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Make for thyself a definition or description of the thing which is 

presented to thee, so as to see distinctly what kind of a thing it is in its 

substance, in its nudity, in its complete entirety, and tell thyself its proper 

name, and the names of the things of which it has been compounded, and 

into which it will be resolved. 

 

Marcus Aurelius 
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Introduction 
 

Voltage-gated channels are essential for excitable tissues[1]. Their ability to switch 

from open to closed conformation upon small changes of transmembrane voltage 

underlies every nerve impulse and every muscle contraction. Thus, it is not 

surprising that the mechanisms of voltage-gating have received enormous 

attention of biophysicists since the existence of voltage-gated channels was 

predicted by Hodgkin and Huxley[2]. However, despite exhaustive research, some 

details of voltage-gating remain elusive. In this section, I will briefly review  

the current understanding of how voltage-gated K+ channels work, define some of 

the unanswered questions in the field, and ask how split Kv10.1 (KCNH1, eag1) 

channels may contribute to answering them. 

Families of K+ channels 

 
In total, around 70 genes in the human genome code for K+ channels, 40 of them 

being voltage-gated channels. The other 30 code for inward-rectifying K+ 

channels, two pore K+ channels and Ca2+-activated K+ channels[3]. Such a variety of 

K+ channels serves a number of physiological functions not limited to excitable 

tissues, where they repolarize the cell membrane after an action potential. For 

instance, K+ channels have been strongly implicated in cell cycle and 

proliferation[4] (Appendix 2). After G-protein coupled receptors and protein 

kinases, voltage-gated K+ channels are the third largest group of drug targets[5].  

Interestingly, the channel pore is so well conserved that it can be successfully 

substituted from a prokaryotic to a eukaryotic channel[6]. Taken together, these 

observations suggest that the basic solution for K+ permeation appeared relatively 

early in the evolution and was later adapted to many different physiological 

contexts. 

Structure of voltage-gated K+ channels 

 
The extensive family of voltage-gated K+ channels shares a basic structure of 4 

subunits per channel and six transmembrane helices in each subunit. The first four  

helices form the voltage-sensing domain (S1-S4; VSD), and the remaining two 
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belong to the pore domain (S5, S6; PD). A crucial part of the VSD is the S4 helix 

with an arrangement of positively charged amino acids that sense changes of 

transmembrane potential[7, 8]. Movement of these charges upon a change of 

voltage can be recorded as a transient gating current[9].  

Our understanding of K+ channel structure has increased dramatically 

since the crystal structures of specific channels were solved by Roderick 

MacKinnon’s group[10-12]. The central pore with a highly conserved selectivity 

filter formed by reentrant loops between PD helices is surrounded four VSDs, 

which protrude into the lipid bilayer. Electron densities for lipid molecules were 

found between VSD and PD, neighboring VSDs, and even between VSD helices, in 

line with the finding that voltage-gated ion channels can be regulated by 

membrane lipids[13, 14]. Each VSD has two interfaces with PD: the S4-S5 linker and 

a surface between the top (extracellular) part of S1 and S5 of the adjacent subunit. 

Interestingly, the subunits are interwoven in such a way that the S4-S5 linker 

passes under the PD helices of the neighboring subunit before it connects with the 

S5 helix of its own subunit. Thus, the VSD contacts pore helices of its own subunit 

(through S4-S5 linker), as well as of the neighboring subunit (through S1-S5 

interface), allowing cooperative inter-subunit interactions.  

Within the VSD, one can distinguish a helix-turn-helix motif consisting of C-

terminal S3 and S4, named as the voltage-sensing paddle. Remarkably, a large part 

of the paddle is exposed to the lipid bilayer. As proposed by MacKinnon and 

colleagues, the paddle undergoes a large movement relative to the rest of the VSD 

when transmembrane voltage changes. Surprisingly, the paddle can tolerate large 

deletions, the most radical of which replaces 43 amino acids (including the first 

two voltage-sensing arginines) with a glycine triplet[15]. Furthermore, in Kv1.2-2.1 

chimera and several other Kv channels, the S6 helix contains a Pro-Val-Pro kink; 

the bending of inner S6 below the kink regulates access to the pore. However, as 

of today, no crystal structure of a voltage-gated K+ channel in the closed state has 

been solved. Consequently, inference of mechanisms from the available structural 

data is based on one conformation only. It is also possible that some of the 

available crystal structures might represent a non-permeating conformation 
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distinct from the closed state (the slow-inactivated state), which may have 

different S4 position than the open state.  

 

Figure 1. Basic structural template of voltage-gated K+ channels. (a) Crystal 
structure of Kv1.2-2-1 chimera (PDB code 29R9) viewed from the intracellular 
side. The parts of the gating machinery are color-coded: S4 (orange), S4-S5 linker 
(green), inner S6 (yellow), PVP kink (magenta). (b) A schematic representation of 
Kv10.1 subunit with intracellular domains: Per-Arnt-Sim (PAS) domain, 
calmodulin-binding domains (CaMBD), cyclic nucleotide-binding homology 
domain (CNBHD), nuclear localization signal (NLS) and tetramerizing coiled coil 
(TCC). 

Although Kv 1.2-2.1 chimera is probably a good general reference for 

Kv10.1, the crystal structure of which has not been solved so far, there are some 

important differences that should be mentioned. First, Kv10.1 has distinct 

intracellular domains, compared to other voltage-gated channels outside KCNH 

family: Per-Arnt-Sim (PAS) domain, calmodulin-binding domain and cyclic 

nucleotide-binding homology domain (CNBHD), which influence channel gating 

and have been related to certain disease outcomes. Notably, the only structural 

data available for Kv10.1 are the crystal structures of the PAS domain and CNBHD 

in isolation[16, 17] and together in a complex, revealing an interaction interface 

between them, which is a hotspot for disease-related mutations[18]. However, the 

orientation of the cytoplasmic domains with respect to the transmembrane helices 

is unknown. Second, S6 helices of KCNH channels do not have a Pro-Val-Pro kink. 

Moreover, they do not include any helix-breakers at all. Hence KCNH channels 

might have a different gating mechanism than rotation of inner S6 around a pivot, 

which has been proposed for Shaker and the related channels. It should also be 
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mentioned here that the homology level is far too low to use the fine structural 

details of Kv1.2-Kv2.1 chimera to design or interpret experiments on KCNH family 

channels.  

Voltage-sensor movement 

 
In order for the VSD to serve its function, voltage-sensing charges must move upon 

a change of transmembrane electric field. As mentioned above, their movement 

can be detected as gating current. Integration of gating current with respect to 

time, together with an estimate of the number of channels in the preparation allow 

to calculate the total gating charge per VSD, equal to 3-3.5 elementary charges in 

Shaker[19-21]. This estimate fits the number of basic residues in S4 very well. 

However, uncovering of the underlying VSD motion required further studies. 

Because the transmembrane electric field can be focused by invaginations of the 

channel protein, the extent of S4 motion does not have to correspond to the 

membrane thickness. Even a small S4 movement could result in a full charge 

transfer if the field is very focused. On the other hand, voltage-sensing might 

require a large S4 motion. These alternatives have drawn a lot of attention and 

inspired a host of creative experimental approaches, which did not converge on a 

single conclusion. 

