105 research outputs found

    Beam characterisation and machine development at VELA

    Get PDF
    An overview is presented of developments on VELA (Versatile Electron Linear Accelerator), an RF photoinjector with two user stations (beam areas BA1, and BA2) at Daresbury Laboratory. Numerous machine development, commissioning, beam characterisation and user experiments have been completed in the past year. A new beamline and a dedicated multi-purpose chamber have been commissioned in BA1 and the first experiments performed. A number of measures have been taken to improve the stability of machine by mitigating problems with a phase drift, laser beam transport drift and a coherent beam oscillation. The 6D phase space of the electron beam has been characterised through quadrupole scans, transverse tomography and with a transverse deflecting cavity

    SCFAs Induce Mouse Neutrophil Chemotaxis through the GPR43 Receptor

    Get PDF
    Short chain fatty acids (SCFAs) have recently attracted attention as potential mediators of the effects of gut microbiota on intestinal inflammation. Some of these effects have been suggested to occur through the direct actions of SCFAs on the GPR43 receptor in neutrophils, though the precise role of this receptor in neutrophil activation is still unclear. We show that mouse bone marrow derived neutrophils (BMNs) can chemotax effectively through polycarbonate filters towards a source of acetate, propionate or butyrate. Moreover, we show that BMNs move with good speed and directionality towards a source of propionate in an EZ-Taxiscan chamber coated with fibrinogen. These effects of SCFAs were mimicked by low concentrations of the synthetic GPR43 agonist phenylacetamide-1 and were abolished in GPR43−/− BMNs. SCFAs and phenylacetamide-1 also elicited GPR43-dependent activation of PKB, p38 and ERK and these responses were sensitive to pertussis toxin, indicating a role for Gi proteins. Phenylacetamide-1 also elicited rapid and transient activation of Rac1/2 GTPases and phosphorylation of ribosomal protein S6. Genetic and pharmacological intervention identified important roles for PI3Kγ, Rac2, p38 and ERK, but not mTOR, in GPR43-dependent chemotaxis. These results identify GPR43 as a bona fide chemotactic receptor for neutrophils in vitro and start to define important elements in its signal transduction pathways

    Breast MRI: guidelines from the European Society of Breast Imaging

    Get PDF
    The aim of breast MRI is to obtain a reliable evaluation of any lesion within the breast. It is currently always used as an adjunct to the standard diagnostic procedures of the breast, i.e., clinical examination, mammography and ultrasound. Whereas the sensitivity of breast MRI is usually very high, specificity—as in all breast imaging modalities—depends on many factors such as reader expertise, use of adequate techniques and composition of the patient cohorts. Since breast MRI will always yield MR-only visible questionable lesions that require an MR-guided intervention for clarification, MRI should only be offered by institutions that can also offer a MRI-guided breast biopsy or that are in close contact with a site that can perform this type of biopsy for them. Radiologists involved in breast imaging should ensure that they have a thorough knowledge of the MRI techniques that are necessary for breast imaging, that they know how to evaluate a breast MRI using the ACR BI-RADS MRI lexicon, and most important, when to perform breast MRI. This manuscript provides guidelines on the current best practice for the use of breast MRI, and the methods to be used, from the European Society of Breast Imaging (EUSOBI)

    Augmenting Assessment with Learning Analytics

    Full text link
    Learning analytics as currently deployed has tended to consist of large-scale analyses of available learning process data to provide descriptive or predictive insight into behaviours. What is sometimes missing in this analysis is a connection to human-interpretable, actionable, diagnostic information. To gain traction, learning analytics researchers should work within existing good practice particularly in assessment, where high quality assessments are designed to provide both student and educator with diagnostic or formative feedback. Such a model keeps the human in the analytics design and implementation loop, by supporting student, peer, tutor, and instructor sense-making of assessment data, while adding value from computational analyses

    In vitro influence of dietary protein and fructooligosaccharides on metabolism of canine fecal microbiota

    Get PDF
    BACKGROUND: The present in vitro study investigated whether the utilization of fructooligosaccharides (FOS) may influence canine fecal microbial population in presence of diets differing in their protein content and digestibility. Fresh fecal samples were collected from five adult dogs, pooled, and incubated for 24 h with the undigested residue of three diets: 1, Low protein high digestibility diet (LP HD, crude protein (CP) 229 g/kg); 2, High protein high digestibility diet (HP HD, CP 304 g/kg); 3, High protein low digestibility diet (HP LD, CP 303 g/kg) that had been previously subjected to enzymatic digestion. In the in vitro fermentation study, there were six treatments: 1) LP HD; 2) HP HD 3) HP LD; 4) LP HD + FOS; 5) HP HD + FOS; 6) HP LD + FOS. Fructooligosaccharides were added at the final concentration of 1.5 g/L. Samples of fermentation fluid were collected at 6 and 24 h of incubation. RESULTS: Values of pH were reduced by FOS at 6 and 24 h (P < 0.001); conversely, low protein digestibility and high dietary protein level resulted in higher pH at both sampling times (P < 0.001). At 24 h, FOS lowered ammonia (−10 %; P < 0.001) and resulted (P < 0.05) in higher concentrations of total volatile fatty acids (VFA) (+43 %), acetic acid (+14 %), propionic acid (+75 %) and n-butyric acid (+372 %). Conversely, at 24 h, low protein digestibility resulted (P < 0.01) in lower concentrations of acetic acid (−26 %), propionic acid (−37 %) and total VFA (−21 %). Putrescine concentrations were increased at 6 and 24 h of fermentation by low protein digestibility (+21 and 22 %, respectively; P < 0.05) and FOS (+18 and 24 %, respectively; P < 0.01). After 24 h of fermentation, high dietary protein level resulted in lower counts of lactobacilli and enterococci (−0.5 and −0.7 log cells/mL, respectively; P < 0.05) whereas low protein digestibility tended to increase counts of C. perfringens (+0.2 log cells/mL; P = 0.07). CONCLUSIONS: Results from the present study showed that diets rich in protein may exert negative influences on the canine intestinal ecosystem, slightly increasing the presence of ammonia and reducing counts of lactobacilli and enterococci. Moreover, the presence of poorly digestible protein resulted in lower concentrations of VFA. Conversely, administration of FOS may improve metabolism of canine intestinal microbiota, reducing ammonia concentrations and enhancing VFA production

