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and Daniel Brotons Cuixart

Cite This: ACS Sens. 2023, 8, 1536−1541 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Many sweat-based wearable monitoring systems
have been recently proposed, but the data provided by those
systems often lack a reliable and meaningful relation to
standardized blood values. One clear example is lactate, a relevant
biomarker for both sports and health sectors, with a complex
sweat−blood bioequivalence. This limitation decreases its
individual significance as a sweat-based biomarker. Taking into
account the insights of previous studies, a multiparametric
methodology has been proposed to predict blood lactate from
non-invasive independent sensors: sweat lactate, sweat rate, and
heart rate. The bioequivalence study was performed with a large
set of volunteers (>30 subjects) in collaboration with sports
institutions (Institut Nacional d’Educacio ́ Fiśica de Catalunya,
INEFC, and Centre d’Alt Rendiment, CAR, located in Spain). A neural network algorithm was used to predict blood lactate values
from the sensor data and subject metadata. The developed methodology reliably and accurately predicted blood lactate absolute
values, only adding 0.3 mM of accumulated error when compared to portable blood lactate meters, the current gold standard for
sports clinicians. The approach proposed in this work, along with an integrated platform for sweat monitoring, will have a strong
impact on the sports and health fields as an autonomous, real-time, and continuous monitoring tool.
KEYWORDS: wearable sensors, sweat analysis, lactate monitoring, sport, multiparametric, machine learning

Nowadays, sweat is one of the most preferred body fluids
for non-invasive continuous monitoring, due to its

comfortable access and wide source of relevant biomarkers
such as electrolytes and metabolites.1 However, sweat analysis
implies a set of challenges: irregular sampling, contamination
from skin and with old samples, evaporation, and low-volume
analysis.2 In recent years, technological efforts have been
carried out to solve these issues by the use of microfluidics for
proper sampling,3−5 miniaturized sensors for low-volume
analysis,6−9 and flexible electronics for wearable integra-
tion.10,11 Therefore, a great number of sweat wearable devices
have been proposed, which can provide continuous and
remote monitoring of multiple biomarkers of interest.12

One key challenge under-addressed in most sweat-based
monitoring systems is the need to stablish a reliable
bioequivalence to blood, the current gold standard for
biochemical information. This issue is critical for providing
meaningful information and to increase acceptance among
stakeholders. However, the pathway from plasma to sweat is
greatly dependent on the molecule nature, and some of the
mechanisms involved remain still unknown.13 Specific models
have been proposed to describe this transport in order to

provide a reference framework to stablish this relation.14 For
some biomarkers, such as ethanol, their small size and
lipophilic nature result in a 1:1 ratio between sweat and
blood levels, making them an ideal candidate for sweat
monitoring, as demonstrated by Hauke et al.15 For other
biomarkers, the pathway is not as direct as with ethanol:
glucose presents lower concentrations in sweat compared to
blood (up to 100-fold),16 but several studies support a
correlation between them.17,18

Lactate is a small polar molecule end product of the
glycolysis pathway related to anaerobic physical activity, which
showed a poor correlation between sweat and blood levels19

due to an unclear path from plasma and the interference of the
lactate secreted by the sweat gland itself. Therefore, stake-
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holders are reluctant to use it for blood lactate prediction.20

Some studies did find a relationship with the exercise intensity
when accounting for the sweat rate, using the lactate excretion
rate (LER)21 or even with blood levels when assessing
variation rates instead of absolute values, avoiding the
misleading effect of lactate produced by the sweat gland.22,23

The large interest in a non-invasive lactate monitoring system
along with the new generation of wearable devices produced a
new set of studies,24−28 learning from the limitations of the
pre-wearable era regarding sampling and sweat rate control.29

Recently, Seki et al.30 were capable of detecting the lactate
threshold from sweat measurements and showing a significant
correlation with both blood lactate and ventilatory thresholds.
Therefore, lactate analysis from sweat seems possible, but more
effort is needed to provide a reliable bioequivalence. Wearable
technology must take advantage of all the knowledge produced
so far in physiological-orientated studies combined with the
new tools developed in recent years.