One strategy involved measuring accessibility of S4 residues from both 

sides of the membrane to impose upper and/or lower limits on S4 motion. An 

assay based on binding of biotin tethered with linkers of various lengths to avidin, 

which is too large to fit inside invaginations in the channel protein, suggested a 

large motion of 15-20 Å[22, 23]. An upper limit of about 13 Å was found in 

experiments that employed conjugation of small, charged methanethiosulfonate 

(MTS) reagents[24]. A much smaller S4 motion was reported by fluorescence and 

luminescence resonance energy transfer measurements (FRET, LRET)[25, 26].  

In those experiments, the donor fluorophore was attached at various positions in 

the channel, including S4, and the acceptor served as a reference, located either in 

the membrane or conjugated to a toxin sitting in the central pore. Both studies 

estimated the vertical component of S4 motion at around 2 Å and postulated that 

the transmembrane electric field is highly focused.  
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The idea that VSD can focus electric field is supported by the findings that, 

under some conditions, the VSD might conduct protons[27] or larger ions[28]. For 

permeation through VSD to occur, a gating pore must exist, whereby two water-

filled cervices are separated by a distance considerably shorter than the 

membrane thickness. Another line of evidence that points to field focusing comes 

from restoration of gating charge, which is lost after mutating the first voltage-

sensing arginine to a cysteine, with positively charged MTS reagents[29]. In this 

study, tethers of various lengths were used with the idea that at some point the 

tether will be too long for the MTS reagent to recover the lost gating charge. 

Indeed, charge restoration turned out to be a sigmoidal function of tether length 

and it was estimated that 4 Å motion is sufficient for the first voltage-sensing 

arginine to cross the entire transmembrane field. 

While it is possible that some of the approaches underestimate or 

overestimate VSD motion, it is not straightforward to find a consensus between 

them. With some assumptions, an intermediate estimate of around 8 Å can be used 

to reconcile most of the available experimental data[30]. Also the computational 

studies converge on a motion of 10 Å[31]. This would mean that the electric field is 

very focused, but VSD movement is greater than reported by FRET experiments.  

Proposed mechanisms of coupling between VSD and PD 

 
VSD motion must be translated to open and closed conformations of the channel 

pore. It has been generally accepted that S4-S5 linker is a crucial interface for 

electromechanical coupling between VSD and PD. However, the exact mechanism 

of coupling is still under debate. 

Extensive evidence for the importance of S4-S5 linker came from 

mutagenesis studies, in which perturbations of the linker led to alterations of 

voltage-dependency and kinetics of several channels [32-37]. In addition, Zhe Lou 

and colleagues found that the bacterial channel KcsA, which is gated by protons 

and only weakly voltage-sensitive, can be endowed with voltage-dependency by 

transplantation of the VSD and the C-terminal S6 helix from Shaker[38]. 

Remarkably, the complementarity between S4-S5 and inner S6 sequences was a 

requisite for the resulting chimeras to be functional and/or voltage-dependent. 
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This finding was further reinforced by similar results from experiments that 

replaced the S4-S5 linker and the C-terminal portion of S6 helix in Kv1.5 with their 

counterparts from Kv2.1[39].  An important interaction between the N-terminal 

part of the S4-S5 linker and the channel gate in S6 was also described in Kv11.1 

(hERG)[40, 41]. At negative potentials, the residues D540 and R655 form a salt 

bridge, which stabilizes the closed conformation of the channel. 

The crystal structures, in combination with the functional evidence 

described above, inspired a very intuitive model of voltage-gating[12, 42]. Given that 

in the open conformation S4-S5 linkers of the four subunits form a ring around 

inner S6 helices, it is tempting to assume that, upon membrane hyperpolarization, 

inward movement of S4-S5 linkers exerts a force on inner S6 helices, constricting 

and closing the pore. The motion predicted by this model would somehow 

resemble a closing diaphragm of a camera. Inner S6 helices move together with 

S4-S5 linkers, while outer S6 remain stationary, owing to the Pro-Val-Pro kink, 

which breaks S6 in two parts and serves as a pivot. In turn, when the membrane 

is depolarized, outward movement of the S4-S5 linker would ease the tension on 

the inner S6 bundle, allowing the pore adopt the open conformation. Another 

plausible scenario is that inner S6 follows the outward movement of S4-S5 linker, 

because of non-covalent interactions between them. 

By contrast, a recent state of the art all-atom molecular dynamics 

simulation of Kv 1.2/2.1 paddle chimera revealed a different mechanism of 

voltage-dependent gating[43]. In the simulation, it was not necessary for the S4-S5 

linker to maintain the pore shut at negative potentials, because hydrophobic 

collapse of the pore occurred spontaneously (further evidence for hydrophobic 

collapse comes from simulations of PD in isolation[44]) On the contrary, 

depolarization-driven work was needed for channel opening at positive 

potentials. Upon depolarization, the channel switched from resting, VSD-pore 

loosened conformation to active, VSD-pore apposed conformation. At depolarized 

potentials, both electrostatic and Leonard-Jones interactions between linker and 

gate residues became more energetically favorable and the number of contacts 

between the linker and the gate increased. Repacking of S4-S5 and inner S6 was 

thus required to open the pore. 
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In conclusion, we are still far from a coherent, mechanistic explanation of 

electromechanical co in voltage-gated K+ channels. The key components of the 

coupling machinery have been identified, but the details of this fascinating process 

remain obscure. Without any knowledge of K+ channel structure, Hodgkin and 

Huxley concluded that activation of voltage-dependent K+ conductance requires 

movement of four voltage-sensing particles[2]. This can be translated to an 

obligatory gating model, in which all four VSDs need to be activated before the 

pore can open in a final cooperative step. This has been demonstrated for Shaker 

and closely related channels[45-47]. However, recent experiments in KCNQ channels 

point to an allosteric gating mechanisms, with the movement of each sensor 

individually contributing to the probability of finding the channel in the open 

state[48, 49]. It is thus also possible that gating mechanisms vary between channel 

families. 

Thermodynamic perspective on voltage-gating 

 
In most general terms, VSD movement changes the energy landscape of the 

channel protein, allowing it to switch between open and closed conformations of 

the pore. Boltzmann distribution law states that in a system with many states the 

probability of a given state is proportional to the energy associated with it:  

kT

E

i

i

eP


 , 

where Pi is the probability of a given state to occur, Ei the energy associated with 

it, k is the Boltzmann constant, and T is the absolute temperature. When fitting a 

sigmoidal GV curve, one assumes only two states of the channel protein: closed 

and open. The probability of the open state is equal to: 
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where Eo and Ec are the energies associated with the open and the closed 

conformation, respectively. It follows that when the energy of the closed state is 
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low, the open probability must also be low. Conversely, when the energy of the 

closed state is high, open probability is close to 1. Given that: 

Na

R
k   zFVE   eNaF  , 

where k is the Boltzmann constant, R is the gas constant, Na is the Avogadro 

number, E is the electrical potential energy, z is the apparent charge valence, V is 

the voltage, F is the Faraday constant and e is the elementary charge, the equation 

for open probability can be rewritten as follows: 

)( 2/1

1

1

VV
RT

zF

e

Po




  

This is the function used to fit conductance-voltage curves in most studies in the 

field, as well as in this dissertation. V1/2 is the voltage for which the open 

probability equals 0.5. However, the assumption that the channel only exists in 

two states in an oversimplification, because there can be more closed and open 

states. For instance, in Kv10.1, VSD movement and channel opening become 

slower after a hyperpolarizing prepulse or upon Mg2+ binding to the VSD [50, 51], 

which implies that the VSD can adopt several conformations in the closed state. 

