 = Constant, 

𝑟 = ∞:     𝑇𝑓 = 𝑇∞, 

               𝑇𝑠 = 𝑇∞, 

(11) 

and the two boundary conditions with respect to the angular coordinate, 𝜑 are 

𝑇𝑓(𝑟, 0) = 𝑇𝑓(𝑟, 2𝜋) ,   𝑇𝑠(𝑟, 0) = 𝑇𝑠(𝑟, 2𝜋),  

 

𝜕𝑇𝑓(𝑟, 0)

𝜕𝜑
=

𝜕𝑇𝑓(𝑟, 2𝜋)

𝜕𝜑
 ,     

𝜕𝑇𝑠(𝑟, 0)

𝜕𝜑
=

𝜕𝑇𝑠(𝑟, 2𝜋)

𝜕𝜑
, 

 

(12) 

 

in which 𝑇𝑤 is the cylinder surface temperature and 𝑇∞ is the free-stream temperature. 

      The boundary conditions for the transport of chemical species Eq. (7) are as follows 

𝑟 = 𝑎:     
𝜕𝐶

𝜕𝑟
= −

𝑘𝑅

𝐷
= Constant, 

𝑟 = ∞:     𝐶 → 𝐶∞, 

(13) 

in which, 𝐷 is the molecular diffusion coefficient and 𝑘𝑅 is the kinetic constant pertinent to the heterogenous 

chemical reaction, and the two boundary conditions with respect to the angular coordinate, 𝜑 are 

𝐶(𝑟, 0) = 𝐶(𝑟, 2𝜋), 

𝜕𝐶(𝑟, 0)

𝜕𝜑
=

𝜕𝐶(𝑟, 2𝜋)

𝜕𝜑
, 

(14) 

 

in which 𝐶𝑤 is the cylinder surface concentration and 𝐶∞ is the free-stream concentration. 

 

2.2 Self-similar solutions 

A reduction of the governing Eqs. (2-7) is obtained by applying the following similarity transformations: 

𝑢 = −
�̅�.𝑎

√𝜂
𝑓(𝜂, 𝜑) ,          𝑤 = [2�̅��́�(𝜂, 𝜑)]𝑧 ,          𝑝 = 𝜌𝑓�̅�2𝑎2𝑃,  (15) 

 

where 𝜂 = (
𝑟

𝑎
)

2

 the dimensionless radial variable. Transformation 15 satisfies Eq. 2 automatically and their 

substitution into Eqs. 3 and 4 leads to the following system of coupled differential equations: 

 

휀. (1 +
1

𝛽
) [𝜂�́́�

́
+ �́́� +

1

4𝜂

𝜕2�́�

𝜕𝜑2
] + 𝑅𝑒 [1 + 𝑓�́� − (�́�)

2
] + 휀2. 𝜆. (1 +

1

𝛽
) [1 − �́�] = 0 

(16) 

 

𝑃 − 𝑃0 = −
1

2휀2
(

𝑓2

𝜂
) −

1

휀
(1 +

1

𝛽
) [(

�́�

𝑅𝑒
−

1

4𝑅𝑒
∫

1

𝜂2

𝜕2𝑓

𝜕𝜑2
𝑑𝜂

𝜂

1

) +
𝜆

𝑅𝑒
∫

𝑓

𝜂
𝑑𝜂

𝜂

1

]

− 2 [
1

휀2
+

𝜆

𝑅𝑒
(1 +

1

𝛽
)] (

𝑧

𝑎
)

2

, 

(17) 

 

in which 𝑅𝑒 =
�̅�.𝑎2

2𝜐
 is the freestream Reynolds number, 𝜆 =

𝑎2

4𝑘1
 is referred to as permeability parameter and prime 

indicates differentiation with respect to . Considering Eqs. (8), (9), and (10), the boundary conditions for Eqs. 

(16) and (17) reduce to: 

𝜂 = 1:          �́�(1, 𝜑) = 0 ,          𝑓(1, 𝜑) = 𝑆(𝜑), (18) 

 

𝜂 → ∞:          �́�(∞, 𝜑) = 0, (19) 
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𝑓(𝜂, 0) = 𝑓(𝜂, 2𝜋) ,   
𝜕𝑓(𝜂, 0)

𝜕𝜑
=

𝜕𝑓(𝜂, 2𝜋)

𝜕𝜑
, 

(20) 

in which, 𝑆(𝜑) =
𝑈0(𝜑)

�̅�.𝑎
 is the transpiration rate function. It is noted that Eqs. 16 and 17 are the complete forms of 

Eqs. 9 and 11 in the study by Saleh & Rahimi [35]. To reduce the energy Eq. (4) to a dimensionless form, the 

following transformation is introduced, 

𝜃𝑓(𝜂, 𝜑) =
𝑇𝑓(𝜂, 𝜑) − 𝑇∞

𝑇𝑤 − 𝑇∞

. 
(21) 

 

The substitution of Eqs. 15 and 21 into Eq. 5 and ignoring the small dissipation terms yields: 

𝜂�́́�𝑓 + �́�𝑓 +
1

4𝜂

𝜕2𝜃𝑓

𝜕𝜑2
+ 𝑅𝑒. 𝑃𝑟. (𝑓. �́�𝑓) + 𝐵𝑖(𝜃𝑠 − 𝜃𝑓) + 𝐷𝑓. 𝑃𝑟 [𝜂�́́� + �́� +

1

4𝜂

𝜕2𝜙

𝜕𝜑2
] = 0, 

(22) 

 

in which, 𝐵𝑖 =
ℎ𝑠𝑓𝑎𝑠𝑓.𝑎2

4𝑘𝑓
 and 𝐷𝑓 =

𝐷.𝑘𝑇

𝐶𝑠.𝐶𝑝

𝐶∞

(𝑇𝑤−𝑇∞)𝜐
 are the Biot and Dufour numbers, respectively. Further, the 

boundary conditions reduce to: 

𝜂 = 1:          𝜃𝑓(1, 𝜑) = 1, 

𝜂 → ∞:          𝜃𝑓(∞, 𝜑) = 0, 

(23a) 

(23b) 

 

𝜃𝑓(𝜂, 0) = 𝜃𝑓(𝜂, 2𝜋) ,   
𝜕𝜃𝑓(𝜂, 0)

𝜕𝜑
=

𝜕𝜃𝑓(𝜂, 2𝜋)

𝜕𝜑
. 

(24a,b) 

 

Substitution of Eqs. (15) and (21) into Eq. (6) yields 

𝜂�́́�𝑠 + �́�𝑠 +
1

4𝜂

𝜕2𝜃𝑠

𝜕𝜑2
− 𝐵𝑖. 𝛾(𝜃𝑠 − 𝜃𝑓) = 0, 

(25) 

 

in which, 𝛾 =
𝑘𝑓

𝑘𝑠
 is the modified conductivity ratio, and the boundary conditions reduce to: 

𝜂 = 1:          𝜃𝑠(1, 𝜑) = 1, 

𝜂 → ∞:          𝜃𝑠(∞, 𝜑) = 0, 

(26a) 

(26b) 

 

𝜃𝑠(𝜂, 0) = 𝜃𝑠(𝜂, 2𝜋) ,   
𝜕𝜃𝑠(𝜂, 0)

𝜕𝜑
=

𝜕𝜃𝑠(𝜂, 2𝜋)

𝜕𝜑
. 