In this work, a multiparametric bioequivalence study is
proposed in order to overcome the challenges associated with
lactate monitoring and stablish a relationship between blood
lactate and non-invasive parameters: sweat lactate, sweat rate,
and heart rate. For sweat-based measurements, advanced
microfluidic sampling methods were used with the objective to
obtain reliable data. For the lactate sensor, a commercial lateral
flow strip was used because of its robustness and milder storing
conditions compared to self-developed sensors. For the sweat
rate, the key to correct for the dilution of the excreted lactate, a
volumetric microfluidic patch combined with colorimetric
detection was developed based on the patch used by Baker et
al.31 in extensive field tests. Data were gathered from 32
volunteers during different typologies of exercise (cycling and
running) and with variated protocols (increasing or constant
intensity load) in order to have a wide range of realistic
scenarios. Then, a multiparametric approach was applied in
order to obtain a model capable of predicting reference blood
lactate levels using non-invasive data, along with basic subject
metadata, with enough accuracy to provide a trustful,
autonomous, and continuous tool to both athletes and sports
clinicians.

■ EXPERIMENTAL SECTION
Materials. Dibasic sodium phosphate, monobasic sodium

phosphate, sodium chloride (NaCl), potassium chloride (KCl),
urea, D-glucose, ascorbic acid, L-(+)-lactic acid, ammonium chloride
(NH4Cl), Whatman 50 filter paper, and erioglaucine disodium salt
were obtained from Sigma Chemical Co. All solutions were prepared
using distilled water. ARcare 90106, ARcare 90445, and ARflow
93049 pressure-sensitive adhesives used for the sampling patches were
kindly provided by Adhesives Research. Polymethylmethacrylate,
ethanol 96%, sterile gauzes, and cotton swabs were bought from local
stores.
Sweat Lactate Sensor. Lactate Pro-2 test strips (Akray, Kyoto,

Japan) were used as a single-use sweat lactate sensor. In vitro
characterization was carried out by capillary absorption of the sample,
and a commercial potentiostat (Palmsens 4, Palmsens BV, Nether-
lands) was used for the electrochemical methods. For determining the
optimal operating potential, cyclic voltammetry was applied to a 10
mM lactic acid solution in 0.1 M phosphate buffer at pH 6.3. The
potential was scanned from −0.1 to 0.8 V at a scan rate of 0.02 V/s,
repeated up to 15 cycles to check system stability. Chronoamperom-
etry at increasing concentrations of lactic acid in artificial sweat was
used to test the sensor response. The artificial sweat solution
consisted of phosphate buffer (pH = 6.5), 50 mM NaCl, 0.17 mM
glucose, 5 mM NH4Cl, 20 mM urea, 0.03 mM ascorbic acid, and

increasing lactate concentrations (0.5, 4, 8, 12, 20, 30, 40, and 70
mM). The potential was fixed at 0.05 V, and the current was
measured for 200 s. As the sensor is single-use, a different test strip
was used for each measurement (N = 4 for each lactate
concentration). Custom instrumentation was used to perform the
chronoamperometric measurement and remotely communicate the
results to a mobile app through Bluetooth in in vivo tests. The
instrumentation architecture was based on a previously published
potentiostat32 and encapsulated in a plastic housing for strip insertion.
Sampling Patch for Sweat Lactate. A sampling patch was

defined for the recollection and transport of sweat samples to be
captured by the test strip. The patch was constructed using adhesives
that were laser-cut (BCN3D, Ignis) and laminated manually using
alignment pins. Patch dimensions were 44 × 44 mm. Detailed
information about the construction can be found in the Supporting
Information.
Sweat Rate Sensor. The sweat rate sensor consists of a