Thus, two-state Boltzmann function should not be used to estimate the energy 

difference between the closed and the open state. Multistate models have also 

been used, but the choice how many states to include in such a model is always 

somehow arbitrary and will obviously affect the parameters. Sometimes, the same 

set of experimental data can be predicted by different combinations of model 

parameters and their true value cannot be estimated[52].  For this reason, it would 

be very useful to have model-independent parameters, such as the median voltage 

of charge movement proposed by Baron Chanda’s group[53]. Interestingly, the 

energy associated with channel opening in Shaker was estimated at -2 to -3 

kcal/mol with a two-state Boltzmann function and at -14 kcal/mol, using the 

median voltage of charge transfer. The latter is much more realistic, because, if the 

former were true, a change of a single non-covalent interaction in any of the four 

subunits could make the channel switch between open and closed conformations. 

Optimally, one would measure structural changes associated with gating, with a 
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method that does not rely on ionic or gating currents, like single-molecule 

FRET[54]. 

Another interesting question, which we already briefly touched upon, is 

whether VSD and PD are positively or negatively coupled[55]. VSD movement might 

be necessary to change the energy landscape, so that the pore can open at positive 

potentials, or to prevent it from opening at negative potentials.  In other words, 

the interaction between VSD and PD could be attractive or repulsive, depending 

on which conformation is preferred by the pore in isolation. Increased separation 

between curves describing voltage-dependencies of VSD activation and 

conductance has often been interpreted as evidence for decoupling between VSD 

and PD. This holds true if coupling between them is positive. However, if coupling 

between them were negative, a larger voltage gap between VSD activation and 

conductance would actually suggest an increase in coupling strength. An argument 

often used to make case for negative coupling is that the channel adopts the open 

conformation in the absence of electric field. Indeed, Shaker and Kv1.2-2.1 

chimera are open at 0 mV, whereas some other channels have their voltage-

dependency shifted to more positive values. Kv10.1, for example, reaches between 

30 and 40% of its maximal open probability at 0 mV (its maximal absolute open 

probability is less than 1, so 0.3-0.4 at 0 mV is actually an upper estimate). Besides, 

it is hard to infer from the open conformation at 0 mV alone that the channel pore 

would also be open at negative potentials if it were not under constant strain from 

the VSD. To reach this conclusion, one would need to show that the pore prefers 

the opens state in the absence of VSD. Indeed, sensorless PD of bacterial channel 

KvLM can open (albeit with a low open probability) and retains some rudimentary 

voltage-dependency, when purified and reconstituted into lipid bilayers[56]. 

However, the crystal structure of sensorless KvLM revealed the pore in a closed 

state[57]. Interestingly, purification and electrophysiological characterization of 

KvLM tetramers containing 0-4 VSDs showed that VSD is required for complete 

closure, as well as to stabilize the open state[58]. Pores of several bacterial Na+ 

channels remain functional after truncation of the VSD[59, 60], and a sensorless pore 

module belonging to one of them has been crystalized in the open 

conformation[61]. On the overall, these result suggest that the pore intrinsically 
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prefers the open conformation in specific bacterial channels. Beyond doubt, more 

experiments are needed to probe the interaction between VSD and PD in 

eukaryotic voltage-gated channels. 

Unanswered questions 

 
Our understanding of voltage-gated ion channels could clearly be improved. The 

main weakness of mutagenesis studies, which have been the working horse in the 

field, is that they oftentimes offer limited mechanistic explanations. Owing to 

insights from the available crystal structures, several important developments 

have been made, such as identification of the gating charge transfer mechanisms 

in the VSD[62, 63]. However, until a reliable crystal structure of the closed state is 

solved, we are still in the dark about important aspects of how VSD motion is 

transferred to the channel gate. To make things more complicated, some of the 

unanswered questions are interconnected. For instance, any model of 

electromechanical coupling will necessarily depend on how far S4 is believed to 

move. Models that assume a limited S4 motion should not be dismissed, since the 

strength of non-covalent interactions falls rapidly with distance. Thus, even a 

modest protein motion could disrupt or form non-covalent interactions that bias 

the channel towards open or closed conformation. Along these lines, LRET 

experiments have estimated that a 4 Å radial displacement of the S4-S5 linker is 

sufficient to close the channel pore of KvAP[64]. Irrespectively of the extent of 

motion of the gating machinery, it would be highly desirable to know the strength 

and the state-dependency of interactions at the interface between VSD and PD, as 

well as their structural constraints. Finally, more attention should be given to the 

question which conformation the pore prefers in isolation. We need more 

carefully designed experiments and more tools to address these points. We should 

also be open to the possibility that some features of voltage-gating, like the 

intrinsic preference of the pore, might be channel-specific. 

Split Kv10.1 channels as a tool to study voltage-gating 

 
Alongside with Kv11.1, Kv10.1 is the most widely known member of KCNH sub-

family of voltage-gated K+ channels. In terms of its physiological role, Kv10.1 
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influences cell cycle progression[65], which is most likely why it is expressed by 

various tumors[66]. Apart from that, mutations that affect Kv10.1 gating have been 

linked with certain other disease outcomes[67, 68]. Kv10.1 is also expressed in the 

brain, where it affects the activity of some synapses[69]. Our laboratory has 

previously shown that VSD and PD expressed as separate proteins co-assemble 

and form functional-voltage gated Kv10.1 channels in Xenopus oocytes, which 

recapitulate the voltage-sensing and permeation characteristics of the full-length 

channel[70]. This unexpected finding raises a host of further questions. What are 

the forces driving the assembly of these complexes? Do they have the expected 

stoichiometry of 8 parts? How is information transferred between domains of the 

protein that are not covalently bound? Are precise functional interactions 

between VSD and PD preserved in split channels? With such questions in mind, we 

realized that split channels might be used as a magnifying glass to examine 

different gating models.  First, some gating models seem difficult to reconcile with 

functional split channels. For instance, it is unlikely that S4-S5 linker pulls on inner 

S6 to open the pore, because such a motion could hardly be effective when the 

linker is not continuous. Second, split channels enable experiments which could 

potentially be very relevant for the unanswered questions in the field and help 

dissect the steps of the gating pathway. More specifically, we started the project 

with the following objectives: 

(i) electrophysiological characterization of split channels interrupted at different 

positions in the S4-S5 linker. 

(ii) comparison of S4-S5 linker mutations in the full-length and split channels.  

(iii) investigation of VSD-PD assembly at the single-molecule level. 

(iv) evaluating how disconnection between VSD and PD affects VSD motion. 

(v) checking the effect of S6 mutations that lock the full-length channel in the open 

state on PD expressed alone and together with the VSD. 
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Results 
 

Constitutive activity of channels interrupted close to S4 

 
In light of our previous finding of functional, voltage-gated Kv10.1 channels that 

lack a covalent bond between VSD and PD[70] (Appendix 3), we asked if disrupting 

the channel in different positions between S4 and S5 gives various outcomes or it 

uniformly leads to split channels that resemble the wild-type. To answer this 

question, we generated a series of split channels, removing the covalent bond after 

every residue from K340 to A349 (Fig. 2a). Each of the split channels was 

heterologously expressed in Xenopus oocytes and characterized with two-

electrode voltage clamp. 