(27a,b) 

 

To transform the mass transfer Eq. (7) into a dimensionless form, the following transformation is introduced: 

𝜙(𝜂, 𝜑) =
𝐶(𝜂, 𝜑) − 𝐶∞

𝐶∞

. 
(28) 

 

After the substitution of Eqs. 15 and 21 into Eq. 7 and some algebraic manipulation, the following differential 

equation results:. 

𝑃𝑟 [𝜂�́́� + �́� +
1

4𝜂

𝜕2𝜙

𝜕𝜑2
] + 𝑆𝑟. 𝑆𝑐 [𝜂�́́�𝑓 + �́�𝑓 +

1

4𝜂

𝜕2𝜃𝑓

𝜕𝜑2
] + 𝑅𝑒. 𝑃𝑟. 𝑆𝑐(𝑓. �́�) = 0, 

(29) 

 

in which, 𝑆𝑐 =
𝜐

𝐷
 is the Schmidt number and 𝑆𝑟 =

𝐷.𝑘𝑇

𝑇𝑚

(𝑇𝑤−𝑇∞)

𝐶∞.𝛼
 is the Soret number, while the boundary conditions 

reduce to: 

𝜂 = 1:          �́�(1, 𝜑) = −𝛾∗, 

𝜂 → ∞:        𝜙(∞, 𝜑) = 0, 

(30a) 

(30b) 

in which, 𝛾∗ =
𝑘𝑅.𝑎

2𝐷

1

𝐶∞
 is the Damköhler number 
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𝜙(𝜂, 0) = 𝜙(𝜂, 2𝜋) ,   
𝜕𝜙(𝜂, 0)

𝜕𝜑
=

𝜕𝜙(𝜂, 2𝜋)

𝜕𝜑
. 

(31a,b) 

 

It is recalled here that Eq. 22 is the complete form of Saleh & Rahimi’s Equation 14 [35]. Eqs. 16, 22, 25 and 29, 

together with the boundary conditions in Eqs. 18-20, 23-24, 26-27, 30 and 31, are solved numerically using an 

implicit, iterative tri-diagonal finite-difference method similar to that discussed in previous work [36, 37] . 

 

2.3 Shear stress, Nusselt number and Sherwood number 

The shear-stress induced by the nanofluid flow on the external surface of the cylinder is given by:  

𝜎 = 𝜇 (1 +
1

𝛽
) [

𝜕𝑤

𝜕𝑟
]

𝑟=𝑎
, 

(32) 

 

where 𝜇 is the viscosity. Employing Eq. (15), a semi-similar solution for the shear stress on the surface of the 

cylinder can be developed. This reads: 

𝜎 = 𝜇 (1 +
1

𝛽
)

2

𝑎
[2�̅�𝑧�́́�(1, 𝜑)] ⇒

𝜎. 𝑎

4𝜇�̅�𝑧
= (1 +

1

𝛽
) �́́�(1, 𝜑). 

(33) 

 

For the current problem with iso-thermal boundaries, the local heat convection coefficient and rate of heat transfer 

for the fluid phase are defined as: 

ℎ =
𝑞𝑤

𝑇𝑤 − 𝑇∞

=
−𝑘𝑓 (

𝜕𝑇𝑓

𝜕𝑟
)

𝑟=𝑎

𝑇𝑤 − 𝑇∞

= −
2𝑘𝑓

𝑎

𝜕𝜃𝑓(1, 𝜑)

𝜕𝜂
, 

(34) 

 

and 

𝑞𝑤 = −
2𝑘𝑓

𝑎

𝜕𝜃𝑓(1, 𝜑)

𝜕𝜂
𝑇𝑤 − 𝑇∞. 

(35) 

 

Hence, Nusselt number for fluid phase can be written as: 

𝑁𝑢 =
ℎ. 𝑎

2𝑘𝑓

= −�́�(1, 𝜑). 
(36) 

 

Similarly, the local mass transfer coefficient and rate of mass transfer are defined as: 

𝑘𝑚 =
𝑞𝑚

𝐶𝑤 − 𝐶∞

=
−𝐷 (

𝜕𝐶

𝜕𝑟
)

𝑟=𝑎

𝐶𝑤 − 𝐶∞

= −
2𝐷

𝑎

𝜕𝜙(1, 𝜑)

𝜕𝜂
, 

(37) 

 

and 

𝑞𝑚 = −
2𝐷

𝑎

𝜕𝜙(1, 𝜑)

𝜕𝜂
𝐶𝑤 − 𝐶∞. 

(38) 

 

Hence, Sherwood number is given by:  

𝑆ℎ =
𝑘𝑚. 𝑎

2𝐷
= −�́�(1, 𝜑). 

(39) 

 

 

2.4- Entropy generation 

Considering the assumptions stated in section 2.1, the volumetric rate of local entropy generation in the problem 

is given by [38, 39, 40]: 
 

�́̇�
́́
𝑔𝑒𝑛 = �́̇�

́́
𝑓 + �́̇�

́́
𝑇 + �́̇�

́́
𝐷 , 
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�́̇�
́́
𝑓 =

2𝜇

𝑇∞

(1 +
1

𝛽
) [(

𝜕𝑢

𝜕𝑟
)

2

+ (
𝑢

𝑟
)

2

+ (
𝜕𝑤

𝜕𝑧
)

2

] +
𝜇

𝑇∞

(1 +
1

𝛽
) [(

1

𝑟

𝜕𝑤

𝜕𝜑
)

2

+ (
𝜕𝑤

𝜕𝑟
)

2

+ (
1

𝑟

𝜕𝑢

𝜕𝜑
)

2

]

+
𝜇

𝑘1𝑇∞

(1 +
1

𝛽
) [𝑢2 + 𝑤2], 

�́̇�
́́
𝑇 =

𝑘𝑓

𝑇𝑓
2 [(

𝜕𝑇𝑓

𝜕𝑟
)

2

+ (
1

𝑟

𝜕𝑇𝑓

𝜕𝜑
)

2

] +
𝑘𝑠

𝑇𝑠
2 [(

𝜕𝑇𝑠

𝜕𝑟
)

2

+ (
1

𝑟

𝜕𝑇𝑠

𝜕𝜑
)

2

] + ℎ𝑠𝑓𝑎𝑠𝑓(𝑇𝑠 − 𝑇𝑓) [
1

𝑇𝑓

−
1

𝑇𝑠

], 

�́̇�
́́
𝐷 =

𝑅𝑔. 𝐷

𝐶
[(

𝜕𝐶

𝜕𝑟
)

2

+ (
1

𝑟

𝜕𝐶

𝜕𝜑
)

2

] +
𝑅𝑔. 𝐷

𝑇𝑓

[
𝜕𝐶

𝜕𝑟

𝜕𝑇𝑓

𝜕𝑟
−

1

𝑟2

𝜕𝐶

𝜕𝜑

𝜕𝑇𝑓

𝜕𝜑
]. 

