409 research outputs found

    PopCORN: Hunting down the differences between binary population synthesis codes

    Get PDF
    Binary population synthesis (BPS) modelling is a very effective tool to study the evolution and properties of close binary systems. The uncertainty in the parameters of the model and their effect on a population can be tested in a statistical way, which then leads to a deeper understanding of the underlying physical processes involved. To understand the predictive power of BPS codes, we study the similarities and differences in the predicted populations of four different BPS codes for low- and intermediate-mass binaries. We investigate whether the differences are caused by different assumptions made in the BPS codes or by numerical effects. To simplify the complex problem of comparing BPS codes, we equalise the inherent assumptions as much as possible. We find that the simulated populations are similar between the codes. Regarding the population of binaries with one WD, there is very good agreement between the physical characteristics, the evolutionary channels that lead to the birth of these systems, and their birthrates. Regarding the double WD population, there is a good agreement on which evolutionary channels exist to create double WDs and a rough agreement on the characteristics of the double WD population. Regarding which progenitor systems lead to a single and double WD system and which systems do not, the four codes agree well. Most importantly, we find that for these two populations, the differences in the predictions from the four codes are not due to numerical differences, but because of different inherent assumptions. We identify critical assumptions for BPS studies that need to be studied in more detail.Comment: 13 pages, +21 pages appendix, 35 figures, accepted for publishing in A&A, Minor change to match published version, most important the added link to the website http://www.astro.ru.nl/~silviato/popcorn for more detailed figures and informatio

    Gigahertz repetition rate thermionic electron gun concept

    Get PDF
    We present a novel concept for the generation of gigahertz repetition rate high brightness electron bunches. A custom design 100 kV thermionic gun provides a continuous electron beam, with the current determined by the filament size and temperature. A 1 GHz rectangular RF cavity deflects the beam across a knife-edge, creating a pulsed beam. Adding a higher harmonic mode to this cavity results in a flattened magnetic field profile which increases the duty cycle to 30%. Finally, a compression cavity induces a negative longitudinal velocity-time chirp in a bunch, initiating ballistic compression. Adding a higher harmonic mode to this cavity increases the linearity of this chirp and thus decreases the final bunch length. Charged particle simulations show that with a 0.15 mm radius LaB6 filament held at 1760 K, this method can create 279 fs, 3.0 pC electron bunches with a radial rms core emittance of 0.089 mm mrad at a repetition rate of 1 GHz.Comment: 12 pages, 12 figure

    The Form and Abandonment of the City of Kuik-Mardan, Otrar Oasis, Kazakhstan in the Early Islamic Period

    Get PDF
    A joint Kazakh-British archaeological initiative undertook a survey and excavation of the city of Kuik-Mardan, one of the largest of the seventy or so known settlements in the Otrar oasis on the Syr-Darya river, Kazakhstan. Several complimentary field techniques were employed including unmanned aerial vehicle photomapping and an extensive programme of radiometric dating. The radiocarbon dates obtained are the first for any city in the oasis and allow more confident interpretations of the experience of the city to be ventured. Also undertaken was a geoarchaeological investigation of the surrounding irrigation and water supply canal system. Key results include its wholesale destruction during the 6th to 7th century and the form of the later occupation of the city

    PopCORN: Hunting down the differences between binary population synthesis codes

    Get PDF
    Binary population synthesis (BPS) modelling is a very effective tool to study the evolution and properties of various types of close binary systems. The uncertainty in the parameters of the model and their effect on a population can be tested in a statistical way, which then leads to a deeper understanding of the underlying (sometimes poorly understood) physical processes involved. Several BPS codes exist that have been developed with different philosophies and aims. Although BPS has been very successful for studies of many populations of binary stars, in the particular case of the study of the progenitors of supernovae Type Ia, the predicted rates and ZAMS progenitors vary substantially between different BPS codes

    Population genetic structure between Yap and Palau for the coral Acropora hyacinthus

