24 research outputs found

    New Wine in Old Bottles

    Get PDF

    From Paper to Practice

    Get PDF

    Improved formulation of the latent variable model inversion¿based optimization problem for quality by design applications

    Full text link
    [EN] Latent variable regression model (LVRM) inversion is a relevant tool for finding, if they exist, different combinations of manufacturing conditions that yield the desired process outputs. Finding the best manufacturing conditions can be done by optimizing an appropriately formulated objective function using nonlinear programming. To this end, different formulations of the optimization problem based on LVRM inversion have been proposed in the literatura that allow the use of happenstance data (eg, historical data) for this purpose, present lower computational costs than optimizing in the space of the original variables, and guarantee that the solution will conform to the correlation structure of available data from the past. However, these approaches, as presented, suffer from some limitations, such as having to actively modify the constraints imposed on the solution to achieve different sets of conditions to those available in the LVRM calibration dataset, or the lack of a standardized approach for optimizing a linear combination of variables. Furthermore, when minimizing or maximizing one or more outputs, a severe handicap is also present related to the definition of arbitrarily low or high "desired" values. This paper aims at tackling all of these issues. The resulting proposed formulation of the optimization problem is illustrated with three case studies.Agencia Estatal de Investigacion, Grant/Award Number: DPI2017-82896-C2-1-R; European Regional Development Fund; Ministerio de Economia, Industria y Competitividad, Gobierno de Espana; Universitat Politecnica de Valencia, Grant/Award Number: Erasmus 2014.93231Palací-López, D.; Villalba-Torán, PM.; Facco, P.; Barolo, M.; Ferrer, A. (2020). Improved formulation of the latent variable model inversion¿based optimization problem for quality by design applications. Journal of Chemometrics. 34(6):1-18. https://doi.org/10.1002/CEM.3230S118346FDA.Pharmaceutical CGMPs for the 21s Century—A Risk‐Based Approach; 2004.Liu, J. J., & MacGregor, J. F. (2005). Modeling and Optimization of Product Appearance:  Application to Injection-Molded Plastic Panels. Industrial & Engineering Chemistry Research, 44(13), 4687-4696. doi:10.1021/ie0492101Bonvin, D., Georgakis, C., Pantelides, C. C., Barolo, M., Grover, M. A., Rodrigues, D., … Dochain, D. (2016). Linking Models and Experiments. Industrial & Engineering Chemistry Research, 55(25), 6891-6903. doi:10.1021/acs.iecr.5b04801MontgomeryDC.Applied Statistics and Probability for Engineers Third Edition; 2003; Vol. 37.MacGregorJF.Empirical Models for Analyzing “Big” Data‐What´s the Difference. InSpring AIChE Conference; Orlando Florida USA 2018.Liu, Z., Bruwer, M.