microfluidic channel fabricated by laser-cutting (BCN3D, Ignis) and
manual lamination using alignment pins. The sweat rate sensor
dimensions were 53 × 30 mm. A filter paper (Whatman 50) was
soaked with blue dye (20 μL of 800 μM erioglaucine solution) and
left to dry at room temperature. This filter paper was placed at the
inlet for providing color to sweat and facilitate visual inspection of the
sweat front along the channel. Geometric dimensions of the
microfluidic channel were measured from a subset of devices in
order to provide averaged values for the volume calculation. The
width and length were measured using an optical microscope
(AM4515ZT-Edge, Dino-Lite), while the height was measured
using an optical interferometer (Profilm3D, Filmetrics). In vitro
characterization was carried out by injecting DI water with a syringe
pump (UMP3, WPI, USA) at a constant flow rate of 1 μL/min. The
fluid front position was captured using a smartphone camera for both
in vitro and in vivo tests. Detailed information about the construction
and sweat rate measurement can be found in the Supporting
Information.
In Vivo Studies. The detailed protocol used for in vivo tests can

be found in the Supporting Information. Briefly, skin was cleaned with
ethanol, DI water, and dry sterile gauzes to avoid contamination and
to ensure a good attachment of the adhesive patches. The patches and
the heart rate monitor were placed at the chest area, and the physical
test was started. When the subject started sweating, simultaneous
measurements of blood lactate, heart rate, sweat lactate, and sweat
rate were taken. Blood was extracted from earlobes, and the lactate
measurement was carried out by commercial portable meters and the
corresponding test strips (Lactate Pro2, Akray, Japan and Lactate
Plus, Nova Biomedical, USA). For some subjects, a sample of blood
was stored in a capillary for posterior analysis with colorimetric
reference instrumentation (Diaglobal, Germany). For sweat lactate,
the adapted test strip was inserted in the custom reader, which started
sending real-time data of chronoamperometry to the mobile app. The
sweat sample was captured from the sampling patch, making sure that
after each measurement, the capture zone was cleaned. For the sweat
rate measurement, a picture was taken of the microfluidic device with
a smartphone to position the sweat front. This process was repeated
for each set of measurements during the test with careful attention to
time traceability. Figure 1A shows a scheme of all the sensors used
during an in vivo test, and the procedure is described in Figure S6. A
total of 32 subjects participated in the study (Table 1).
Data Analysis. The data analysis was carried out using Excel

(Microsoft) and R, and a general overview of the process is shown in
Figure 1B. The analysis process started by extracting data from the
sensors and constructing the dataset, combining all subjects with their
corresponding metadata (subject information and environmental
conditions) and sequential measurements. Besides, additional
parameters were calculated from the initial measurements such as
the exertion and lactate excretion rate (ELER). The final dataset used
consisted of 152 measurements from 32 subjects with age, height,
weight, sweat rate, sweat lactate, heart rate, and ELER as independent
variables and blood lactate as the dependent variable. Once the
dataset was built, 80% of it was used to perform supervised training of
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the model, while the remaining 20% is used for testing the prediction
capacity of the trained model. Different linear models were evaluated
for multiparametric regression such as linear model (LM), partial
least-squares (PLS) regression, or principal component regression
(PCR). Moreover, a neural network algorithm (multilayer perceptron,
MLP) was implemented to take into account the non-linearity and
complexity of the data. The metric used for validating the model
prediction accuracy was the root-mean-square error (RMSE). More
details can be found in the Supporting Information.

■ RESULTS AND DISCUSSION
Characterization of the Sweat Lactate Sensor. The

lactate sensor used for sweat measurements uses a two-
electrode cell functionalized with a membrane of lactate
oxidase (LOX) for the amperometric measurement. In this
technique, a constant potential, previously determined by
cyclic voltammetry, is applied to produce the redox reaction at
the electrode surface. The current generated by the electron
transfer of the enzymatic reaction depends on the lactic acid
concentration of the sample. Although the strips used are
intended for capillary blood, the same measurement can be
applied in sweat. The two main aspects to be taken into
account are the interferents present in sweat (effect of the
sample matrix) and the larger concentration of lactic acid
found in sweat compared to blood.13 The sweat matrix was
replicated by using an artificial formulation, and the range of
lactic acid was tested beyond the fabricant specifications in
blood.