    Get PDF
    Information on connectivity is becoming increasingly in demand as marine protected areas are being designed as an integral part of a network to protect marine resources at the ecosystem level. Larval dispersal and population structure, however, remain very difficult to assess. Here, we tested the predictions of a detailed oceanographic connectivity model of larval dispersal and coral recruitment within Palau and between Palau and Yap, which was developed to support the review of the existing network of marine protected areas in Palau. We used high throughput microsatellite genotyping of the coral Acropora hyacinthus to characterize population genetic structure. Pairwise F ′ ST values between Palau and Yap (0.10), Palau and Ngulu (0.09) and Yap and Ngulu (0.09) were all significant and similar to pairwise F ′ ST values of sites within Palau (0.02–0.12) and within Yap (0.02–0.09) highlighting structure at island scale and indicating that recruitment may be even more localized than previously anticipated. A bottleneck test did not reveal any signs of a founder effect between Yap and Palau. Overall, the data supports the idea that recovery of A. hyacinthus in Palau did not come exclusively from a single source but most likely came from a combination of areas, including sites within Palau. In light of these results there seems to be very little connectivity around the barrier reef and management recommendation would be to increase the number or the size of MPAs within Palau

    Multifaceted effects of synthetic TLR2 ligand and Legionella pneumophilia on Treg-mediated suppression of T cell activation

    Get PDF
    Contains fulltext : 97133.pdf (publisher's version ) (Open Access)BACKGROUND: Regulatory T cells (Treg) play a crucial role in maintaining immune homeostasis and self-tolerance. The immune suppressive effects of Tregs should however be limited in case effective immunity is required against pathogens or cancer cells. We previously found that the Toll-like receptor 2 (TLR2) agonist, Pam3CysSK4, directly stimulated Tregs to expand and temporarily abrogate their suppressive capabilities. In this study, we evaluate the effect of Pam3CysSK4 and Legionella pneumophila, a natural TLR2 containing infectious agent, on effector T (Teff) cells and dendritic cells (DCs) individually and in co-cultures with Tregs. RESULTS: TLR2 agonists can directly provide a co-stimulatory signal inducing enhanced proliferation and cytokine production of naive CD4+ Teff cells. With respect to cytokine production, DCs appear to be most sensitive to low amounts of TLR agonists. Using wild type and TLR2-deficient cells in Treg suppression assays, we accordingly show that all cells (e.g. Treg, Teff cells and DCs) contributed to overcome Treg-mediated suppression of Teff cell proliferation. Furthermore, while TLR2-stimulated Tregs readily lost their ability to suppress Teff cell proliferation, cytokine production by Teff cells was still suppressed. Similar results were obtained upon stimulation with TLR2 ligand containing bacteria, Legionella pneumophila. CONCLUSIONS: These findings indicate that both synthetic and natural TLR2 agonists affect DCs, Teff cells and Treg directly, resulting in multi-modal modulation of Treg-mediated suppression of Teff cells. Moreover, Treg-mediated suppression of Teff cell proliferation is functionally distinct from suppression of cytokine secretion

    Improved generation of rat gene knockouts by target-selected mutagenesis in mismatch repair-deficient animals

    Get PDF
    BACKGROUND: The laboratory rat (Rattus norvegicus) is one of the preferred model organisms in physiological and pharmacological research, although the availability of specific genetic models, especially gene knockouts, is limited. N-ethyl-N-nitrosourea (ENU)-driven target-selected mutagenesis is currently the most successful method in rats, although it is still very laborious and expensive. RESULTS: As ENU-induced DNA damage is normally recognized by the mismatch repair (MMR) system, we hypothesized that the effectiveness of the target-selected mutagenesis approach could be improved by using a MMR-deficient genetic background. Indeed, Msh6 knockout rats were found to be more sensitive to ENU treatment and the germ line mutation rate was boosted more than two-fold to 1 mutation per 585 kb. In addition, the molecular mutation spectrum was found to be changed in favor of generating knockout-type alleles by approximately 20%, resulting in an overall increase in efficiency of approximately 2.5 fold. The improved effectiveness was demonstrated by high throughput mutation discovery in 70 Mb of sequence in a set of only 310 mutant F1 rats. This resulted in the identification of 89 mutations of which four introduced a premature stopcodon and 64 resulted in amino acid changes. CONCLUSION: Taken together, we show that the use of a MMR-deficient background considerably improves ENU-driven target-selected mutagenesis in the rat, thereby reducing animal use as well as screening costs. The use of a mismatch repair-deficient genetic background for improving mutagenesis and target-selected knockout efficiency is in principle applicable to any organism of interest
    corecore