-J., MacGregor, J. F., Rathore, S. S. S., Reed, D. E., & Champagne, M. J. (2011). Modeling and Optimization of a Tablet Manufacturing Line. Journal of Pharmaceutical Innovation, 6(3), 170-180. doi:10.1007/s12247-011-9112-8MacGregor, J. F., Bruwer, M. J., Miletic, I., Cardin, M., & Liu, Z. (2015). Latent Variable Models and Big Data in the Process Industries. IFAC-PapersOnLine, 48(8), 520-524. doi:10.1016/j.ifacol.2015.09.020Jaeckle, C. M., & MacGregor, J. F. (2000). Industrial applications of product design through the inversion of latent variable models. Chemometrics and Intelligent Laboratory Systems, 50(2), 199-210. doi:10.1016/s0169-7439(99)00058-1García-Muñoz, S., Kourti, T., MacGregor, J. F., Apruzzese, F., & Champagne, M. (2006). Optimization of Batch Operating Policies. Part I. Handling Multiple Solutions#. Industrial & Engineering Chemistry Research, 45(23), 7856-7866. doi:10.1021/ie060314gTomba, E., Barolo, M., & García-Muñoz, S. (2012). General Framework for Latent Variable Model Inversion for the Design and Manufacturing of New Products. Industrial & Engineering Chemistry Research, 51(39), 12886-12900. doi:10.1021/ie301214cFacco, P., Dal Pastro, F., Meneghetti, N., Bezzo, F., & Barolo, M. (2015). Bracketing the Design Space within the Knowledge Space in Pharmaceutical Product Development. Industrial & Engineering Chemistry Research, 54(18), 5128-5138. doi:10.1021/acs.iecr.5b00863Bano, G., Facco, P., Bezzo, F., & Barolo, M. (2018). Probabilistic Design space determination in pharmaceutical product development: A Bayesian/latent variable approach. AIChE Journal, 64(7), 2438-2449. doi:10.1002/aic.16133Palací-López, D., Facco, P., Barolo, M., & Ferrer, A. (2019). New tools for the design and manufacturing of new products based on Latent Variable Model Inversion. Chemometrics and Intelligent Laboratory Systems, 194, 103848. doi:10.1016/j.chemolab.2019.103848MacGregor, J. F., & Bruwer, M.-J. (2008). A Framework for the Development of Design and Control Spaces. Journal of Pharmaceutical Innovation, 3(1), 15-22. doi:10.1007/s12247-008-9023-5Jaeckle, C., & Macgregor, J. (1996). Product design through multivariate statistical analysis of process data. Computers & Chemical Engineering, 20, S1047-S1052. doi:10.1016/0098-1354(96)00182-2Lakshminarayanan, S., Fujii, H., Grosman, B., Dassau, E., & Lewin, D. R. (2000). New product design via analysis of historical databases. Computers & Chemical Engineering, 24(2-7), 671-676. doi:10.1016/s0098-1354(00)00406-3García-Muñoz, S., MacGregor, J. F., Neogi, D., Latshaw, B. E., & Mehta, S. (2008). Optimization of Batch Operating Policies. Part II. Incorporating Process Constraints and Industrial Applications. Industrial & Engineering Chemistry Research, 47(12), 4202-4208. doi:10.1021/ie071437jWold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58(2), 109-130. doi:10.1016/s0169-7439(01)00155-1Ferrer, A. (2007). Multivariate Statistical Process Control Based on Principal Component Analysis (MSPC-PCA): Some Reflections and a Case Study in an Autobody Assembly Process. Quality Engineering, 19(4), 311-325. doi:10.1080/08982110701621304Feltens, J. (2008). Vector method to compute the Cartesian (X, Y, Z) to geodetic ( ϕ{\phi} , λ, h) transformation on a triaxial ellipsoid. Journal of Geodesy, 83(2), 129-137. doi:10.1007/s00190-008-0246-5Arteaga, F., & Ferrer, A. (2013). Building covariance matrices with the desired structure. Chemometrics and Intelligent Laboratory Systems, 127, 80-88. doi:10.1016/j.chemolab.2013.06.003Arteaga, F., & Ferrer, A. (2010). How to simulate normal data sets with the desired correlation structure. Chemometrics and Intelligent Laboratory Systems, 101(1), 38-42. doi:10.1016/j.chemolab.2009.12.00