 

 

 

 

(40) 

 

Using the similarly variables given in Eqs. (15) and (40), the local entropy generation becomes: 

 

�́̇�
́́
𝑇 =

4𝑘𝑓 . (𝑇𝑤 − 𝑇∞)2

𝑎2. 𝑇𝑓
2 [𝜂�́�𝑓

2
+

1

4𝜂2
(

𝜕𝜃𝑓

𝜕𝜑
)

2

] +
4𝑘𝑠. (𝑇𝑤 − 𝑇∞)2

𝑎2. 𝑇𝑠
2

[𝜂�́�𝑠
2

+
1

4𝜂2
(

𝜕𝜃𝑠

𝜕𝜑
)

2

]

+
�̅�. 𝑎3. 𝑎𝑠𝑓 . ℎ𝑠𝑓 . 𝑇∞

8𝑘𝑓 . (𝑇𝑤 − 𝑇∞)𝜐
(𝜃𝑓 − 𝜃𝑠) [

1

Λ𝜃𝑓 + 1
−

1

Λ𝜃𝑠 + 1
], 

�́̇�
́́
𝑓 =

4�̅�2. 𝜇

𝑇∞

(1 +
1

𝛽
) {[𝜂�́́�2 + 4�́�2 + (

𝑓

𝜂
)

2

− 2
𝑓�́�

𝜂
+

1

𝜂
(

𝜕�́�

𝜕𝜑
)

2

+
1

4𝜂2
(

𝜕𝑓

𝜕𝜑
)

2

]

+
𝑎2

4𝑘1

[(
𝑓

𝜂
)

2

+ 4�́�2]}, 

�́̇�
́́
𝐷 =

𝑅𝑔. 𝐷. 𝐶∞

𝑘𝑓

�̅�. 𝑎2. 𝑇∞
2

2(𝑇𝑤 − 𝑇∞)2𝜐

1

(𝜙 + 1)
[𝜂�́�2 +

1

4𝜂2
(

𝜕𝜙

𝜕𝜑
)

2

]

+
𝑅𝑔. 𝐷. 𝐶∞

𝑘𝑓

�̅�. 𝑎2. 𝑇∞

2(𝑇𝑤 − 𝑇∞)𝜐

1

(
𝑇𝑤−𝑇∞

𝑇∞
𝜃𝑓 + 1)

[𝜂. �́�. �́�𝑓 −
1

4𝜂2
(

𝜕𝜙

𝜕𝜑
) (

𝜕𝜃𝑓

𝜕𝜑
)], 

 

 

 

 

 

 

(41) 

 

in which 𝑁𝐺𝑇 =
�́̇�
́́
𝑇

�́̇�
́́
0

, 𝑁𝐺𝐹 =
�́̇�
́́
𝑓

�́̇�
́́
0

, 𝑁𝐺𝐷 =
�́̇�
́́
𝐷

�́̇�
́́
0

 and �́̇�
́́
0 =

8𝑘𝑓.(𝑇𝑤−𝑇∞)2𝜐

�̅�.𝑎4.𝑇∞
2  is the non-dimensional entropy generation 

respectively by heat transfer, fluid friction, and mass transfer and the characteristic entropy generation rate. The 

dimensionless form of the volumetric rate of local entropy generation (NGT, NGF, NGD) reduces to the following 

equations: 

 

𝑁𝐺𝑇 =
𝑅𝑒

(Λ𝜃𝑓 + 1)
2 [𝜂�́�𝑓

2
+

1

4𝜂2
(

𝜕𝜃𝑓

𝜕𝜑
)

2

] +
𝑅𝑒

γ. (Λ𝜃𝑠 + 1)2
[𝜂�́�𝑠

2
+

1

4𝜂2
(

𝜕𝜃𝑠

𝜕𝜑
)

2

]

+
𝐵𝑖. 𝑅𝑒

Λ
(𝜃𝑓 − 𝜃𝑠) [

1

Λ𝜃𝑓 + 1
−

1

Λ𝜃𝑠 + 1
], 

𝑁𝐺𝐹 =
𝑅𝑒. 𝐵𝑟

Λ
(1 +

1

𝛽
) {[𝜂�́́�2 + 4�́�2 + (

𝑓

𝜂
)

2

− 2
𝑓�́�

𝜂
+

1

𝜂
(

𝜕�́�

𝜕𝜑
)

2

+
1

4𝜂2
(

𝜕𝑓

𝜕𝜑
)

2

] + 𝜆 [(
𝑓

𝜂
)

2

+ 4�́�2]}, 

𝑁𝐺𝐷 =
𝑅𝑒. 𝛿

Λ2. (𝜙 + 1)
[𝜂�́�2 +

1

4𝜂2
(

𝜕𝜙

𝜕𝜑
)

2

] +
𝑅𝑒. 𝛿

Λ. (Λ𝜃𝑓 + 1)
[𝜂. �́�. �́�𝑓 −

1

4𝜂2
(

𝜕𝜙

𝜕𝜑
) (

𝜕𝜃𝑓

𝜕𝜑
)], 

 

 

 

 

 

 

 

(42) 

 

where Λ =
(𝑇𝑤−𝑇∞)

𝑇∞
 is the dimensionless temperature difference, 𝛿 =

𝑅𝑔.𝐷.𝐶∞

𝑘𝑓
 is the diffusive constant parameter 

and 𝐵𝑟 =
𝜇(�̅�.𝑎)2

𝑘𝑓(𝑇𝑤−𝑇∞)
 is the Brinkman number. The Bejan number, defined as the ratio of entropy generation due 
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to heat and mass transfer to the total entropy generation, is used to facilitate the understanding of the mechanisms 

of entropy generation. The Bejan number for the current problem can be expressed as: 

𝐵𝑒 =
𝑁𝐺𝑇 + 𝑁𝐺𝐷

𝑁𝐺𝐹 + 𝑁𝐺𝑇 + 𝑁𝐺𝐷

.  

(43) 

 

2.5 Grid independency and validation 

To verify the grid independency of the numerical solution, Table 1 shows the values of the average Nusselt, 

Sherwood and Bejan numbers for different densities of the computational grid. The mesh densities of 51 ×

18, 102 × 36, 204 × 72, 408 × 144 and 816 × 288 were investigated. It is clear from Table 1 that there are no 

considerable changes of 𝑁𝑢𝑚, 𝑆ℎ𝑚 and 𝐵𝑒𝑚 for mesh sizes of (204 × 72), (408 × 144) and (816 × 288). Hence, 

a (408 × 144) grid in 𝜂 − 𝜑 directions was used for the computational domain reported in this work. A non-

uniform grid was applied in 𝜂-direction to capture the sharp gradients around the external surface of the cylinder, 

while a uniform mesh was implemented in 𝜑 direction. The computational domain extends over 𝜑𝑚𝑎𝑥 = 360° and 

𝜂𝑚𝑎𝑥 = 15. In this expression, 𝜂𝑚𝑎𝑥corresponds to 𝜂 → ∞, which for all investigated cases, is located outside the 

momentum boundary layers. Figure 2 shows the computational grid utilised in the current study. A convergence 

criterion was implemented in the numerical simulations. This was such that when the difference between the two 

consecutive iterations became less than 10−7, the solution was assumed to have converged and thus computation 

was terminated. It is also noted that in the current simulations, the numerical error is of  𝑂(∆𝜂)2  [36].   