From the cyclic voltammetry, an oxidation peak was
detected at a voltage of 0.055 V corresponding to hydrogen
peroxide, a subproduct of lactate oxidation (Figure S1). This
low potential of operation is key to reducing the interference
from other chemical species present in sweat. The
chronoamperometric measurements performed using the
potential found in complex samples confirmed that the range
of the sensor could be extended up to 40 mM with a good
linear response (Figure 2A), and saturation was observed for

larger concentrations. The sensitivity found was 0.0287 ±
0.0009 μA/mM. Besides, we demonstrated that the same trend
was captured using our developed instrumentation with
sufficient resolution (Figure S2).
Characterization of the Sweat Rate Sensor. The

proposed sweat rate sensor determines the sweat volume by
continuously monitoring the position of the sweat front in a
microfluidic channel with controlled geometrical dimensions.
This methodology is based on previous studies that have
already been demonstrated in field studies and validated for the
local sweat rate measurement against a reference such as the
gravimetric measurement using absorbent patches.31 Figure 2B
shows a typical use of the sweat rate sensor attached to skin
and how the flow rate is calculated from the volume difference
in a given interval of time. The detailed procedure used to
calculate the flow rate inside the microfluidic channel using the
fluid front position and the geometrical dimensions of the
device is included in the Supporting Information (Figure S4).

The device working principle and procedure were validated
using a syringe pump, which provided a known flow rate. The
syringe pump flow rate error was around 0.4% at 1 μL/min
(measured using gravimetric analysis), while the averaged

Figure 1. Methodology employed in the study. (A) Scheme of the
different sensors used (blood lactate, heart rate, sweat lactate, and
sweat rate). Scale bar = 1 cm. (B) Scheme of the data analysis pipeline
followed in this work. ELER (exertion and lactate excretion rate) is
the product of sweat lactate (SL) and sweat rate (SR) divided by the
heart rate (HR).

Table 1. Information of the Subjects of the Study

age [years] 21 ± 4
gender 21 males and 11 females
height [m] 1.74 ± 0.09
weight [kg] 66 ± 9
training level 20 amateurs and 12 athletes
skin condition healthy, Caucasian (cleaned)

Figure 2. Sweat sensors used in this study. (A) Calibration curve of
the sweat lactate sensor in artificial sweat solution. (B) Images of the
sweat rate sensor during use in a subject showing the advancing sweat
front for a given interval of time, from which the sweat rate is
calculated (scale bar = 5 mm).
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relative error for our sensor was 5.7% (n = 3). This deviation is
considered low enough to validate the use of our portable
sweat rate sensor for in vivo tests (Table S1 and Figure S5).
The comparison between the individual device dimensions and
the averaged dimensions (obtained from a subset of 10
devices) confirmed the reproducibility of the fabrication
method.
In Vivo Proof of Concept. The methodology proposed for

in vivo tests was validated using controlled conditions in a
laboratory environment before applying it to the field tests.
The sampling patch for the sweat lactate measurement
collected enough sample to fill the capture zone in less than
3 min just after cleaning it due to the hydrophilicity of the
channel. This feature allows measurements with a frequency of
3 min, higher than the majority of the bioequivalence studies
found in the literature.

Preliminary in vivo tests provided meaningful information to
improve the performance of the sweat rate sensor. First, the
inlet was placed at a certain distance from the edge of the
device (more than 8 mm in our case) to provide an intimate
contact with skin and prevent leakages that could mislead the
results. Besides, the filter paper was placed at the same inlet in
order to reduce the dead volume up to the sensing microfluidic
channel, minimizing the lag time for the first measurement.
Finally, the inlet dimensions that provide the sweat collection
area should be designed depending on the total volume of the
microfluidic channel. Therefore, considering local sweat rates
at the chest zone,33 a volume of the microfluidic system of 24.3
μL should provide more than 2 h of working time until
saturation (completely filled) for a 4 mm diameter inlet.
Bioequivalence Analysis. First of all, the high number of

tests carried out allowed us to study the variability between the
current instrumentation available for the blood lactate
measurement. The colorimetric method, stablished as the
reference in the laboratory, was compared to the electro-
chemical portable meter used for field measurements. It was
found that the commercial portable meters used in sports
medicine had a deviation from reference results of 1.3 mM

(RMSE) (Figure S7). Therefore, this degree of variability is
accepted in the market for field tests and sets the threshold for
the desired performance of our non-invasive system.

