1,157 research outputs found

    Materials Design using Correlated Oxides: Optical Properties of Vanadium Dioxide

    Full text link
    Materials with strong electronic Coulomb interactions play an increasing role in modern materials applications. "Thermochromic" systems, which exhibit thermally induced changes in their optical response, provide a particularly interesting case. The optical switching associated with the metal-insulator transition of vanadium dioxide (VO2), for example, has been proposed for use in "intelligent" windows, which selectively filter radiative heat in hot weather conditions. In this work, we develop the theoretical tools for describing such a behavior. Using a novel scheme for the calculation of the optical conductivity of correlated materials, we obtain quantitative agreement with experiments for both phases of VO2. On the example of an optimized energy-saving window setup, we further demonstrate that theoretical materials design has now come into reach, even for the particularly challenging class of correlated electron systems.Comment: 4+x pages, 2 figure

    Voltage-gating and assembly of split Kv10.1 channels

    Get PDF
    Voltage-gated ion channels allow ions to pass cell membrane upon changes of transmembrane electrical potential. Conformational changes in the voltage-sensing domain of the channel (VSD) are assumed to be transmitted to the pore domain (PD) through an alpha-helical linker between them (S4-S5 linker). We have previously shown that expression of VSD and PD as separate fragments results in functional Kv10.1 channels that retain voltage-dependence. Here we used such ‘split’ channels to investigate functional interactions between VSD and PD. We found that their electrophysiological properties greatly depend on where the S4-S5 linker is interrupted. Remarkably, wild-type-like channel behavior could be fully or largely restored by mutations of crucial linker amino acids, indicating that precise functional interactions between VSD and PD remain when they are not covalently bound. Voltage-Clamp Fluorometry measurements revealed that VSD motion is alerted in specific split channels, but these changes were subtler. Finally, the increased separation between VSD activation and channel opening in the split channel carrying a large deletion in the S4-S5 linker, as well as the failure of the PD expressed alone to give currents, suggest that the role of the VSD in the is to open the channel pore and prevent it from closing

    Probabilistic Approach to Structural Change Prediction in Evolving Social Networks

    Get PDF
    We propose a predictive model of structural changes in elementary subgraphs of social network based on Mixture of Markov Chains. The model is trained and verified on a dataset from a large corporate social network analyzed in short, one day-long time windows, and reveals distinctive patterns of evolution of connections on the level of local network topology. We argue that the network investigated in such short timescales is highly dynamic and therefore immune to classic methods of link prediction and structural analysis, and show that in the case of complex networks, the dynamic subgraph mining may lead to better prediction accuracy. The experiments were carried out on the logs from the Wroclaw University of Technology mail server

    Designing episode content for Design Squad, a new educational engineering children's television program : the human powered water pump as a design challenge

    Get PDF
    Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2006.Includes bibliographical references (p. 53).In recent years, problems have emerged in the realm of engineering and engineering education in the United States. Technology literacy is low, there are insufficient numbers of engineering students, and there are misconceptions surrounding the engineering profession. To remedy these problems, WGBH Boston and MIT have created a reality-style engineering-based television program for 9- to 13-year-old children, entitled Design Squad. One episode of the show will challenge the 8 child contestants to build a human-powered waterslide pump, to be used at a community swimming pool. 'Two potential design solutions are proposed for the design challenge: a ball-and-chain pump and a positive-displacement plunger pump. The design process of each solution and an evaluation of each solution's feasibility are presented. Criteria for a successful episode of the show are discussed in relation to the challenge. Prototype experimentation and analysis suggest that the human-powered waterslide challenge will invoke an engaging episode of Design Squad.by Joel A. Sadder [and] Mika A. Tomczak.S.B

    Electronic correlations in FeGa3 and the effect of hole doping on its magnetic properties

    Get PDF
    We investigate signatures of electronic correlations in the narrow-gap semiconductor FeGa 3 by means of electrical resistivity and thermodynamic measurements performed on single crystals of FeGa 3 , Fe 1−x Mn x Ga 3 , and FeGa 3−y Zn y , complemented by a study of the 4d analog material RuGa 3 . We find that the inclusion of sizable amounts of Mn and Zn dopants into FeGa 3 does not induce an insulator-to-metal transition. Our study indicates that both substitution of Zn onto the Ga site and replacement of Fe by Mn introduces states into the semiconducting gap that remain localized even at highest doping levels. Most importantly, using neutron powder diffraction measurements, we establish that FeGa 3 orders magnetically above room temperature in a complex structure, which is almost unaffected by the doping with Mn and Zn. Using realistic many-body calculations within the framework of dynamical mean field theory (DMFT), we argue that while the iron atoms in FeGa 3 are dominantly in an S=1 state, there are strong charge and spin fluctuations on short-time scales, which are independent of temperature. Further, the low magnitude of local contributions to the spin susceptibility advocates an itinerant mechanism for the spin response in FeGa 3 . Our joint experimental and theoretical investigations classify FeGa 3 as a correlated band insulator with only small dynamical correlation effects, in which nonlocal exchange interactions are responsible for the spin gap of 0.4 eV and the antiferromagnetic order. We show that hole doping of FeGa 3 leads, within DMFT, to a notable strengthening of many-body renormalizations
    • …
    corecore