        The developed numerical solutions were validated by calculating the radial variations of  �́� for different 

values of 𝛽. Figure 3 shows that for large values of 𝛽 the results of the current simulation approaches closely those 

of Ref. [5], which corresponds to a similar configuration as Fig. 1 without the catalytic surface and for a Newtonian 

fluid.  Further, in the limit of large 𝛽, the average values of dimensionless shear (Table 2) stress are compared 

favourably with those reported in Ref. [5]. Furthermore, it is expected that as 𝐵𝑖 → ∞ the LTNE and LTE solutions 

approach each other. Thus, for large numerical values of 𝛽 and 𝐵𝑖, the average Nusselt number for the current 

non-Newtonian flow in porous media under LTNE should approach that of a Newtonian flow in porous media 

under LTE (as investigated in Ref. [5]). Tables 3 and 4 show that this is the case for a wide range of Prandtl 

number and permeability parameter. The contents of Fig.1 and Tables 2-4 demonstrate the validity of the 

conducted numerical simulations.   

Also, Tables 5 and 6 demonstrate that the in the limit of large permeability and porosity of one and in the absence 

of diffusion of mass and gravity, the numerical solutions developed in Section 2 reduces to those of Wang [44] 

and Gorla [45] for stagnation flow over a cylinder.  Further, although not shown in here, it was shown that for 

large Biot numbers the current LTNE simulations approach the LTE results of Ref. [5].   

 

3. Results and discussion 

Table 7 shows the default values of the parameters used in the simulations reported in this section. Any deviations 

from these values are reflected in the figure captions. In Figures 4-12, different quantities are presented over a 

domain that extends from  𝜂 = 𝑎 to 𝜂 = 15  and in which 0° ≤ 𝜑 ≤ 360°. Furthermore, in these figures the non-

uniform transpiration shown in Fig. 1 has been implemented [46-49].   

 

3.1. Flow, temperature and concentration fields  
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Figure 4 depicts the effects of the Casson fluid parameter (β) on the temperature fields in the solid and fluid phases 

of the porous medium. It is clear from this figure that this parameter has a very strong effect upon the temperature 

field in the fluid phase, while the corresponding influences in the solid phase are significantly more moderate. For 

low values of Casson parameter, for which the fluid is substantially different from its Newtonian counterpart, the 

thermal boundary layer extends over the entire circumference of the cylinder. Furthermore, the thickness of the 

thermal boundary layer is almost uniform and the temperature distributions in the solid and fluid phases are 

similar, indicating the existence of LTE. However, this changes entirely as the value of the Casson parameter 

increases to 1 and beyond. For these values, the thermal boundary layer becomes significantly thinner for most of 

the circumference, while a thickening of the boundary layer is observed for 0°≲φ≲60° due to the blowing of fluid.   

         The tendency of the porous system towards LTE at low values of the Casson fluid parameter can be 

explained by referring to Fig. 1, which shows that reducing the Casson fluid parameter reduces the fluid velocity. 

This suppresses the advection power of the heat transfer process in the porous medium and hence drives the system 

towards LTE. It is interesting to note that, in Fig. 4, LTE behaviour is observed for low values of β despite the 

fact that the value of Biot number is rather low (Bi=0.1). This shows that ,with the suppression of advection in the 

Casson fluid, the porous medium approaches local thermal equilibrium even for weak levels of heat exchange 

between the solid and fluid phases. This argument is confirmed by Fig. 5, which shows that, provided  the 

conductivity ratio remains close to unity and for low value of β, the system remains close to LTE regardless of 

the value of the Biot number.   

         Figure 6 shows the influence of the Reynolds number on the temperature fields. Similar to that already 

observed, this figure indicates that the temperature of the solid phase responds slowly to changes in flow 

parameters.  However, the temperature of the fluid phase is found to be strongly dependent upon the Reynolds 

number, where at low values the thermal boundary layer is thick and the porous system is under LTE. Increasing 

the Reynolds number results in the formation of thinner thermal boundary layers and stronger deviations from 

local thermal equilibrium. The physical reasons for this behaviour are, once again, related to the effects of 

advection upon the transport of heat in the porous medium. At low Reynolds numbers, heat advection is weak and 

thus for similar thermal conductivities of the fluid and solid phases the porous system is pushed towards LTE. 

       The influences of Damköhler and Reynolds numbers on the concentration field are investigated in Fig. 7. 

This figure shows that, at low values of Damköhler number and hence low catalytic activity, the concentration 

boundary layer is relatively thin. The effects of non-uniform transpiration are also fully noticeable in this figure. 

As the Damköhler number increases, the concentration boundary layer grows in thickness and intensity, and for 

high values of this parameter almost the entire domain is filled by the concentration boundary layer. Increasing 

the Reynolds number in Fig. 7b appears to have an effect similar to that discussed for Fig. 6, reducing the thickness 

of the concentration boundary layer. Figure 8 depicts the effects of the Schmidt and Soret numbers on the 

concentration fields. As expected, low values of Schmidt number yield a thicker concentration boundary layer 

with a region of high concentration layer near the surface. However, increasing the Schmidt number results in an 

almost complete elimination of this layer and also reduces the overall thickness of the concentration boundary 

layer. In general, depending upon the size of the molecules, the Soret number can take either positive and negative 

signs [41], and the effect of variations in the sign of the Soret number on the concentration field has been 

investigated in Fig. 8b. This figure shows that, for a fixed absolute value of Soret number, a positive sign results 

in a thicker concentration boundary layer. This is to be anticipated, since as shown in Eq. 7 the thermal diffusion 
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of mass contributes to the overall diffusion of the mass. A negative Soret number would therefore hinder the mass 

diffusion process, while a positive Soret number promotes it. 

  

3.2. Entropy generation fields 

The preceding sections show that, compared to the usual Newtonian fluids, the flow of the Casson fluid 

investigated in porous media has significantly different hydrodynamic and transport characteristics. The current 

section is concerned with the thermodynamic irreversibilities associated with the transport processes analysed in 

Section 3.1. Figure 9 shows variations in the flow and thermal entropy generation, NGF and NGT (see Eqs. 42), 

against changes in the Casson fluid parameter. Figure 9a indicates that the averaged frictional entropy increases 

significantly when the Casson parameter is reduced. As reflected in Fig. 9a, the spatial details of this increase are 

rather complicated. This is due partly to the complexity of the fluid under investigation and also to the convoluted 

nature of frictional entropy as reflected in Eq. 42. Interestingly, Fig. 9a shows that, by increasing the Casson fluid 

parameter and hence approaching Newtonian fluid behaviour, the complexity of frictional entropy fields decreases 

significantly. Part b of Fig. 9 further shows that thermal entropy is also influenced considerably by changes in the 

Casson parameter, where low values have resulted in weak thermal irreversibility. This behaviour can be 

understood in view of the earlier discussion about the tendency of the porous system to feature LTE behaviour at 

low values of Casson parameter. Local thermal equilibrium cancels the heat exchange between the solid and fluid 

and thus largely suppresses the generation of thermal entropy.  