    Non-invasive multiparametric approach to determine sweat-blood lactate bioequivalence

    Get PDF
    Many sweat-based wearable monitoring systems have been recently proposed, but the data provided by those systems often lack a reliable and meaningful relation to standardized blood values. One clear example is lactate, a relevant biomarker for both sports and health sectors, with a complex sweat–blood bioequivalence. This limitation decreases its individual significance as a sweat-based biomarker. Taking into account the insights of previous studies, a multiparametric methodology has been proposed to predict blood lactate from non-invasive independent sensors: sweat lactate, sweat rate, and heart rate. The bioequivalence study was performed with a large set of volunteers (>30 subjects) in collaboration with sports institutions (Institut Nacional d’Educació Física de Catalunya, INEFC, and Centre d’Alt Rendiment, CAR, located in Spain). A neural network algorithm was used to predict blood lactate values from the sensor data and subject metadata. The developed methodology reliably and accurately predicted blood lactate absolute values, only adding 0.3 mM of accumulated error when compared to portable blood lactate meters, the current gold standard for sports clinicians. The approach proposed in this work, along with an integrated platform for sweat monitoring, will have a strong impact on the sports and health fields as an autonomous, real-time, and continuous monitoring toolThe authors kindly acknowledge the support from the Spanish Ministerio de Indústria, Energía y Turismo (AEI Clusters Program, AEI2009L1CA011), Ministerio de Ciencia y Innovació n (PID2020-114070RB-I00), Agencia Estatal de Investigación (RED2018-102829-T and CPP2021-009021), and AGAUR (2019 DI 18 and 2021PROD00064)Postprint (published version

    Prediction of absolute risk of fragility fracture at 10 years in a Spanish population: validation of the WHO FRAX ™ tool in Spain

    Get PDF
    Background: Age-related bone loss is asymptomatic, and the morbidity of osteoporosis is secondary to the fractures that occur. Common sites of fracture include the spine, hip, forearm and proximal humerus. Fractures at the hip incur the greatest morbidity and mortality and give rise to the highest direct costs for health services. Their incidence increases exponentially with age. Independently changes in population demography, the age - and sex- specific incidence of osteoporotic fractures appears to be increasing in developing and developed countries. This could mean more than double the expected burden of osteoporotic fractures in the next 50 years. Methods/Design: To assess the predictive power of the WHO FRAX (TM) tool to identify the subjects with the highest absolute risk of fragility fracture at 10 years in a Spanish population, a predictive validation study of the tool will be carried out. For this purpose, the participants recruited by 1999 will be assessed. These were referred to scan-DXA Department from primary healthcare centres, non hospital and hospital consultations. Study population: Patients attended in the national health services integrated into a FRIDEX cohort with at least one Dual-energy X-ray absorptiometry (DXA) measurement and one extensive questionnaire related to fracture risk factors. Measurements: At baseline bone mineral density measurement using DXA, clinical fracture risk factors questionnaire, dietary calcium intake assessment, history of previous fractures, and related drugs. Follow up by telephone interview to know fragility fractures in the 10 years with verification in electronic medical records and also to know the number of falls in the last year. The absolute risk of fracture will be estimated using the FRAX (TM) tool from the official web site. Discussion: Since more than 10 years ago numerous publications have recognised the importance of other risk factors for new osteoporotic fractures in addition to low BMD. The extension of a method for calculating the risk (probability) of fractures using the FRAX (TM) tool is foreseeable in Spain and this would justify a study such as this to allow the necessary adjustments in calibration of the parameters included in the logarithmic formula constituted by FRAX (TM

    Laboratorio de ensayos de equipos eléctricos solares del INENCO: caracterización de equipos FV provistos a través del Permer, primeros resultados

    Get PDF
    En el este trabajo se describen algunos procedimientos de ensayo de paneles fotovoltaicos, controladores de carga, acumuladores de plomo – ácido y conversores CC – CC. Se muestran también los primeros resultados obtenidos de la caracterización de dichos equipos eléctricos (unos 100 paneles 50 acumuladores, 50 controladores de carga y conversores), destinados a Licitación Internacional PERMER- FA-LPI B-C: “Provisión e instalación de equipos fotovoltaicos e instalación interna en viviendas rurales de diversas provincias etapa 1”, correspondiente a las provincias de Salta, Tucumán y Chaco. Los mismos se realizaron en distintos laboratorios del INENCO, por equipos de estudiantes y docentes, de acuerdo a Normas IRAM para la mayoría de los casos, aunque también en función de lo acordado con el Ente Regulador de los Servicios Públicos de Salta, y los equivalentes de las otras dos provincias mencionadas anteriormente.In this paper we describe some test procedures for photovoltaic panels, charge controllers, lead-acid batteries, and CC - CC converters. Also shown are the first results of the characterization of these electrical equipment (about 100 panels 50 batteries, charge controllers and 50 conversors) for International Bid-FA-LPI PERMER BC:"Supply and installation of photovoltaic equipment and installation internal rural households in various provinces stage 1" corresponding to the provinces of Salta, Tucuman and Chaco. They were performed in different INENCO laboratories by students and faculty teams, according IRAM for most cases, but also in terms of the agreement with the regulator for the Public Service of Salta and the equivalent of other two provinces mentioned above.Asociación Argentina de Energías Renovables y Medio Ambiente (ASADES