 

Figure 2. Constitutive activity of specific split channels. (a) The crystal 

structure of Kv1.2-2.1 chimera (PDB code 29R9) and comparison of C-terminal S4 

and S4-S5 linker sequences between the chimera and Kv10.1. In this study, VSD 

was disconnected from PD after every residue between the positions shown by 

red arrows. (b) Representative, macroscopic currents of the wild-type and L341 

split channels recorded with the indicated voltage protocol (without leak 

subtraction). (c) Normalized, average current-voltage curves of the wild-type and 

the split channels (n=6-14). Error bars denote SEM. Inset: Normalized current at -

100 mV plotted against the split position (mean ±SEM), dashed line shows the 

current level in the wild-type. 
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Strikingly, interrupting S4-S5 linker close to S4 (after residues K340 and L341) 

resulted in channels that were constitutively active, as indicated by large inward 

currents at negative potentials, which were absent when the break was closer to 

S5 (after residues E346, Y347, G348 and A349) (Fig. 2b, c). In between, we 

observed intermediate cases with some constitutive activity (after residues: D342, 

H343, Y344 and I345).  

 

Figure 3. Currents through constitutively active split Kv10.1 channels 

depend on the main permeation pathway. (a) Representative currents of the 

wild-type and L341 split recorded with the indicated voltage protocol before and 

after application of 50 µM astemizole. (b) The ratio of mean currents after and 

before application of 50 µM astemizole plotted against voltage (n=8-13). Error 

bars (SEM) are smaller than symbols. (c) Representative currents of L341 split 

with and without G440S mutation which renders the main pore non-conducting. 

(d) The corresponding average currents plotted against voltage (n=12; without 

normalization). Error bars denote SEM. 
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Both outward and inward current through channels that had constitutive activity 

could be blocked by the Kv10.1 blocker astemizole and disappeared in 

experiments which used a non-conducting PD, indicating that no flux of ions 

through the gating pore in the VSD is involved (Fig. 3). Interestingly, we also found 

that the split channels that which close, with the exception of Y347 split, either 

had the conductance-voltage (GV) curve shifted to more positive values or showed 

a biphasic dependency of open probability on voltage with one not saturated 

component (Fig. 4).  Considered together, these results imply that discontinuity 

between VSD and PD can energetically bias the channel towards both open and 

closed conformations. 

 

 

Figure 4. GV curves of the split channels that fully close. (a) Representative 

currents of the wild-type and the split channels which have no or very little 

constitutive activity recorded with the voltage protocol shown (with leak 

subtraction). (b) Normalized conductance plotted against voltage. Data points 

represent mean ±SEM (n=8-10), the curves are single or double Boltzmann fits. 

Dramatically altered kinetics of channels interrupted close to S5 

 
Incidentally, we observed radical alterations of kinetics in the channels split after 

Y347 and G348. Although Y347 split could close completely, deactivation took up 

to 20 s, whereas it did not exceed 300 ms in the wild-type channel (Fig. 5a). 

Remarkably, the fast deactivation time constant was nearly overlapping between 

the wild-type, Y347 split and G348 split (Fig. 5b, c), but Y347 split had an 

additional super-slow component with some voltage-dependency, as complete 



29 
 

closure was faster at more negative potentials. G348 split also showed slower 

deactivation, but the effect was smaller than in Y347 split. 

 

Figure 5. Alterations of deactivation kinetics in Y347 split and G348 split.  

(a) Tail current (normalized to the steady-state current at the end of the 

depolarizing segment of the voltage pulse) plotted against time at negative 

potential (mean ±SEM; n=6). Upper right: super-slow deactivation component 

shown by the red arrow. (b) Representative tail currents recorded at different 

potentials with the protocol shown in the upper right corner. (c) Fast deactivation 

time constants obtained by double exponential fits to tail currents (mean ±SEM; 

n=7-8). 

To study activation kinetics, we employed a reactivation protocol, in which 

channels were opened with a pulse to +40 mV, then stepped to -120 mV for a 

variable time and opened again with another pulse to +40 mV (Fig. 6a). This 
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protocol allows to trace entry into deeper closed states, reflected by delayed 

current activation as a function of interpulse interval at negative potential. 

 

Figure 6. Slower activation of Y347 split and G348 split (a) Representative 

currents of the wild-type, Y347 split and G348 split recorded with the indicated 

reactivation protocol, with various intervals at -120 mV between the depolarizing 

pulses. (b) Time necessary for current to reach 90% of its maximal value plotted 

against the length of the interval at -120 mV (mean ±SEM; n=6-8).  

(c) Representative currents elicited by voltage pulses of increasing duration to  

-20 mV (Kv10.1 WT) and -40 mV (Y347 split). (d) Normalized tail current plotted 

against the length of the voltage pulse (mean ±SEM; n=3-6). 

Even though some channels remained open at the end of the negative segment of 

the pulse (because of super-slow deactivation), Y347 split activated slower at 

every time interval, compared to the WT (Fig. 6b). Slower activation of G348 split 

was yet more pronounced, with all rise times in being an order of magnitude 
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higher than in the wild-type. Moreover, at voltages slightly above the threshold of 

the GV curve, Y347 split took more than a second to reach steady-state current, 

whereas the wild-type needed less than 500 ms (Fig. 6c, d).  

We next asked if the altered kinetics of Y347 split, which showed major 

changes in both activation and deactivation, could be explained by a change in VSD 

movement. To this end, we introduced I319C mutation, which reports on voltage-

sensing motions in Kv10.1 when labeled with tetramethylo-6-rhodamine 

maleimide (TMRM)[51]. We also tried other labeling sites in the vicinity (G318-

S322) and found that I319C gives the best signal. 

 

Figure 7. Slower VSD activation in Y347 split. (a) Representative voltage-

dependent changes of fluorescence reported by I319C-TMRM and elicited by a 

depolarization to 60 mV from a holding potential of -100 mV (b) Activation and 

deactivation time constants obtained by exponential fits to fluorescence traces of 

the full-length channel and Y347 split (n=5-8; mean ±SD). Inset: superimposed 

VCF traces from (a) with an expanded time base. 

We quantified the kinetics of the Voltage-Clamp Fluorometry (VCF) signal 

elicited by a voltage step from -100 to 60 mV (Fig. 7a). The activation time constant 

was significantly faster in the full-length channel than in Y347 split (3.0±1.5 ms 

and 15.1±2.4 ms; mean ± SD, p<1×10-6, T-test), whereas the deactivation time 

constant was similar in both cases (19.3±6.4 ms and 18.2±1.4 ms, respectively) 

(Fig. 7b). It is worth mentioning that the activation time constant of Y347 split is 

probably underestimated, because the need to average traces forced very short 

interpulse intervals at negative holding potential, and the activation kinetics might 
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depend on the length of that interval. Thus it would seem that slower current 

activation in Y347 split can be at least partly attributed to slower VSD movement, 

but the super-slow deactivation component remains unexplained. 

Point mutations of S4-S5 linker rescue closure and deactivation 

kinetics of split channels 

 
Disconnection between VSD and PD could change biophysical properties of the 

channel due to a gross structural change. Alternatively, precise functional 

interactions of S4-S5 linker amino acids with their counterparts in the pore 

domain or in the cytoplasmic domains could be disturbed. If a change spanning 

large regions of the channel protein is involved, it is unlikely that wild-type-like 

properties could be restored by point mutations of linker amino acids. To test that 

prediction, we first turned to mutagenesis of Asp 342, because the homologous 

Asp 540 plays a role in channel closure in Kv11.1[40, 41].  

We set out to check if constitutive activity of L341 split could be reduced 

by mutating D342 to 12 amino acids with different physicochemical properties. 

Strikingly, all of them, except for Asn, which is isosteric with Asp, greatly facilitated 

closure, irrespectively of side chain size, charge and hydrophobicity (Fig. 8). 