      Figure 10a shows that mass transfer irreversibility is affected by changes in the value of the Casson parameter. 

The extent of this effect is less than that observed for frictional and thermal entropy generation (see Fig. 9) and is 

linked to the fact that the mass transfer process is influenced indirectly by the properties of the non-Newtonian 

fluid through advection and thermal diffusion effects. The variations in the Bejan number with changes in the 

Casson fluid parameter are depicted in Fig. 10b, indicating that a strongly non-Newtonian fluid (β=0.1) results in 

very small values of Bejan number. However, as a Newtonian fluid is approached, the value of the Bejan number 

increases considerably. This is particularly the case in the thermal and concentration boundary layers. The effects 

of the Brinkman number and permeability parameter upon the Bejan number for strongly non-Newtonian fluid 

(β=0.1) are shown in Fig. 11. A low Brinkman number and high permeability (with low values of the permeability 

parameter) have clearly resulted in relatively large values of Bejan number. Both effects tend to suppress the 

hydrodynamic stresses and thus minimise the generation of frictional entropy, which in turn magnifies the value 

of the Bejan number.   

     Figure 12 shows the effects of the Brinkman and Biot numbers on the flow and thermal entropy generation in 

the case of highly non-Newtonian fluid (β=0.1). It appears in Fig. 12a that increases in the Brinkman number have 

a strong influence on the spatial distribution of the generation of flow entropy and cause a massive increase in the 

magnitude of entropy generation. The Biot number, however, is comparatively inefficient in modifying the 

generation of thermal entropy. Figure 12b shows that increasing the Biot number by two orders of magnitude has 

resulted in minor changes in the entropy generation field. This is because, at low values of the Casson fluid 

parameter, the porous system is essentially under LTE and hence changes in Biot number does not lead to any 

considerable modification of the temperature field. Hence, the generation of thermal entropy remains nearly 

indifferent to changes in the Biot number.    
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3.3. Shear stress and rates of heat and mass transfer   

The circumferential distribution of dimensionless shear stress applied to the surface of the cylinder is shown in 

Fig. 13. A common feature in this figure is that the shear stress for all investigated cases is zero at φ=0, which is 

the stagnation point and thus there is no shear stress. Further increases in φ result in increasing the value of 

dimensionless shear stress. The permeability of the porous medium and the Casson parameter have been varied, 

as shown in Fig. 13a. This figure shows that, as expected, increases in the permeability parameter (reducing the 

permeability of the porous medium) are associated with significant increases in dimensionless shear stress. This 

behaviour is consistent with that reported for Newtonian fluids in similar flow configurations [5]. Figure 13b 

indicates that the value of the Casson fluid parameter has a strongly non-linear effect upon the shear stress on the 

surface of the cylinder. For β=0.1, the dimensionless shear stress grows quickly. However, the rate of growth of 

dimensionless shear stress is substantially smaller for all other values of β investigated in Fig. 13b. Interestingly, 

the decrease in the numerical value of shear stress is relatively small when β is reduced from 1000 to 1. Yet, 

further decreases in β result in a significant increase in dimensionless stress. Table 8 provides further information 

on the effects of different parameters upon average shear stress.  

       Figure 14 shows the effects of the Biot, Dufour and Reynolds numbers and the Casson parameter on the 

circumferential distribution of the Nusselt number. It is clear that, in all investigated cases, for φ≅0° the value of 

the Nusselt number is very large. This is due to the formation of a stagnation point in that region and the subsequent 

initiation of thermal boundary layer formation (as depicted in Figs. 4-6).  In keeping with the earlier discussions 

about the minor influence of the Biot number on the temperature field, Fig. 14a shows that the effects of the Biot 

number on the Nusselt number are negligible for 0°≲φ≲ 60° and relatively small for the rest of the range. More 

quantitative data on averaged Nusselt numbers for different values of Biot number are provided in Table 9. These 

results indicate that changes in the Biot number by several orders of magnitude have only a moderate influence 

on the average Nusselt number. Figures 14b and 14c show that, when the Dufour and Reynolds numbers increase, 

the Nusselt numbers significantly decline and increase respectively. The observed negative effect of increasing 

the Dufour number upon the magnitude of the Nusselt number (also provided in Table 10) is in keeping with that 

reported in the literature [see for example [42, 43]]. In general, the strong dependency of the Nusselt number upon 

the Reynolds number is well-understood [41]. Figure 14c and Table 11 quantify this dependency for the non-

Newtonian fluid investigated. Figure 14d and Table 12 show that increases in the Casson parameter result in major 

enhancements of the local and surface averaged Nusselt numbers. This is such that, by increasing the Casson 

parameter from 0.1 to 100, the value of the Nusselt number increases more than threefold (see Table 12). Thus, 

in comparison with Newtonian fluids, the investigated non-Newtonian fluid is significantly less capable of 

transferring heat. Table 13 shows that increases in the Prandtl number lead to major enhancements of the Nusselt 

number. 

         Figure 15 presents the variation in the Sherwood number against the pertinent parameters. Similar to the 

results for Nusselt number, Sherwood number appears to be highly dependent on the Reynolds number (Fig. 15a 

and Table 11). Figure 15b and Table 10 show that increasing the positive values of the Soret number slightly 

reduce the Sherwood number. However, increases in the absolute value of the negative Sort number has an inverse 

effect upon the Sherwood number. Figure 15c shows that the effect of the Casson parameter on the Sherwood 

number is similar to that on the Nusselt number. Nonetheless, as the Casson parameter increases, the Sherwood 

number is reduced by much less than the Nusselt number.  Furthermore, Fig. 15d and Table 12 indicate that 
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increases in the Damköhler number and thus an intensification of the rate of heterogenous chemical reaction 

substantially enhance the Sherwood number. Interestingly, however, Table 12 indicates that the augmentation of 

the Damköhler number reduces the Nusselt number. This behaviour can be explained by noting the connection 

between species transport and the thermal field thorough the Dufour number, as it has been shown that 

enhancements of the Dufour number reduce the Nusselt number. Finally, the Schmitt number appears to have a 

positive correlation with the average Sherwood number (see Table 13), although this is less pronounced than the 

correlation between the Prandtl number and the average Nusselt number. 