    Clinical impact of the ERBP Working Group 2010 Recommendations for the anemia management in chronic kidney disease not on dialysis: ACERCA study.

    Get PDF
    BACKGROUND AND OBJECTIVE: The Anemia Working Group of ERBP in 2010 recommended a target hemoglobin (Hb) level in the range of 11-12 g/dL, without intentionally exceeding 13 g/dL during the treatment with erythropoiesis stimulating agents (ESAs). This study evaluated if there was a clinical impact of this statement in the anemia management of chronic kidney disease (CKD) patients treated with ESAs not on dialysis in routine clinical practice in Spain. METHODS: This was an observational and cross-sectional study carried out in CKD patients not on dialysis in Spain who initiated ESA treatment (naïve), or were shifted from a previous ESA to another ESAs (converted) since January 2011. RESULTS: Of 441 patients evaluated, 67.6% were naïve and 32.4% were converted. At the study visit, 42.5% of naïve patients achieved the Hb target of 11-12 g/dL, with a mean Hb of 11.3±1.3 g/dL (vs 10.1±0.9 g/dL at the start of ESA therapy). Only 35.3% of converted patients maintained Hb levels within the recommended target at the study visit. Yet, 8.2% of naïve patients and 7.9% of those converted had Hb levels >13 g/dL. Hb levels were similar across subgroups of patients, regardless of the presence of significant comorbidities. CONCLUSIONS: Anemia management in CKD patients treated with ESAs by Spanish nephrologists seems to be aimed at preventing Hb levels <11 g/dL, while <50% of patients were within the narrow recommended Hb target range. This, together with the lack of individualization in Hb targets according to patients' comorbidities show that there is still room for improvement in renal anemia management in the clinical setting

    Mycobacterium manresensis induces trained immunity in vitro

    Get PDF
    The COVID-19 pandemic posed a global health crisis, with new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants weakening vaccine-driven protection. Trained immunity could help tackle COVID-19 disease. Our objective was to analyze whether heat-killed Mycobacterium manresensis (hkMm), an environmental mycobacterium, induces trained immunity and confers protection against SARS-CoV-2 infection. To this end, THP-1 cells and primary monocytes were trained with hkMm. The increased secretion of tumor necrosis factor alpha (TNF-α), interleukin (IL)-6, IL-1β, and IL-10, metabolic activity, and changes in epigenetic marks suggested hkMm-induced trained immunity in vitro. Healthcare workers at risk of SARS-CoV-2 infection were enrolled into the MANRECOVID19 clinical trial (NCT04452773) and were administered Nyaditum resae (NR, containing hkMm) or placebo. No significant differences in monocyte inflammatory responses or the incidence of SARS-CoV-2 infection were found between the groups, although NR modified the profile of circulating immune cell populations. Our results show that M. manresensis induces trained immunity in vitro but not in vivo when orally administered as NR daily for 14 days. Biological sciences; Molecular biology; Immunology; Microbiolog