Notably, at -100 mV only three split channels with Asp, Asn and Leu at 342 positon 

had significantly more current than the wild-type (Bonferroni’s multiple 

comparisons test; interestingly, at -160 mV nearly all split channels tested had 

more current than the WT, suggesting that they might reopen at very 

hyperpolarized voltages). Also deletion of D342 or longer deletions that started 

from D342 restored closure. In line with these observations, the corresponding 

D342 mutations in full-length channel, with the exception of Trp, caused a 

rightward shift of the GV curve (Fig. 9). D342N mutant showed only a slight 

positive GV shift, with respect to the wild-type (10 mV, the intervals encompassing 

the mean ±3 SD overlap with the WT). D342W mutation, in turn, resulted in 

channels that were locked-open, suggesting steric hindrance between the bulky 

Trp residue and the channel gate. However, none of these occurred when Trp was 

substituted at this position in the split channel, indicating that the position of S4-

S5 linker might be different than in the full-length protein. 
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Figure 8. Restoration of wild-type-like closure with point mutations in S4-S5 

linker. (a) Representative currents of the wild-type, L341 split, D342 mutants in 

L341 split and split channels carrying a deletion in S4-S5 linker. The voltage 

protocol is shown in upper right corner. (b) The corresponding normalized, 

average current values plotted against voltage (n=7-18). Error bars denote SEM. 

Because the IV curves of most construct are overlapping, the data are divided into 

two graphs. WT and L341 split appear in both graphs as references. (c) 

Normalized current at -100 mV and -160 mV plotted against the residue at 342 

position (mean ±SEM). The order from left to right reflects residue size, the dashed 

line indicates the current level of the wild-type.  
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Figure 9. D342 mutants in the full-length channel. (a) Representative currents 

of selected D342 mutants recorded with the indicated voltage protocol  

(b) Normalized conductance plotted against voltage. Data points represent mean 

±SEM (n=6-13), the curves are Boltzmann fits with the following Vhalf values: 

21.4±1.7 mV (WT), 30.8±2.0 mV (D342N), 43.3±1.5 mV (D342S), 44.8±2.0 mV 

(D342Y), 48.1±2.3 mV (D342G). Fitting was not done for the other mutants, 

because the conductance did not saturate in the voltage range tested. (c) 

Representative currents of the wild-type and D342W mutant. (d) Normalized 

current plotted against voltage (mean ±SEM, n=10-14). 

We next checked if wild-type-like kinetics can be restored in Y347 split by 

mutating Y347. We were able to eliminate the super-slow deactivation component 

by mutations to Phe and Leu, which enabled complete closure within 500 ms (Fig. 

10b).  Notably, Y347F and Y347L mutants also had slower activation kinetics and 

biphasic GV curves (Fig. 10c-e). Since Phe did not mimic Tyr and the effects of Phe 

and Leu substitutions were almost indistinguishable, aromaticity of the side chain 

at the position 347 does not seem crucial. 
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Figure 10. Y347 mutations restore deactivation kinetics of Y347 split. 

 (a) Representative tail currents of the wild-type, Y347 split and Y347 mutants in 

Y347 split. (b) Tail currents (normalized to the steady-state current at the end of 

the depolarizing segment of the voltage pulse) plotted against time at negative 

potential (mean ±SEM; n=7). (c) Representative currents of Y347 split and Y347 

mutants in response to the voltage protocol shown. (b) Normalized conductance 

values plotted against voltage. The data points represent mean ±SEM (n=7-8), the 

curves are single or double Boltzmann fits. (c) Time necessary for current to reach 

90% of its maximal value plotted against the length of the interval at -120 mV in 

the reactivation protocol (mean ±SEM; n=7). 

This result points to the importance of tyrosine hydroxyl group, which is the only 

structural difference between Phe and Tyr, making Tyr less hydrophobic and 

enabling it to participate in hydrogen bonds. Apart from that, having a large, 

hydrophobic residue at this position might be important, as mutations to Ala and 

Ser considerably reduced functional expression. 

Taken together, these findings suggest that even when S4-S5 linker is not 

continuous, important functional interactions of linker amino acids remain. 

Furthermore, it is truly striking that S4 can be disconnected from the linker with 

almost complete impunity if D342 is mutated to another amino acid. 
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Single molecule colocalization between fluorescently tagged VSD 

and PD 

 
To investigate the co-assembly between VSD and PD, we used the method of 

single-molecule counting/colocalization[71, 72]. In short, fluorescently tagged 

channels were imaged in the plasma membrane of Xenopus oocytes with a total 

internal reflection fluorescence (TIRF) microscope. This variant of microscopy 

allows to study membrane proteins without exciting fluorophores in the bulk of 

the cell. 

 

Figure 11. Single molecule colocalization between fluorescently tagged VSD 

and PD. (a) Average colocalization coefficients ± SEM, after subtraction of random 

colocalization (n=8-14). Tagged full-length subunits were used as positive control. 

(b-e) Representative 13x13 µm images for each condition and mean numbers of 

fluorescent spots per image ± SEM. 

Xenopus oocytes are a convenient expression system, because expression 

can easily be adjusted to a level, where single channels can be seen as diffraction-

limited spots by varying cRNA concentration. We tagged VSD with EGFP at the N-
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terminus and PD with mCherry at the C-terminus, and determined their relative 

localization in the plasma membrane.  

 

Figure 12. Split channels remain functional after tagging with fluorescent 

proteins. (a) Representative currents of the tagged and untagged split channels 

recorded with the indicated voltage protocols. We noticed that N-terminal EGFP 

fusion greatly facilitates closure of L341 split. (b) The corresponding average 

conductance-voltage (n=5-10) and (c) current-voltage curves (n=7-14). Error bars 

denote SEM. 

When we tried to express EGFP-tagged VSD alone, it either did not express 

on the surface of the oocytes or expressed poorly and was moving fast 

(Supplementary Movie 1). By contrast, we observed stable diffraction-diffraction 

limited spots upon expression of mCherry-tagged PD (Supplementary Movie 2). 

Interestingly, we could observe stable spots for both VSD and PD, when they were 

co-expressed (Supplementary Movie 3). This finding suggests that co-assembly 

with PD is necessary for VSD to stably express in the plasma membrane. 
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Since expression of VSD depended on the presence of PD, we expected 

higher colocalization between them than in the case of fluorescently tagged full-

length subunits (because EGFP or mCherry-tagged full-length subunits can also 

assemble with themselves, reducing the rate of colocalization between them).  For 

colocalization experiments, we selected three split channels with very distinct 

biophysical properties: L341 split, Y347 split and Δ342-348 split and verified that 

they remained functional after tagging (Fig. 12). Interestingly, the N-terminal 

EGFP fusion restored the closure of L341 split, hinting at the possibility of 

interaction between D342 and N-terminal cytoplasmic domains. 

We imaged 50-250 fluorescent puncta per patch in 8-14 13x13 µm optical 

patches. After subtraction of random colocalization, we got a very similar 

colocalization coefficient for all three split channels tested (48±2%, 48±4%, 

45±3%, respectively; mean ±SEM), and found it to be significantly higher, 

compared to the full-length subunits (30±2%, mean ±SEM; p<1×10-3 for L341 and 

Y347 split and p<1×10-2, Bonferroni’s multiple comparison test) (Fig. 11a).  

We also noted that when the tagged full-length subunits were coexpressed, we 

observed many more non-colocalized EGFP than mCherry puncta, owing to faster 

maturation of EGFP (Fig. 11b). Remarkably, this ratio was reversed, with very few 

non-colocalized EGFP puncta, if the covalent bond between VSD and PD was 

broken (Fig. 11c-e), again indicating that the EGFP-tagged VSD needs to interact 

with PD to be in the plasma membrane. These results show that VSD and PD co-

assemble even if they are not covalently bound. A further implication is that 

different biophysical properties of split channels do not seem to arise from 

different VSD-PD assembly. 