 

4. Conclusions  

The combined transport of heat and chemical species in the stagnation-point flow of Casson fluid over a cylinder 

covered by a layer of catalyst and embedded in a porous medium was investigated. The non-equilibrium 

thermodynamics of the problem were taken into account. These include Soret and Dufour effects in the transport 

of heat and mass, as well as local thermal non-equilibrium in the porous medium. Furthermore, circumferentially 

non-uniform transpiration of fluid was imposed on the external surface of the cylinder. The governing equations 

were first reduced to non-linear ordinary differential equations through the introduction of similarity variables, 

and a finite-difference scheme was then employed to solve the resulting system of equations. The key findings of 

this work can be summarised as follows.  

 For low values of the Casson parameter and thus strong non-Newtonian behaviour of the fluid, the 

investigated porous system featured LTE for a wide range of Biot number. This was attributed to the 

suppression of fluid motion (advection) at low values of the Casson parameter which, for values of 

conductivity ratio close to unity, maintain local thermal equilibrium.  

 Non-uniform transpiration appeared to have a strong influence upon the temperature, concentration and 

irreversibility fields.  It is therefore concluded that non-uniform transpiration is a strongly influential 

factor in the investigated problem.  

 The Casson fluid showed far more complex behaviour in frictional entropy generation in comparison 

with the corresponding Newtonian fluid.  

 Increases in the Casson parameter enhance the value of the Bejan number considerably through the 

suppression of frictional entropy, reflecting the importance of deviation from the Newtonian fluid 

behaviour.   

 Lowering the value of the Casson parameter was observed to significantly reduce the Nusselt number 

and to a lesser extent decrease the value of the Sherwood number.   

To the best of the present author’s knowledge this is the first study of the stagnation-point flow of Casson fluids 

in curved porous configurations and complemented the recent results on Casson fluid flows through porous media 

in other configurations [49, 50, 51]. 
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Fig. 1 Schematic view of a stationary cylinder under radial stagnation flow in porous media grid system 

 

 
Fig. 2 Sample of grid system 
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Fig. 3. Comparison between the �́�(𝜂, 𝜑) in the current work and those of Alizadeh et al. [5] in terms of (a) 𝜂 

(radial),(b) 𝜑 (angular) 𝐷𝑓 = 0, 𝐵𝑖 = 1000, 𝑆𝑟 = 0, 𝑅𝑒 = 5, 𝜆 = 10 and for different values of the Casson fluid 

parameter 
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Fig. 4. Effects of Casson fluid parameter on (a) distribution of  𝜃𝑓(𝜂, 𝜑), (b) distribution of 𝜃𝑠(𝜂, 𝜑), 

 𝐷𝑓 = 1.0 , 𝑆𝑟 = 0. 5 , 𝑆𝑐 = 0.1 , 𝑅𝑒 = 10 , 𝐵𝑖 = 0.1 , 𝜆 = 10  , 𝛾 = 1.5 
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Fig. 5. Effects of Biot number on  (a) distribution of 𝜃𝑓(𝜂, 𝜑) , (b) distribution of 𝜃𝑠(𝜂, 𝜑)  

𝐷𝑓 = 1.0 , 𝑆𝑟 = 0. 5 , 𝑆𝑐 = 0.1 , 𝑅𝑒 = 10 , 𝜆 = 10  , 𝛾 = 1.5 , 𝛾∗ = 1.0 , 𝛽 = 0.1   
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Fig. 6. Effects of Reynolds number  on  (a) distribution of 𝜃𝑓(𝜂, 𝜑) , (b) distribution of 𝜃𝑠(𝜂, 𝜑) ,  

𝐷𝑓 = 1.0 , 𝑆𝑟 = 0. 5 , 𝑆𝑐 = 0.1  , 𝐵𝑖 = 0.1 , 𝜆 = 10  , 𝛾 = 1.5 , 𝛾∗ = 1.0 , 𝛽 = 0.1   
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Fig. 7. Variation of 𝜙(𝜂, 𝜑) for different values of (a) Damköhler number (𝛾∗) , (b) Reynolds number (𝑅𝑒),  

𝐷𝑓 = 1.0 , 𝑆𝑟 = 0. 5 , 𝑆𝑐 = 0.1 , 𝑅𝑒 = 10 , 𝐵𝑖 = 0.1 , 𝜆 = 10  , 𝛾 = 1.5 , 𝛾∗ = 1.0 , 𝛽 = 0.1   
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Fig. 8. Variation of 𝜙(𝜂, 𝜑) for different values of (a) Schmidt number (𝑆𝑐) , (b) Soret number (𝑆𝑟),  

𝐷𝑓 = 1.0 , 𝑆𝑟 = 0. 5 , 𝑆𝑐 = 0.1 , 𝑅𝑒 = 10 , 𝐵𝑖 = 0.1 , 𝜆 = 10  , 𝛾 = 1.5 , 𝛾∗ = 1.0 , 𝛽 = 0.1   
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Fig. 9. Effects of Casson fluid parameter on  (a) distribution of  𝑁𝐺𝐹(𝜂, 𝜑) , (b) distribution of 𝑁𝐺𝑇(𝜂, 𝜑), 

𝐷𝑓 = 1.0 , 𝑆𝑟 = 0. 5 , 𝑆𝑐 = 0.1 , 𝑅𝑒 = 10 , 𝐵𝑖 = 0.1 , 𝜆 = 10  , 𝛾 = 1.5 ,

𝛾∗ = 1.0  , Λ = 1.0  , Br = 2.0. 
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Fig. 10. Effects of Casson fluid parameter on  (a) distribution of 𝑁𝐺𝐷(𝜂, 𝜑) ,(b) distribution of 𝐵𝑒(𝜂, 𝜑),  

𝐷𝑓 = 1.0 , 𝑆𝑟 = 0. 5 , 𝑆𝑐 = 0.1 , 𝑅𝑒 = 10 , 𝐵𝑖 = 0.1 , 𝜆 = 10  , 𝛾 = 1.5 ,

𝛾∗ = 1.0  , Λ = 1.0  , Br = 2.0. 
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Fig.11. Variation of  𝐵(𝜂, 𝜑) for different values of  (a) Brinkman number (𝐵𝑟) , (b) Permeability parameter 

(𝜆), 𝐷𝑓 = 1.0 , 𝑆𝑟 = 0. 5 , 𝑆𝑐 = 0.1 , 𝑅𝑒 = 10 , 𝐵𝑖 = 0.1 , 𝜆 = 10  , 𝛾 = 1.5 , 𝛾∗ = 1.0 , 𝛽 = 0.1, Λ = 1,  

𝐵𝑟 = 2.0   
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Fig. 12. (a) Effects of Brinkman number on 𝑁𝐺𝐹(𝜂, 𝜑) ,(b) Effects of Biot number on 𝑁𝐺𝑇(𝜂, 𝜑),  

𝐷𝑓 = 1.0 , 𝑆𝑟 = 0. 5 , 𝑆𝑐 = 0.1 , 𝑅𝑒 = 10 , 𝐵𝑖 = 0.1 , 𝜆 = 10  , 𝛾 = 1.5 , 𝛾∗ = 1.0 , 𝛽 = 0.1 , Br = 2.0  
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(a) 