    Mycobacterium manresensis induces trained immunity in vitro

    Get PDF
    The COVID-19 pandemic posed a global health crisis, with new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants weakening vaccine-driven protection. Trained immunity could help tackle COVID-19 disease. Our objective was to analyze whether heat-killed Mycobacterium manresensis (hkMm), an environmental mycobacterium, induces trained immunity and confers protection against SARS-CoV-2 infection. To this end, THP-1 cells and primary monocytes were trained with hkMm. The increased secretion of tumor necrosis factor alpha (TNF-α), interleukin (IL)-6, IL-1β, and IL-10, metabolic activity, and changes in epigenetic marks suggested hkMm-induced trained immunity in vitro. Healthcare workers at risk of SARS-CoV-2 infection were enrolled into the MANRECOVID19 clinical trial (NCT04452773) and were administered Nyaditum resae (NR, containing hkMm) or placebo. No significant differences in monocyte inflammatory responses or the incidence of SARS-CoV-2 infection were found between the groups, although NR modified the profile of circulating immune cell populations. Our results show that M. manresensis induces trained immunity in vitro but not in vivo when orally administered as NR daily for 14 days.The MANRECOVID19 clinical trial has been sponsored by the Reig Jofre Group. This research was funded by the Consorcio Centro de Investigación Biomédica en Red (CIBERES and CIBEREHD) and the European Union’s Horizon 2020 research and innovation programme under grant agreement No 847762. MDH is supported by a Margarita Salas grant from NextGenerationEU. LS-M is supported by Juan de la Cierva fellowship (FJC2019-041213-I). NI-U is supported by the Spanish Ministry of Science and Innovation (grant PID2020-117145RB-I00), EU HORIZON-HLTH-2021-CORONA-01 (grant 101046118), and institutional funding from Grifols, Pharma Mar, HIPRA, Amassence, and Palobiofarma. The Innate Immunity lab and the UTE are accredited by the Catalan Agency for Management of University and Research Grants (2017-SGR-490/2021-SGR-01186, 2021-SGR-00931, and 2017-SGR-500/2021 SGR 00920). IGTP is a member of the CERCA network of institutes supported by the Health Department of the Government of Catalonia.info:eu-repo/semantics/publishedVersio

    Prediction of absolute risk of fragility fracture at 10 years in a Spanish population: validation of the WHO FRAX ™ tool in Spain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Age-related bone loss is asymptomatic, and the morbidity of osteoporosis is secondary to the fractures that occur. Common sites of fracture include the spine, hip, forearm and proximal humerus. Fractures at the hip incur the greatest morbidity and mortality and give rise to the highest direct costs for health services. Their incidence increases exponentially with age.</p> <p>Independently changes in population demography, the age - and sex- specific incidence of osteoporotic fractures appears to be increasing in developing and developed countries. This could mean more than double the expected burden of osteoporotic fractures in the next 50 years.</p> <p>Methods/Design</p> <p>To assess the predictive power of the WHO FRAX™ tool to identify the subjects with the highest absolute risk of fragility fracture at 10 years in a Spanish population, a predictive validation study of the tool will be carried out. For this purpose, the participants recruited by 1999 will be assessed. These were referred to scan-DXA Department from primary healthcare centres, non hospital and hospital consultations. Study population: Patients attended in the national health services integrated into a FRIDEX cohort with at least one Dual-energy X-ray absorptiometry (DXA) measurement and one extensive questionnaire related to fracture risk factors. Measurements: At baseline bone mineral density measurement using DXA, clinical fracture risk factors questionnaire, dietary calcium intake assessment, history of previous fractures, and related drugs. Follow up by telephone interview to know fragility fractures in the 10 years with verification in electronic medical records and also to know the number of falls in the last year. The absolute risk of fracture will be estimated using the FRAX™ tool from the official web site.</p> <p>Discussion</p> <p>Since more than 10 years ago numerous publications have recognised the importance of other risk factors for new osteoporotic fractures in addition to low BMD. The extension of a method for calculating the risk (probability) of fractures using the FRAX™ tool is foreseeable in Spain and this would justify a study such as this to allow the necessary adjustments in calibration of the parameters included in the logarithmic formula constituted by FRAX™.</p
    corecore