    Impact of primary kidney disease on the effects of empagliflozin in patients with chronic kidney disease: secondary analyses of the EMPA-KIDNEY trial

    Get PDF
    Background: The EMPA KIDNEY trial showed that empagliflozin reduced the risk of the primary composite outcome of kidney disease progression or cardiovascular death in patients with chronic kidney disease mainly through slowing progression. We aimed to assess how effects of empagliflozin might differ by primary kidney disease across its broad population. Methods: EMPA-KIDNEY, a randomised, controlled, phase 3 trial, was conducted at 241 centres in eight countries (Canada, China, Germany, Italy, Japan, Malaysia, the UK, and the USA). Patients were eligible if their estimated glomerular filtration rate (eGFR) was 20 to less than 45 mL/min per 1·73 m2, or 45 to less than 90 mL/min per 1·73 m2 with a urinary albumin-to-creatinine ratio (uACR) of 200 mg/g or higher at screening. They were randomly assigned (1:1) to 10 mg oral empagliflozin once daily or matching placebo. Effects on kidney disease progression (defined as a sustained ≥40% eGFR decline from randomisation, end-stage kidney disease, a sustained eGFR below 10 mL/min per 1·73 m2, or death from kidney failure) were assessed using prespecified Cox models, and eGFR slope analyses used shared parameter models. Subgroup comparisons were performed by including relevant interaction terms in models. EMPA-KIDNEY is registered with ClinicalTrials.gov, NCT03594110. Findings: Between May 15, 2019, and April 16, 2021, 6609 participants were randomly assigned and followed up for a median of 2·0 years (IQR 1·5–2·4). Prespecified subgroupings by primary kidney disease included 2057 (31·1%) participants with diabetic kidney disease, 1669 (25·3%) with glomerular disease, 1445 (21·9%) with hypertensive or renovascular disease, and 1438 (21·8%) with other or unknown causes. Kidney disease progression occurred in 384 (11·6%) of 3304 patients in the empagliflozin group and 504 (15·2%) of 3305 patients in the placebo group (hazard ratio 0·71 [95% CI 0·62–0·81]), with no evidence that the relative effect size varied significantly by primary kidney disease (pheterogeneity=0·62). The between-group difference in chronic eGFR slopes (ie, from 2 months to final follow-up) was 1·37 mL/min per 1·73 m2 per year (95% CI 1·16–1·59), representing a 50% (42–58) reduction in the rate of chronic eGFR decline. This relative effect of empagliflozin on chronic eGFR slope was similar in analyses by different primary kidney diseases, including in explorations by type of glomerular disease and diabetes (p values for heterogeneity all &gt;0·1). Interpretation: In a broad range of patients with chronic kidney disease at risk of progression, including a wide range of non-diabetic causes of chronic kidney disease, empagliflozin reduced risk of kidney disease progression. Relative effect sizes were broadly similar irrespective of the cause of primary kidney disease, suggesting that SGLT2 inhibitors should be part of a standard of care to minimise risk of kidney failure in chronic kidney disease. Funding: Boehringer Ingelheim, Eli Lilly, and UK Medical Research Council

    Genomic reconstruction of the SARS-CoV-2 epidemic in England.

    Get PDF
    The evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus leads to new variants that warrant timely epidemiological characterization. Here we use the dense genomic surveillance data generated by the COVID-19 Genomics UK Consortium to reconstruct the dynamics of 71 different lineages in each of 315 English local authorities between September 2020 and June 2021. This analysis reveals a series of subepidemics that peaked in early autumn 2020, followed by a jump in transmissibility of the B.1.1.7/Alpha lineage. The Alpha variant grew when other lineages declined during the second national lockdown and regionally tiered restrictions between November and December 2020. A third more stringent national lockdown suppressed the Alpha variant and eliminated nearly all other lineages in early 2021. Yet a series of variants (most of which contained the spike E484K mutation) defied these trends and persisted at moderately increasing proportions. However, by accounting for sustained introductions, we found that the transmissibility of these variants is unlikely to have exceeded the transmissibility of the Alpha variant. Finally, B.1.617.2/Delta was repeatedly introduced in England and grew rapidly in early summer 2021, constituting approximately 98% of sampled SARS-CoV-2 genomes on 26 June 2021
    corecore