 

(b) 

 
Fig. 13. Variation of 𝜎𝑚.𝑎

4𝜇�̅�𝑧
 for different values of (a) Permeability parameter (𝜆) ,(b) Casson fluid parameter (  𝛽) , 

 𝑅𝑒 = 5.0 , 𝜆 = 10 , 𝛽 = 0.1   
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(d) 

 
Fig. 14. Variation of 𝑁𝑢 for different values of (a) Biot number (𝐵𝑖),(b) Dufour number (𝐷𝑓), (c) Reynolds number 

(𝑅𝑒),(d) Casson fluid parameter (𝛽), 𝐷𝑓 = 1.0 , 𝑅𝑒 = 5.0 , 𝐵𝑖 = 0.1   , 𝛾 = 1.5   , λ = 10 .  
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(a) 

 

(b) 

 
(c) 

 

(d) 

 
Fig. 15. Variation of Sh for different values of (a) Reynolds number (Re),(b) Soret number (Sr), (c) Permeability 

parameter (𝜆) , (d) Damköhler number (𝛾∗), Df = 1.0 , Re = 5.0 , Bi = 0.1   , γ = 1.5  , λ = 10 , Sc = 0.1 , γ∗ =

2.0 , Sr = 0.5. 
 

 

 

Tables 

 

Table 1. Grid independence study at 𝐷𝑓 = 0.1 , 𝛽 = 100 , 𝑆𝑟 = 0.5 , 𝑅𝑒 = 10 , 𝑆𝑐 = 0.1 , 𝜆 = 10 , 𝛾∗ = 3.0 

Mesh size 𝑁𝑢𝑚 𝑆ℎ𝑚 𝐵𝑒𝑚 

51*18 5.751221 1.403871 0.54677 

102*36 5.875593 1.454238 0.58179 

204*72 5.988347 1.499821 0.60548 

408*144 6.0073598 1.535326 0.63035 

816*288 6.008728 1.534596 0.63005 
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Table 2. Effects of Reynolds number and Darcy number on the average shear stress (𝜎𝑚.𝑎

4𝜇�̅�𝑧
) Comparison between 

the current work and those of Alizadeh et al. [5] for 𝑆(𝜑) = cos(𝜑) , 𝐷𝑓 = 0 , 𝐵𝑖 = 1000 , 𝑆𝑟 = 0 , 𝑅𝑒 = 5 ,

𝛽 = 500 , 𝜆 = 10 
𝜎𝑚. 𝑎

4𝜇�̅�𝑧
  

𝜆 

𝜎𝑚. 𝑎

4𝜇�̅�𝑧
  

𝑅𝑒 
Present work Alizadeh et al.[5]  Present work Alizadeh et al. [5]  

1.43057 1.43428 0 0.09286 0.09413 0.01 

2.05325 2.05037 1.0 0.21538 0.21868 0.1 

5.64112 5.64413 10 1.43286 1.43428 1.0 

13.51987 13.52675 50 10.65435 10.65943 10 

18.75131 18.75878 100 38.12351 38.12034 100 

 

 

Table 3. Effects of Prandtl number on the average Nusselt number (𝑁𝑢𝑚) for 𝑆(𝜑) = 0 , 𝑆(𝜑) = 1 and  𝑆(𝜑) =

cos(𝜑) , 𝐷𝑓 = 0 , 𝐵𝑖 = 1000 , 𝑆𝑟 = 0 , 𝑅𝑒 = 1 , 𝛽 = 500 , 𝜆 = 1 

𝑆(𝜑) = cos(𝜑) 𝑆(𝜑) = 1 𝑆(𝜑) = 0  

𝑃𝑟 Present 

work 

Alizadeh et al. 

[5]   

Present work Alizadeh et al. 

[5] 

Present 

work 

Alizadeh et al. 

[5]   

3.59256 3.59124 3.89593 3.89342 3.59183 3.59774 0.1 

3.76081 3.76584 5.07563 5.02176 3.72438 3.74114 0.4 

3.94345 3.94454 6.20651 6.20146 3.85276 3.84888 0.7 

4.12507 4.12699 7.41818 7.41599 3.93021 3.93788 1.0 

10.52091 10.52329 44.32112 44.32687 5.03261 5.07670 10 

 

 

Table 4. Effects of Permeability parameter on the average Nusselt number (𝑁𝑢𝑚) for 𝑆(𝜑) = 0 , 𝑆(𝜑) = 1 and 

𝑆(𝜑) = cos(𝜑) , 𝐷𝑓 = 0 , 𝐵𝑖 = 1000 , 𝑆𝑟 = 0 , 𝑅𝑒 = 1 , 𝛽 = 500  

𝑆(𝜑) = cos(𝜑) 𝑆(𝜑) = 1 𝑆(𝜑) = 0  

𝜆 Present 

work 

Alizadeh et al. 

[5]   

Present 

work 

Alizadeh et al. 

[5]   

Present 

work 

Alizadeh et al. 

[5]   

4.12536 4.12700 6.19352 6.19832 3.84532 3.84219 0 

4.13528 4.13656 6.20218 6.20146 3.83106 3.84888 1.0 

4.16645 4.16776 6.22101 6.22214 3.88647 3.88851 10 

4.19436 4.19767 6.26111 6.26340 3.95451 3.95263 50 

4.20651 4.20916 6.28498 6.28660 3.98546 3.98287 100 
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Table 5. Comparison between the current simulations and those of Wang [44] for large porosity and 

permeability.  

𝑅𝑒 = 10 𝑅𝑒 = 1.0  

𝜼 Present work Wang [44] Present work Wang [44] 

�́� 𝒇 �́� 𝒇 �́� 𝒇 �́� 𝒇 

0.06610 0.06631 0.58982 0.06638 0.25993 0.02693 0.25302 0.02667 1.2 

0.21379 0.21393 0.84821 0.21400 0.43710 0.09652 0.43724 0.09665 1.4 

0.39535 0.39541 0.94852 0.39532 0.57329 0.19828 0.57315 0.19836 1.6 

0.58926 0.58914 0.98380 0.58919 0.67438 0.32365 0.67444 0.32361 1.8 

0.78729 0.78735 0.99522 0.78731 0.75046 0.46683 0.75054 0.46674 2.0 

 

Table6. Comparison between the current simulations and those of Gorla [45] for large porosity and 

permeability. 

