6 research outputs found

    Characteristics of the Underestimation Error of Annual Maximum Rainfall Depth Due to Coarse Temporal Aggregation

    Get PDF
    This study analyzed all characteristics of the error committed in evaluating annual maximum rainfall depth, Hd, associated with a given duration, d, when data with coarse temporal aggregation, ta, were used. It is well known that when ta = 1 min, this error is practically negligible while coarser temporal aggregations can determine underestimation for a single Hd up to 50% and for the average value of sufficiently numerous series of Hd up to 16.67%. By using a mathematical relation between average underestimation error and the ratio ta/d, each Hd value belonging to a specific series could be corrected through deterministic or stochastic approaches. With a deterministic approach, an average correction was identically applied to all Hd values with the same ta and d while, for a stochastic correction, a thorough knowledge of the statistical characteristics of the underestimation error was required. Accordingly, in this work, rainfall data derived from many stations in central Italy were analyzed and it was assessed that single and average errors, which were both assumed as random variables, followed exponential and normal distributions, respectively. Furthermore, the single underestimation error was also found inversely correlated to the corresponding annual maximum rainfall depth

    Development and analysis of the Soil Water Infiltration Global database

    Get PDF
    In this paper, we present and analyze a novel global database of soil infiltration measurements, the Soil Water Infiltration Global (SWIG) database. In total, 5023 infiltration curves were collected across all continents in the SWIG database. These data were either provided and quality checked by the scientists who performed the experiments or they were digitized from published articles. Data from 54 different countries were included in the database with major contributions from Iran, China, and the USA. In addition to its extensive geographical coverage, the collected infiltration curves cover research from 1976 to late 2017. Basic information on measurement location and method, soil properties, and land use was gathered along with the infiltration data, making the database valuable for the development of pedotransfer functions (PTFs) for estimating soil hydraulic properties, for the evaluation of infiltration measurement methods, and for developing and validating infiltration models. Soil textural information (clay, silt, and sand content) is available for 3842 out of 5023 infiltration measurements ( ∌ 76%) covering nearly all soil USDA textural classes except for the sandy clay and silt classes. Information on land use is available for 76% of the experimental sites with agricultural land use as the dominant type ( ∌ 40%). We are convinced that the SWIG database will allow for a better parameterization of the infiltration process in land surface models and for testing infiltration models. All collected data and related soil characteristics are provided online in *.xlsx and *.csv formats for reference, and we add a disclaimer that the database is for public domain use only and can be copied freely by referencing it. Supplementary data are available at https://doi.org/10.1594/PANGAEA.885492 (Rahmati et al., 2018). Data quality assessment is strongly advised prior to any use of this database. Finally, we would like to encourage scientists to extend and update the SWIG database by uploading new data to it

    Sulla stima della conduttivitĂ  idraulica di saturazione: dalla scala locale alla scala di campo