Breaks in S4-S5 linker affect VSD motion and coupling with PD 

Constitutive activity of specific split channels could result from decoupling 

between VSD and PD. It could also be caused by a bias towards the activated 

conformation of the VSD if coupling between them is preserved in the absence of 

a covalent link. To distinguish between these options, we measured voltage-

dependency of VSD activation reported by VCF. We used I319C mutants labeled 
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with TMRM, after verifying I319C mutation by itself has only limited consequences 

for the voltage-dependency of the channel (Fig. 13). 

 

Figure 13. I319C mutation has only limited functional consequences.  

(a) Representative currents of the wild-type and I319C mutant recorded with the 

indicated voltage protocol. (b) Normalized conductance plotted against voltage. 

Data points represent mean ±SEM (n=10-11), the curves are Boltzmann fits. The 

Vhalf values of the fits (mean ±SD): 21.4±1.7 mV (WT) and 35.7±2.8 mV (I319C). 

As in the colocalization experiments, we focused on three split channels 

which cover the whole spectrum of GV curves: left-shifted, constitutively active 

L341 split, right-shifted Δ342-348 split, and Y347 split with no significant shift, 

compared to the wild-type (Fig. 14a, b). Although magnitudes of VCF signals are 

not straightforward to compare, as every oocyte is recorded with a slightly 

different gain of the photomultiplier, we noted that split constructs showed lower 

voltage-dependent changes of fluorescence than the full-length channel, probably 

owing to a difference in expression levels. Among the split channels, L341 split 

consistently gave the lowest signal (Fig. 14c). Surprisingly, the midpoint of 

fluorescence-voltage (FV) curves was nearly overlapping between the full-length 

channel (Vhalf -57.7±3.0 mV; mean ±SD) and L341 split (Vhalf -54.3 ±2.8 mV) (Fig. 

14d).  Y347 split and Δ342-348 split showed modest positive shifts of 10 and 20 

mV, respectively (Vhalf -49.0±3.6 mV and -35.6±3.4 mV; the intervals 

encompassing the mean ±3 SD are overlapping with the full-length channel for 

Y347 split and non-overlapping for Δ342-348 split). Interestingly, the separation 

of GV and FV curves became smaller in Y347 split and larger in Δ342-348 split, 

with respect to the full-length channel (exact estimation is impossible for Δ342-
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348 split, because the GV curve did not saturate in the voltage range tested). If this 

holds true, different breaks in S4-S5 linker can influence coupling between VSD 

and PD in opposite ways. 

 

Figure 14. Voltage-dependency of conductance and VSD activation of specific 

split channels. (a) Representative currents of the wild-type, L341 split, Y347 split 

and Δ342-348 split recorded with the indicated voltage protocol, with the 

exception of L341 split where the holding potential was -20 mV. (b) Normalized 

conductance (mean ±SEM; n=7-10) plotted against voltage, the curves are 

Boltzmann fits with the following Vhalf values (mean ±SD): -28.0 ±1.8 mV (L341 

split), 21.4 ±1.7 mV (WT), 21.7 ±2.1 mV (Y347 split). Fitting was not done for 

Δ342-348 split, because the conductance did not saturate in the voltage range 

tested.  (c) Representative voltage-dependent fluorescence changes reported by 

I319C-TMRM. Only traces elicited by the voltage-steps of -160 mV (blue), -60 mV 

(green) and 60 mV (red) are shown. (d) Normalized changes of fluorescence 

plotted against voltage (mean ±SEM; n=5-10), the curves are Boltzmann fits. Inset 

contains the Vhalf values of the Boltzmann fits (mean ±SD): -54.3 ±2.8 mV (L341 

split), -57.7 ±3.0 mV (WT), -49.0 ±3.6 mV (Y347 split), -35.6 ±3.4 mV (Δ342-348 

split). 

The VCF experiments also posed an apparent contradiction, because the FV 

curve of L341 split did not have a negative shift, despite its inability to fully close. 

This could indicate that VSD and PD are decoupled, and VSD motion no longer 

leads to effective channel closure. Since VCF reports local protein motions around 

the fluorophore, it is also possible that the resting conformation of S4 is affected 
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in L341 split. We checked if the activation kinetics of L341 split are slowed down 

by Mg2+, which stabilizes the deactivated conformation of the VSD[51]. Strikingly, 

the presence of Mg2+ had almost no effect (Fig. 15). 

 

Figure 15. Effect of Mg2+ on current activation kinetics. (a) Representative 

currents of the wild-type, L341 split, Y347 split and Δ342-348 split elicited with 

the indicated voltage protocol, with (left) and without (right) 5mM Mg2+ in the 

extracellular medium. In the voltage protocol, the duration of the conditioning 

prepulse was 5s. (b) Time needed for current to reach 90% of the maximal value 

plotted against the prepulse voltage (mean ±SEM; n=7-10) (c) The ratio of peak 

currents with and without Mg2+ in the extracellular medium (mean ±SEM n=7-10).   

However, just the loss of Mg2+ effect is insufficient to conclude that the resting 

position of S4 is different, because if VSD and PD are decoupled Mg2+ binding is 
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also expected to have no or little effect, depending on the extent of decoupling.  

Thus, more experiments are needed to determine the resting position of S4 in 

L341 split.  

We also checked how Mg2+ affects the other split channels. Slowing-down 

of activation kinetics due to Mg2+ was greatly augmented in Y347 split, compared 

to the full-length channel. Interestingly, in Δ342-348 split the activation kinetics 

were unaffected by Mg2+, but we observed significant increases of the peak current 

for the most hyperpolarizing prepulses with Mg2+ (p<1×10-4 for -160 and -140 mV, 

p<1×10-3 for -120 mV, Bonferroni’s multiple comparisons test), almost as if Mg2+ 

binding caused conformational changes in the VSD that enhance interaction with 

PD upon depolarization. This observation might support the idea that the coupling 

between VSD is compromised in the absence of two helical turns in the linker, and 

the probability that VSD activation will lead to channel opening is lower than in 

the full-length protein or in the split channels which do not have a deletion (note 

that we have two different decoupling scenarios: VSD is decoupled from PD in 

L341 split, because it cannot close, or Δ342-348 split, because it opens less 

effectively). 

Isolated pore module prefers the closed conformation 

 
To further investigate the interaction between VSD and PD, we took advantage of 

the fact that in Kv10.1 S6 helix lacks the PVP kink, which has been postulated to 

act as a pivot important for gating, and contains no other helix-breakers. Following 

a study in Kv11.1[73], we speculated that introducing a proline at some positions 

in S6 would lock the channel in the open state by forcing a break in S6. Indeed, we 

found that mutating Q476 and Q477 to a proline results in constitutively active 

full-length channels with robust currents (Fig. 16). Interestingly, Q476P mutation 

caused a strong inward rectification, whereas Q477P mutant had a nearly linear 

dependence of current on voltage. Given our observation of PD complexes without 

VSD at the single-molecule level, we next tested if proline substitutions in S6 have 

a similar effect on PD expressed alone. Both Q476P and Q477P mutations failed to 

give rise to K+ currents, when expressing the isolated pore domain (Fig. 17, Fig. 