𝜽 𝒇 𝑹𝒆 

 Present work Gorla [45] Present work Gorla [45] 

0.84557 0.84549 0.12051 0.12075 0.01 

0.73701 0.73715 0.22659 0.22652 0.1 

0.46045 0.46070 0.46683 0.46647 1.0 

0.02983 0.02970 0.78725 0.78731 10 

 

Table 7. Default values of the simulation parameters 

Simulations 

parameters 

 

𝜂 

 

𝜑 

 

𝜆 

 

휀 

 

𝑅𝑒 

 

𝑆(𝜑) 

 

𝐵𝑖 

 

𝐵𝑟 

 

𝛿 

 

𝛬 

 

𝛾 

 

𝛾∗ 

 

𝛽 

 

𝑆𝑟 

 

𝐷𝑓 

 

𝑆𝑐 

 

 

 

1.45 

 

720 

 

10 

 

0.9 

 

5.0 

 

𝐿𝑛(𝜑) 

 

0.1 

 

2.0 

 

10 

 

1.0 

 

1.5 

 

1.0 

 

0.1 

 

0.5 

 

1.0 

 

0.1 

 

Table 8. Effects of Reynolds number, Permeability parameter and magnetic parameter on the average shear 

stress (𝜎𝑚 .𝑎

4𝜇�̅�𝑧
) when 𝐷𝑓 = 0.1 , 𝛽 = 0.1 , 𝑆𝑟 = 0.5 , 𝑅𝑒 = 10 , 𝑆𝑐 = 0.1 , 𝜆 = 10 , 𝛾∗ = 2.0 

𝜎𝑚 . 𝑎

4𝜇�̅�𝑧
 

𝑅𝑒 𝛽 𝜆 𝑆(𝜑) 

0.1 166.8313 0.1 165.9504 1 68.96513  Ln   
165.9504 

1.0 166.7906 1.0 28.37824 10 165.9504  Ln   
187.0069 

10 165.9504 10 14.54965 100 448.1738 0  176.7695 

50 157.3419 100 13.19107 1000 451.8424 1  180.7742 

100 145.4965 1000 13.05574 5000 452.3356 1  172.5796 
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Table 9. Effects of Biot number and modify conductivity ratio on the average Nusselt, Sherwood and Bejan 

numbers, 𝐷𝑓 = 0.1 , 𝛽 = 100 , 𝑆𝑟 = 0.5 , 𝑅𝑒 = 5.0 , 𝑆𝑐 = 0.1 , 𝜆 = 10 , 𝛾∗ = 1.5 

𝐵𝑖 𝑁𝑢𝑚 𝑆ℎ𝑚 𝐵𝑒𝑚 𝛾 𝑁𝑢𝑚 𝑆ℎ𝑚 𝐵𝑒𝑚 

0.1 3.403892 0.7111769 0.34159 0.1 3.403077 0.7111881 0.41217 

1.0 3.297544 0.7123071 0.34204 1.0 3.403613 0.7111807 0.34459 

10 3.008347 0.7150651 0.34961 2 3.404159 0.7111733 0.34008 

100 2.694756 0.7183075 0.35643 5 3.405554 0.7111548 0.33736 

200 2.627727 0.7194447 0.35715 10 3.407310 0.7111322 0.33649 

 

Table 10. Effects of Dufour and Soret numbers on the average Nusselt , Sherwood and Bejan numbers, 𝐷𝑓 =

0.1 , 𝛽 = 100 , 𝑆𝑟 = 0.5 , 𝑅𝑒 = 5.0 , 𝑆𝑐 = 0.1 , 𝜆 = 10 , 𝛾∗ = 2.0 

𝐷𝑓 𝑁𝑢𝑚 𝑆ℎ𝑚 𝐵𝑒𝑚 𝑆𝑟 𝑁𝑢𝑚 𝑆ℎ𝑚 𝐵𝑒𝑚 

0 3.480933 0.9567361 0.41796 1.0 3.414311 0.9328423 0.44342 

0.1 3.411333 0.9569196 0.41537 0.5 3.411333 0.9569196 0.41537 

0.4 3.200851 0.9575061 0.40773 0 3.408357 0.9808456 0.38462 

0.7 2.987833 0.9581474 0.40018 -0.5 3.405385 1.004621 0.35141 

1.0 2.772259 0.9588442 0.39281 -1.0 3.402416 1.028245 0.31652 

 

Table 11 Effects of Reynolds number and Permeability parameter on the average Nusselt, Sherwood and Bejan 

numbers, 𝐷𝑓 = 0.1 , 𝛽 = 100 , 𝑆𝑟 = 0.5 , 𝑅𝑒 = 5.0 , 𝑆𝑐 = 0.1 , 𝜆 = 10 , 𝛾∗ = 3.0 

𝑅𝑒 𝑁𝑢𝑚 𝑆ℎ𝑚 𝐵𝑒𝑚 𝜆 𝑁𝑢𝑚 𝑆ℎ𝑚 𝐵𝑒𝑚 

0.1 1.013729 1.329127 0.02603 1.0 3.35902 1.445715 0.81989 

1.0 1.385298 1.353001 0.21682 10 3.374974 1.447473 0.52766 

10.0 6.008728 1.534596 0.63005 100 3.423083 1.451954 0.10049 

50.0 24.54622 1.630741 0.63665 1000 3.477007 1.455629 0.010823 

100 41.94905 1.780502 0.65014 5000 3.501193 1.456882 0.002176 

 

Table 12 Effects of Casson fluid parameter and magnetic parameter on the average Nusselt, Sherwood and 

Bejan numbers, 𝐷𝑓 = 0.1 , 𝛽 = 1.0 , 𝑆𝑟 = 0.5 , 𝑅𝑒 = 5.0 , 𝑆𝑐 = 0.1 , 𝜆 = 10 , 𝛾∗ = 5.0 

𝛽 𝑁𝑢𝑚 𝑆ℎ𝑚 𝐵𝑒𝑚 𝛾∗ 𝑁𝑢𝑚 𝑆ℎ𝑚 𝐵𝑒𝑚 

0.1 1.076977 2.235436 0.18944 0.1 2.215551 0.03038 0.04544 

1.0 2.031454 2.329874 0.54705 1.0 2.181737 0.45274 0.16647 

10 3.088322 2.413461 0.65497 3.0 2.106596 1.39132 0.40101 

100 3.302258 2.428581 0.66761 5 2.031454 2.32991 0.54705 

1000 3.32582 2.430213 0.66892 7 1.956313 3.26844 0.63931 
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Table 13 Effects of Prandtl and Schmidt numbers on average the Nusselt, Sherwood and Bejan numbers, 𝐷𝑓 =

0.1 , 𝛽 = 10 , 𝑆𝑟 = 0.5 , 𝑅𝑒 = 5.0 , 𝑆𝑐 = 0.1 , 𝜆 = 10 , 𝛾∗ = 4.0 

𝑃𝑟 𝑁𝑢𝑚 𝑆ℎ𝑚 𝐵𝑒𝑚 𝑆𝑐 𝑁𝑢𝑚 𝑆ℎ𝑚 𝐵𝑒𝑚 

0.1 1.265729 1.904174 0.57602 0.1 3.124834 1.92611 0.59484 

0.4 1.843749 1.923239 0.60895 0.3 3.123936 2.103768 0.59351 

0.7 2.471502 1.925391 0.61782 0.5 3.121972 2.170684 0.58151 

1.0 3.124834 1.926112 0.62484 0.7 3.117515 2.188001 0.54976 

10 21.57464 1.929445 0.64321 1.0 3.111808 2.182457 0.50295 

 

 

 