As reviewed before, the lactate bioequivalence from sweat to
blood is a complex process because there is not a direct
correlation. This result was clear in our data as well, as shown
in Figure S8, with different phenomena potentially masking a
relationship. Therefore, a multiparametric approach must be
implemented combining robust sweat-based measurements
with additional non-invasive parameters from the user. The
first set of models applied were multiparametric regression
models: linear, PLS regression, or PCR. The performance
obtained with these models was poor in terms of accuracy and
robustness (Table S2).

A neural network algorithm (MLP) was implemented to
increase the complexity and introduce the non-linearity into
the variable relations. The initial results showed a greater
deviation with respect to commercial meters (RMSE = 2.33
mM, Figure S9A). However, when filtering out high blood
lactate values, which can distort the model due to their low
frequency and presented a significant increase in error
prediction, the performance was notably increased (RMSE =
1.56 mM), Figure 3A. The trained model also showed to be
able to predict the whole temporal profile in blood lactate of a
given subject, whose data were not used for model training
(Figure 3B). The relative importance of each independent
variable in the prediction of the neural network can be
extracted (Figure S9B). ELER resulted in the most important
parameter, validating that the initially stablished relation has a
significant role in the prediction. Furthermore, the most
relevant parameters were all sweat-based plus the heart rate,
without relevant contribution from subject metadata.

■ CONCLUSIONS
The results of this study support the idea that the estimation of
blood lactate is feasible using non-invasive sweat measure-
ments, opening the road for continuous, remote, and
autonomous monitoring of lactate for sports and health

Figure 3. Prediction using the model trained (MLP). (A) Correlation plot between actual values of blood lactate (measured using portable meters)
and predicted values using non-invasive parameters and the machine learning model. (B) Evolution for two subjects of blood lactate (actual and
predicted) to show the capability of predicting for a particular test.
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training. The parameters considered were sweat lactate, sweat
rate, heart rate, and, with less significant contribution, subject
metadata that could be easily obtained such as age, height, and
weight. A neural network algorithm was used to predict blood
lactate values (RMSE = 1.56 mM), a methodology that can be
applied to real situations, with a demonstrated accuracy close
to current portable blood lactate meters (RMSE = 1.3 mM),
resulting in less than 0.3 mM of accumulated error. Although
the methodology proposed has successfully achieved the
objective of confirming lactate bioequivalence, several
improvements must be implemented in order to provide a
wearable lactate monitoring system.

First, at the sensor level, a sweat lactate sensor must be
capable of providing continuous measurements for the typical
duration of a physical exercise (1−2 h, even longer) while
satisfying fabrication and storing conditions for commercial
purposes. Then, it must be integrated into a microfluidic
system dedicated to the sampling and renewal of sweat, as
achieved manually in this work. The same principles must be
applied to the sweat rate sensor, where a continuous and
automatic measurement method must be used. To obtain these
data and process them in real time, the system must
incorporate the required electronics in charge of the sensor
instrumentation, the data processing, and the remote
communication. The sensor instrumentation must be tailored
for each specific sensor for integration purposes, while the data
processing capability must be enough to embed the required
prediction algorithms.

The presented prediction system in combination with a
sweat-based platform can be directed to diverse applications,
such as dehydration or health-related biomarkers, promoting a
great leap toward personal monitoring. However, all future
devices must be tailored to the final use case in terms of the
parameters measured, sweat sampling, and data analysis. It is
certain that the sweat monitoring process is more challenging
than the current gold standard, but we believe that application-
driven solutions will have a strong impact on sports and
healthcare sectors in the near future.
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