    No full text
    Decomposed Zeichen konvertiert!Die gesĂ€ttigte hydraulische LeitfĂ€higkeit des Bodens,Ks, spielt eine ent-scheidende Rolle bei der Aufteilung des Niederschlags in OberflĂ€chenabflussund Infiltration. Die ĂŒblicherweise verwendeten Instrumente und MethodenfĂŒr Insitu-Messungen von Ks haben hĂ€ufig zu widersprĂŒchlichen Ergebnissen gefĂŒhrt. Diese Dissertation stellt einen Vergleich von Bestimmungsmethoden fĂŒr Ksdar, die mit drei klassischen MessgerĂ€ten erhalten wurden,nĂ€mlich dem Doppelringinfiltrometer (DRI), der Guelph-Version des Permeameters mit konstantem Wasserspiegel (GP) und der CSIRO-Version des Saugspannungspermeameters (CTP). Ein kennzeichnendes Merkmal dieser Studie ist die Verwendung stationĂ€rer Infiltrationsbedingungen bei kontrollierten Niederschlag-Abflussexperimenten, die als Benchmark fĂŒr die Messungen aufder lokalen Skale und der Feldskale verwendet werden, um deren ZuverlĂ€ssigkeit zu bewerten. Die DRI Methode ĂŒberschĂ€tzt Ks stark, die GP Methode ergibt widersprĂŒchliche SchĂ€tzungen mit einer erheblichen ÜberschĂ€tzung inden Laborexperimenten und einer UnterschĂ€tzung auf der Feldskale, wĂ€hrend die CTP Methode durchschnittliche Werte mit Fehlern von 24 %auf der Feldskale und 66 % in den Laborexperimenten liefert. Die DRI Methode liefert eine bessere SchĂ€tzung der rĂ€umlichen VariabilitĂ€t im Vergleich zu GP und CTP,es sollte jedoch eine separate Kalibrierung vorgenommen werden, um die ÜberschĂ€tzung der Ks Werte zu korrigieren. Die GrĂŒnde fĂŒr die Abweichungen innerhalb und zwischen den Messverfahren sind noch nicht vollstĂ€ndig verstanden. FĂŒr die Simulation von OberflĂ€chenabfluss und Infiltration in Einzugsgebieten sind rĂ€umlich reprĂ€sentative SchĂ€tzungen von Ks erforderlich. Die klassischen Messmethoden fĂŒr Ks auf der Einzugsgebietskala sind zeitaufwĂ€ndig. Wichtige Erkenntnisse können durch Experimente gewonnen werden, die darauf abzielen, die Einflussfaktoren auf Ks in einer landwirtschaftlich genutzten Landschaft zu verstehen, und die Mindestanzahl von Messwerten zuermitteln, die fĂŒr die Bestimmung reprĂ€sentativer Werte von Ks erforderlich sind. Diese Arbeit prĂ€sentiert Ergebnisse von insgesamt 131 Doppelring-Infiltrometermessungen auf 12 MessflĂ€chen in einem kleinen österreichischen Einzugsgebiet. Eine statistische Analyse von im gesamten Einzugsgebiet zeigt, dass diese nur geringfĂŒgig von den physikalischen und topographischen Bodeneigenschaften beeinflusst wird, wĂ€hrend die Landnutzung einen wichtigen Einflussfaktor darstellt. Die höchsten Ks Werte wurden auf AckerflĂ€chen beobachtet, wobei der Median bzw. der Variationskoeffizient (CV) etwa das Dreifache bzw.75 % der Werte auf GrĂŒnland betragen. Eine Unsicherheitsanalyse, die darauf abzielt, die minimale Anzahl von Ks Messungen zu bestimmen, die fĂŒr die Ermittlung des geometrischen Mittels ĂŒber eine bestimmten FlĂ€che mit vorgegebener Genauigkeit erforderlich ist, zeigt, dass der NutzenzusĂ€tzlicher Messungen ĂŒber eine bestimmte und von der PlotgrĂ¶ĂŸe abhĂ€ngige Anzahl von Messungen hinaus gering ist. Das Konfidenzintervall des geometrischen Mittels von Ks nimmt mit der Anzahl der Messungen ab und steigt mit der GrĂ¶ĂŸe der FlĂ€che auf der gemessen wird. Die Anwendung dieser Erkenntnisse fĂŒr die Planung von Feldkampagnen wird diskutiert. Klassische Methoden zur Bestimmung von Ks auf der Feldskale und der Einzugsgebietsskale sind komplex und zeitaufwĂ€ndig, daher ist die Entwicklung von Pedotransferfunktionen (PTFs) zur Ableitung von Ks aus leicht verfĂŒgbaren Bodeneigenschaften von Ă€ußerster Wichtigkeit. PTFs wurden jedoch im Allgemeinen auf der Punkteskala entwickelt, wĂ€hrend die Anwendung fĂŒr die hydrologische Modellierung eine SchĂ€tzung auf der Feldskale erfordert. In dieser Arbeit wurden Werte fĂŒr die gesĂ€ttigte hydraulische LeitfĂ€higkeit auf der Feldskale, die auf einer Reihe von FlĂ€chen innerhalb des österreichischen Einzugsgebiets gemessen wurden, verwendet, um zwei PTFs durch multiplelineare Regression (PTFMLR) und Ridge-Regression (PTFR) abzuleiten. DieKalibrierung und Validierung der PTFs zeigt, dass die PTFR Methode bessere SchĂ€tzungen mit kleineren durchschnittlichen Fehlern liefert. Dies legt nahe,dass die Ridge-Regression eine gĂŒltige Alternative zu der weit verbreitetenlinearen Regressionsmethode ist. Die PTFs wurden auch verwendet, um Ks auf FlĂ€chen zu berechnen, auf denen keine Infiltrationsmessungen durchgefĂŒhrt wurden, um eine Ks Karte des gesamten Einzugsgebiets zu erhalten. Um eine fĂŒr die hydrologische Modellierung des Einzugsgebiets geeignete rĂ€umliche Auflösung zu erhalten, ist eine Interpolation der verfĂŒgbaren Bodeneigenschaften erforderlich. DafĂŒr wurden zwei alternative AnsĂ€tze verwendet: (A) Bodeneigenschaften wurden zuerst interpoliert, und dann wurden die PTFs angewendet. (B) Die PTFs wurden zuerst an den Standorten angewendet,an denen Bodeneigenschaften verfĂŒgbar waren, und dann interpoliert. Die durch die PTFMLR erhaltene Karte erwies sich aufgrund der nahezu gleichenWerte innerhalb des Einzugsgebiets als nicht reprĂ€sentativ fĂŒr die rĂ€umlicheVariabilitĂ€t, was nicht realistisch ist. Andererseits weist die mittels PTFR auf der Grundlage des Ansatzes (A) erzeugte Karte ein viel variableres rĂ€umliches Muster von Ks auf, das mit der Einzugsgebietsmorphologie und den Bodeneigenschaften konsistent ist.The soil saturated hydraulic conductivity, Ks , has a key role in the partitioning of rainfall into runo and inltration. The commonly used instruments for in-situ measurements of Ks have frequently provided conicting results. This thesis presents a comparison of Ks estimates obtained by three classical devices, namely the double ring inltrometer (DRI), the Guelph version of the constant-head well permeameter (GP) and the CSIRO version of the tension permeameter (CTP). A distinguishing feature of this study is the use of steady deep ow, obtained from controlled rainfall-runo experiments, as a benchmark of Ks at "local" and eld/plot scales to assess the reliability of the above methods. The DRI grossly overestimates Ks , the GP gives conicting estimates of Ks with substantial overestimation in laboratory experiments and underestimation at the plot scale, whereas the CTP yields average Ks values with errors of 24 % in the plot-scale experiment and 66 % in the laboratory experiments. The DRI yields a better estimate of the Ks spatial variability as compared to the GP and CTP, but a separate calibration should be made to correct the overestimation of Ks values. The reasons for such discrepancies within and between the measurement methods are not yet fully understood. Spatially representative estimates of Ks are needed for simulating catchment scale surface runo and inltration. Classical methods for measuring Ks at the catchment scale are time-consuming. Important insights can be obtained by experiments aimed at understanding the controls of Ks in an agricultural setting and identifying the minimum number of samples required for estimating representative plot scale Ks values. This thesis presents results from a total of 131 double-ring inltrometer measurements at 12 plots in a small Austrian catchment. A statistical analysis of Ks across the catchment suggests that Ks is only slightly inuenced by physical and topographical soil characteristics, while land use is the main control. The highest values of Ks were observed in arable elds, with a median and a coecient of variation (CV) about 3 times and 75 %, respectively, of those in grassland areas. An uncertainty analysis aimed at determining the minimum number of Ks measurements necessary for estimating the geometric mean of Ks over a given area with a specied accuracy suggests that, beyond a specic and plot-size dependent number of measurements, the benet of extra measurements is small. The width of the condence interval of the geometric mean of Ks decreases with the number of measurements and increases with the size of the sampled plot. Applications of these ndings for designing eld campaigns are discussed. Classical eld techniques to determine Ks at the plot and catchment scales are complex and time-consuming, therefore the development of pedotransfer functions, PTFs, to derive Ks from easily available soil properties is of utmost importance. However, PTFs have been generally developed at the point scale, while application of hydrological modeling requires eld scale estimates. In this thesis, values of eld-scale saturated hydraulic conductivity, K s , measured in a number of areas within the Austrian catchment, have been used to derive two PTFs by multiple linear regression (PTFMLR) and ridge regression (PTFR). Calibration and validation of the PTFs indicate that the PTFR provides better estimates with smaller average errors. This suggests that the ridge regression is a valid alternative to the widely used multiple linear regression technique. Predictions of K s by the PTFs in the areas where inltration measurements were not performed have also been made to obtain a map of K s for the whole catchment. To obtain a spatial resolution suitable for catchment hydrological modeling, an interpolation of the available soil properties is required. Two alternative approaches have been used: (A) soil properties have been rst interpolated with successive application of the PTFs, (B) the PTFs have been rst applied in the sites where soil properties were available and then interpolated. The map of K s obtained by the PTFMLR was found not to be representative of the K s spatial variability because of the almost uniform values within the catchment, which is not realistic. On the other hand, the map generated by the PTFR on the basis of approach (A) has a much more variable spatial pattern of K s which is consistent with the catchment morphology and soil characteristics.16

