519 research outputs found

    A temperature sensitive live-attenuated canine influenza virus H3N8 vaccine

    Get PDF
    Canine influenza is a respiratory disease of dogs caused by canine influenza virus (CIV). CIV subtypes responsible for influenza in dogs include H3N8, which originated from the transfer of H3N8 equine influenza virus to dogs; and the H3N2 CIV, which is an avian-origin virus that adapted to infect dogs. Influenza infections are most effectively prevented through vaccination to reduce transmission and future infection. Currently, only inactivated influenza vaccines (IIVs) are available for the prevention of CIV in dogs. However, the efficacy of IIVs is suboptimal, and novel approaches are necessary for the prevention of disease caused by this canine respiratory pathogen. Using reverse genetics techniques, we have developed a live-attenuated CIV vaccine (LACIV) for the prevention of H3N8 CIV. The H3N8 LACIV replicates efficiently in canine cells at 33°C but is impaired at temperatures of 37 to 39°C and was attenuated compared to wild-type H3N8 CIV in vivo and ex vivo. The LACIV was able to induce protection against H3N8 CIV challenge with a single intranasal inoculation in mice. Immunogenicity and protection efficacy were better than that observed with a commercial CIV H3N8 IIV but provided limited cross-reactive immunity and heterologous protection against H3N2 CIV. These results demonstrate the feasibility of implementing a LAIV approach for the prevention and control of H3N8 CIV in dogs and suggest the need for a new LAIV for the control of H3N2 CIV. Importance: Two influenza A virus subtypes has been reported in dogs in the last 16 years: the canine influenza viruses (CIV) H3N8 and H3N2 of equine and avian origins, respectively. To date, only inactivated influenza vaccines (IIVs) are available to prevent CIV infections. Here, we report the generation of a recombinant, temperature-sensitive H3N8 CIV as a live-attenuated influenza vaccine (LAIV), which was attenuated in mice and dog tracheal, explants compared to CIV H3N8 wild type. A single dose of H3N8 LACIV showed immunogenicity and protection against a homologous challenge that was better than that conferred with an H3N8 IIV, demonstrating the feasibility of implementing a LAIV approach for the improved control of H3N8 CIV infections in dogs

    The Role of Antigen in the Localization of Naive, Acutely Activated, and Memory CD8+ T Cells to the Lung During Influenza Pneumonia

    Get PDF
    AbstractThe role of Ag in the recruitment and localization of naive, acutely activated, and memory CD8+ T cells to the lung during influenza infection was explored using TCR-transgenic (Tg) mice. Naive, Thy1.2+CD8+ OT-I TCR-Tg cells were primed and recruited to the lung after transfer into congenic Thy1.1+ recipients challenged with a genetically engineered influenza virus (influenza A/WSN/33 (WSN)-OVAI) containing the Kb restricted OVA257–264 epitope (siinfekl) in the viral neuraminidase stalk. However, if the transferred animals were infected with a similar influenza virus that expressed an irrelevant Kb epitope (WSN-PEPII), no TCR-Tg T cells were detectable in the lung, although they were easily visible in the lymphoid organs. Conversely, there were substantial numbers of OT-I cells found in the lungs of WSN-PEPII-infected mice when the animals had been previously, or were concurrently, infected with a recombinant vaccinia virus expressing OVA. Similar results were obtained with nontransgenic populations of memory CD8+ T cells reactive to a murine γ-herpesvirus-68 Ag. Interestingly, the primary host response to the immunodominant influenza nucleoprotein epitope was not affected by the presence of memory or recently activated OT-I T cells. Thus, although Ag is required to activate the T cells, the subsequent localization of T cells to the lung during a virus infection is a property of recently activated and memory T cells and is not necessarily driven by Ag in the lung

    An Early CD4+ T Cell–dependent Immunoglobulin A Response to Influenza Infection in the Absence of Key Cognate T–B Interactions