18a, b).  
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Figure 16. Proline substitutions in inner S6 lock the full-length channel in 

the open state. (a) Representative currents of the wild-type, Q476P mutant and 

Q477P mutant recorded with the indicated voltage protocol. (b) Normalized, 

average current values plotted against voltage (n=5-11). Error bars denote SEM. 

 

Figure 17. Effects of Q476P mutation on PD expressed in isolation and with 

the VSD. (a) Representative currents from oocytes expressing the isolated pore 

domain (G348-C stands for the PD sequence starting from Gly348 and ending at 

the C-terminus), Q476P mutant in the isolated pore domain, and Y347 split, with 

and without Q476P mutation. (b) The corresponding average current values ±SEM 

(n=9-10) plotted against voltage (without normalization). 

Upon co-expression with VSD, Q476P mutant had no current (Fig. 17), and 

Q477P mutant was constitutively active (Fig. 18 a, b), similarly to the full-length 

channel.  We verified that the isolated pore with Q477P mutation is expressed in 

the plasma membrane by tagging it with EGFP at the C-terminus and imaging with 

a TIRF microscope (Supplementary Movie 4). Taken together, these findings 

suggest that even if access to the pore is granted by a break in S6, the presence 
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of the VSD is still required for permeation, which is a bit surprising given the 

results obtained with sensorless pores of specific bacterial channels[56-58, 61]. 

 

Figure 18. Effects of Q477P mutation on PD expressed in isolation and with 

the VSD. (a) Representative currents from oocytes expressing the isolated pore 

domain (G348-C stands for the PD sequence starting from Gly348 and ending at 

the C-terminus), Q477P mutant in the isolated pore domain, and Y347 split, with 

or without Q477P mutation or additional VSD mutations. (b) The corresponding 

average current values ± SEM plotted against voltage (n=7-10; without 

normalization). (c) Normalized conductance values plotted against voltage.  

The data represent mean ± SEM (n=6-10), the curves are parabola fits for Q477P 

mutants and a Boltzmann fit for the wild-type. 

We then introduced R333Q and R336Q mutations in the VSD that shift 

voltage-dependency of the channel to positive and negative values, respectively 

(Fig. 19). Remarkably, although the presence of VSD was essential for the 

constitutive activity of split channels with Q477P mutation, the shifts of voltage-
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dependency mattered little, as all three resulting split channels behaved almost 

equally (Fig. 18a, c). Unexpectedly, they showed strong rectification, with the open 

probability decreasing at positive potentials, similarly to Q476P mutation in the 

full-length channel. This might suggest that the position of S6 residues is slightly 

different in the split channel or reveal a degree of intrinsic voltage-sensitivity of 

the pore.  

 

 

Figure 19. Charge neutralizations in S4 can shift voltage-dependency of the 

channel to both positive and negative potentials. (a) Representative currents 

of R333Q and R336Q mutants recorded with the indicated voltage protocols.   

(b) Normalized conductance plotted against voltage. Data points represent mean 

±SEM (n=9-10), the curves are Boltzmann fits. 

From a broader perspective, these results could point to a dual role of the 

VSD, which might be structurally important for the permeation pathway to work, 

apart from switching between resting to active states to regulate the conformation 

of the pore. Also, if the pore in isolation prefers the closed conformation, it is more 

likely that we see decoupling between VSD and PD in Δ342-348 split, compared to 

L341 split which cannot fully close. 

  



46 
 

Discussion 

 

In this dissertation, we show several important findings on voltage-gating in the 

absence of a covalent link between VSD and PD.  First, if a break is introduced in 

S4-S5 linker on the side of S4, the resulting split channels are constitutively active. 

Second, specific breaks closer to S5 lead to dramatic alterations of channel 

kinetics. Third, point mutations of crucial linker amino acids almost completely 

abolish the constitutive activity and restore wild-type-like deactivation kinetics of 

specific split channels. Remarkably, if D342 is mutated to another amino acid, 

except for Asn, VSD can be disconnected from the S4-S4 linker and PD with almost 

complete impunity. Fourth, fluorescently-tagged VSDs and PDs colocalize in the 

plasma membrane at the single molecule level. Fifth, disconnection between VSD 

and PD affects VSD motion, although these effects seem subtler than the changes 

of conductance. Finally, the presence of VSD might be structurally important for 

the permeation pathway to be functional. Below we discuss these results in the 

context of the current understanding of voltage-gating. 

 

Constitutively active split channels 
 

As mentioned above, constitutive activity of specific split channels could arise 

from decoupling between VSD and PD (if the isolated pore prefers the open state) 

or trapping of VSD in the active conformation.  At this point, we are unable to 

distinguish between these options. However, other lines of evidence point to the 

intrinsic preference of the pore for the closed conformation, as discussed below. 

To further investigate the resting conformation of the VSD of constitutively active 

channels, we should employ more tools. One possibility would be to do a MTS 

accessibility assay. If the resting conformation of the VSD is not the same as in the 

full-length channel, we expect to see changes in the voltage-dependency of 

accessibility of sites in the S3-S4 loop to MTS reagents. On the contrary, if the 

accessibility pattern remains the same, the resting position of the VSD, as well as 

its voltage-dependent conformational changes are likely to be similar. 

It is also worthwhile to consider the results of D342 mutagenesis in L341 

split. Since only the isosteric Asn could mimic Asp, it is likely that carbonyl groups 



47 
 

of their side chains are acceptors in a hydrogen bond stabilizing the open 

conformation of the channel. No other form of interaction seems compatible with 

the observation that all the other residues tested produce a similar outcome, 

irrespectively of their physicochemical properties. If the interaction were 

electrostatic or steric, we should have seen a correlation of the channel behavior 

with the size or the charge of the substituted side chain, which was not the case.  

Additional evidence for the conclusion that Asp and Asn at the position 342 

participate in an interaction which energetically favors the open state comes from 

positive GV shifts of D342 mutants in the full-length channel. Interestingly, the 

homologous D540 residue in closely related Kv11.1 participates in an electrostatic 

interaction stabilizing the closed state[40, 41]. This would imply that despite very 

high homology between Kv10.1 and Kv11.1, equivalent residues make a very 

distinct contribution to gating mechanisms. Moreover, in Kv11.1, D540K mutation 

made the channel reopen at hyperpolarizing voltages, whereas D342K mutation 

in Kv10.1 did not have such effect. Next, we should ask where the interacting 

partner of D342 is. A serious candidate is Q476 at the channel gate, whose 

counterpart in Kv11.1 is R665, the interaction partner of D540. It also cannot be 

excluded that D342 interacts with other parts of the gating machinery. 

Cytoplasmic domains have been implicated in voltage-gating of KCNH channels[18]. 

Two lines of evidence point to the possibility that D342 has an interaction partner 

in the N-terminal PAS domain. First, the N-terminal EGFP fusion restored the 

closure of L341 split. This could occur if  fluorescent tagging at the N-terminus 

could slightly alter the position or the structure of the PAS domain in a way that 

the interaction with D342 is no longer favourable. Second, in Kv11.1, the N-

terminal tail of the PAS domain and the N-terminal portion of S4-S5 linker lie 

within atomic distances[74, 75]. However, more evidence is needed to confirm or 

rule out an interaction  of D342 with the PAS domain. 