    Development and analysis of the Soil Water Infiltration Global database

    No full text
    © Author(s) 2018. In this paper, we present and analyze a novel global database of soil infiltration measurements, the Soil Water Infiltration Global (SWIG) database. In total, 5023 infiltration curves were collected across all continents in the SWIG database. These data were either provided and quality checked by the scientists who performed the experiments or they were digitized from published articles. Data from 54 different countries were included in the database with major contributions from Iran, China, and the USA. In addition to its extensive geographical coverage, the collected infiltration curves cover research from 1976 to late 2017. Basic information on measurement location and method, soil properties, and land use was gathered along with the infiltration data, making the database valuable for the development of pedotransfer functions (PTFs) for estimating soil hydraulic properties, for the evaluation of infiltration measurement methods, and for developing and validating infiltration models. Soil textural information (clay, silt, and sand content) is available for 3842 out of 5023 infiltration measurements (∌76%) covering nearly all soil USDA textural classes except for the sandy clay and silt classes. Information on land use is available for 76ĝ€% of the experimental sites with agricultural land use as the dominant type (∌40%). We are convinced that the SWIG database will allow for a better parameterization of the infiltration process in land surface models and for testing infiltration models. All collected data and related soil characteristics are provided online in ∗.xlsx and ∗.csv formats for reference, and we add a disclaimer that the database is for public domain use only and can be copied freely by referencing it. Supplementary data are available at https://doi.org/10.1594/PANGAEA.885492 (Rahmati et al., 2018). Data quality assessment is strongly advised prior to any use of this database. Finally, we would like to encourage scientists to extend and update the SWIG database by uploading new data to it.status: publishe
    corecore