    Get PDF
    Contact-mediated interactions between CD4+ T cells and B cells are considered crucial for T cell–dependent B cell responses. To investigate the ability of activated CD4+ T cells to drive in vivo B cell responses in the absence of key cognate T–B interactions, we constructed radiation bone marrow chimeras in which CD4+ T cells would be activated by wild-type (WT) dendritic cells, but would interact with B cells that lacked expression of either major histocompatibility complex class II (MHC II) or CD40. B cell responses were assessed after influenza virus infection of the respiratory tract, which elicits a vigorous, CD4+ T cell–dependent antibody response in WT mice. The influenza-specific antibody response was strongly reduced in MHC II knockout and CD40 knockout mice. MHC II–deficient and CD40-deficient B cells in the chimera environment also produced little virus-specific immunoglobulin (Ig)M and IgG, but generated a strong virus-specific IgA response with virus-neutralizing activity. The IgA response was entirely influenza specific, in contrast to the IgG2a response, which had a substantial nonvirus-specific component. Our study demonstrates a CD4+ T cell–dependent, antiviral IgA response that is generated in the absence of B cell signaling via MHC II or CD40, and is restricted exclusively to virus-specific B cells

    Managing Local Order in Conjugated Polymer Blends via Polarity Contrast

    Get PDF
    The optoelectronic landscape of conjugated polymers is intimately related to their molecular arrangement and packing, with minute changes in local order, such as chain conformation and torsional backbone order/disorder, frequently having a substantial effect on macroscopic properties. While many of these local features can be manipulated via chemical design, the synthesis of a series of compounds is often required to elucidate correlations between chemical structure and macromolecular ordering. Here, we show that blending semiconducting polymers with insulating commodity plastics enables controlled manipulation of the semiconductor backbone planarity. The key is to create a polarity difference between the semiconductor backbone and its side chains, while matching the polarity of the side chains and the additive. We demonstrate the applicability of this approach through judicious comparison of regioregular poly(3-hexylthiophene) (P3HT) with two of its more polar derivatives, namely the diblock copolymer poly(3-hexylthiophene)-block-poly(ethylene oxide) (P3HT-b-PEO) and the graft polymer poly[3-but(ethylene oxide)thiophene] (P3BEOT), as well as their blends with poly(ethylene oxide) (PEO). Proximity between polar side chains and a similarly polar additive reduces steric hindrance between individual chain segments by essentially "expelling" the side chains away from the semiconducting backbones. This process, shown to be facilitated via exposure to polar environments such as humid air/water vapor, facilitates backbone realignment toward specific chain arrangements and, in particular, planar backbone configurations

    Generalized just-in-time trace compilation using a parallel task farm in a dynamic binary translator

    Get PDF
    Dynamic Binary Translation (DBT) is the key technology behind cross-platform virtualization and allows software compiled for one Instruction Set Architecture (ISA) to be executed on a processor supporting a different ISA. Under the hood, DBT is typically implemented using Just-In-Time (JIT) compilation of frequently executed program regions, also called traces. The main challenge is translating frequently executed program regions as fast as possible into highly efficient native code. As time for JIT compilation adds to the overall execution time, the JIT compiler is often decoupled and operates in a separate thread independent from the main simulation loop to reduce the overhead of JIT compilation. In this paper we present two innovative contributions. The first contribution is a generalized trace compilation approach that considers all frequently executed paths in a program for JIT compilation

    Self-scheduling of wind-thermal systems using a stochastic MILP approach

    Get PDF
    In this work a stochastic (Stoc) mixed-integer linear programming (MILP) approach for the coordinated trading of a price-taker thermal (Ther) and wind power (WP) producer taking part in a day-ahead market (DAM) electricity market (EMar) is presented. Uncertainty (Uncer) on electricity price (EPr) and WP is considered through established scenarios. Thermal units (TU) are modelled by variable costs, start-up (ST-UP) technical operating constraints and costs, such as: forbidden operating zones, minimum (Min) up/down time limits and ramp up/down limits. The goal is to obtain the optimal bidding strategy (OBS) and the maximization of profit (MPro). The wind-Ther coordinated configuration (CoConf) is modelled and compared with the unCoConf. The CoConf and unCoConf are compared and relevant conclusions are drawn from a case study
    • 

    corecore