Finally, in light of the finding that the closure of L341 split can be restored 

with point mutations of D342, it is unlikely that S4 and S4-S5 linker have to move 

together as a rigid body to gate the channel. As far as breaks closer to the S5 helix 

are concerned, one could still make the argument that a substantial portion of the 

linker still undergoes a concerted motion with S4. Flexibility between the linker 

and S5 might be needed to effectively transfer energy to the pore module[37].  
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In the case of L341 split, however, the break is introduced one residue after the 

last voltage-sensing arginine, so virtually the entire S4-S5 linker is disconnected 

from S4. It is thus extremely surprising that D342 mutants in L341 split behaved 

so similarly to the full-length channel. This result might suggest that we are still 

quite far from mechanistic understanding of electromechanical coupling, because 

none of the available gating models would predict such an outcome. It might also 

mean that we should look for interactions between VSD and PD that are not 

mediated by the S4-S5 linker. For instance, the contact area between S1 and S5 

could provide a structural platform for such interactions. Also the interaction 

between the PAS domain at the N-terminus and the CNBHD at the C-terminus is 

potentially relevant for the function of split Kv10.1 channels.  

 

Changes of activation and deactivation kinetics 
 

The observed alterations of kinetics in specific split channels suggest that 

discontinuity between S4 and S5 can not only change the free energies associated 

with the open and the closed conformation, as seen in constitutively active split 

channels, but also influence the height of energy barrier between them. 

Alternatively, in the case of Y347 split, some shallow closed states of the channel 

protein might turn into open states, without changing transition rates between 

them. Thus, a possible explanation for the super-slow deactivation component is 

that the split channel visits conformations corresponding to shallow closed states 

in the full-length channel, which now have some conductance. Because the onset 

of slower activation measured with the reactivation protocol (Fig. 6b) correlates 

with the super-slow closure (Fig 5a), it is tempting to assume that only deeper 

closed states allow effective closure of Y347 split. This explanation is also 

consistent with the observation that VSD deactivation time constants are 

overlapping between Y347 split and the full length channel (Fig. 7). Besides, it is 

worth pointing out that although the FV curve of Y347 split is slightly right-shifted, 

compared to the full-length channel, Y347 split has more conductance at -60 and 

-40 mV (and no overall GV shift). If shallow closed states are indeed converted into 

open states, a closer investigation of Y347 may lead to further insights into the 

molecular determinants of electromechanical coupling. To our knowledge, this 
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would be the first case of a perturbation of a voltage-gated K+ channel which turns 

closed states into open states. 

 The slower activation kinetics of Y347 split can be at least partly attributed 

to slower VSD motion (Fig. 7). The question remains if G348 split, which activates 

even slower than Y347 split, also shows slower VSD motion. If so, we should also 

ask why these particular breaks in S4-S5 linkers delay the outward motion of S4, 

while others probably do not (based on kinetics of current activation). 

 

VCF measurements of VSD motion 
 

Probing VSD motion led us to two important conclusions. First, since we observed 

changes of both voltage-dependency and kinetics of VSD motion, the interaction 

between the VSD and PD is a two-way street. Interestingly, out of three split 

channels tested, two showed positive FV shifts. Second, we observed both 

increased (Δ342-348 split) and decreased (Y347 split) separation between GV and 

FV curves, suggesting different breaks in S4-S5 linker affect coupling between VSD 

and PD in opposite ways. As mentioned in the Introduction, increased separation 

of GV and FV curves does not necessarily indicate that VSD and PD are decoupled, 

because coupling between them might be positive or negative[55]. However, if we 

also consider that we have removed a huge part of the coupling interface of Δ342-

348 split, it is reasonable to expect that coupling between VSD and PD will be 

reduced. If strain from the S4-S5 linker were to maintain the channel closed at 

negative potentials (in other words if coupling between VSD and PD were 

negative), deleting a huge part of the linker should result in difficulties with 

channel closure and a preference for the open state. On the contrary, in the case of 

positive coupling, Δ342-348 split should prefer the closed state, as it did in our 

experiments. Thus, our results suggest positive coupling between VSD and PD.  

 In this study, we just included VCF data from one labelling site. As a future 

direction, we should include more labelling sites and compare their readouts 

(some caution is necessary, because the resting position of S4 might be different 

in split channels, affecting VCF results). In Shaker, when all VSDs have been 

activated channel opening requires a weakly voltage-dependent cooperative step, 

which can be separated from voltage-sensing motions by specific mutations in 
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S4[45] and involves an additional gating motion of S4[47]. It would be of great 

interest to check if this additional component of S4 motion can be isolated in Δ342-

348 split at more positive voltages in the range of channel activation (the maximal 

depolarizing step in VCF experiments in Fig. 8 was +60 mV, with the VSD being 

fully activated). 

 

Intrinsic preference of the pore and a dual role of the VSD 
 

A novel idea that comes from our experiments is that the presence of VSD might 

be structurally important for the permeation pathway to work, as shown by the 

experiments which used proline substitutions in inner S6. Unless it is co-

expressed with VSD, the isolated pore of Kv10.1 does not conduct, even if a break 

in S6 is forced with a proline mutation that locks the full-length channel in the 

open state. It seems to follow that not only does the isolated prefer the closed 

conformation, but also that it is unable to adopt the conducting conformation 

without the VSD. It is also striking that VSDs with different voltage-dependencies 

can be used in the background of Q477P mutation with the same effect, suggesting 

that the contribution of VSD is not limited to switching between the resting and 

the active conformation. Here it is important to point out that if the pore can open 

without the VSD, but the open probability is low, we might have missed that in 

two-electrode voltage-clamp recordings because of endogenous currents in 

oocytes. Protein purification and reconstitution in lipid bilayers are a more elegant 

way to probe if the isolated PD can adopt the open conformation. With that said, 

our results support the MD simulations which predicted an intrinsic preference of 

the pore for the closed state in eukaryotic channels[43, 44], whereas isolated pore 

modules of voltage-gated bacterial channels seem to prefer the open state[56, 58-61].  

 

Split channels from other families 
 

Another key issue, which is a bit outside the scope of this dissertation, is whether 

a break in S4-S5 linker can be tolerated in other channel families. In our hands, 

split constructs of Kv1.4 and KCNQ channels showed no functional expression[70]. 

However, we did not test whether they assemble and show up in the plasma 

membrane. It is tempting to speculate that some split channels might assemble, 



51 
 

and sit in the membrane as non-functional complexes, with VSD motion 

completely decoupled from the gate. Single-molecule imaging and VCF are perfect 

tools to address that. Alternatively, if the other channels we checked show no 

functional expression because they fail to assemble, the question if they would 

remain voltage-gated with a break in S4-S5 linker is still open. If the latter were 

the case, it would be extremely interesting to know if their assembly and 

trafficking can be enhanced by engineering the channel protein. 

 

Concluding remarks 
 

To recapitulate: although our results definitely increase the understanding of split 

Kv10.1 channels, we are not in a position to propose a coherent mechanistic model 

of voltage-gating in the absence of a covalent link between VSD and PD. Beyond 

doubt, our findings point to the importance of non-covalent interactions. Let us 

consider that in the channel structure various non-convalent interactions are 

possible between the parts of the gating machinery. Some of them are 

energetically favorable for the open and the closed conformation, whereas others 

affect the energy barrier between them. VSD motion and the resulting position of 

S4-S5 linker would change the energy landscape of the channel protein, putting 

weights on these interactions. In this scenario, the open probability and channel 

kinetics at any given voltage would be determined by the weighted mean of non-

covalent interactions between the parts of the gating machinery. For small 

transmembrane voltage to be an effective switch, the open and the closed state 

cannot be very well separated energetically. Thus, changes of non-covalent 

interactions seem a very plausible mechanism for the channel to open and close. 

The estimates of energy associated with opening in Shaker fall roughly within the 

range of changing one non-covalent interaction per subunit. Moreover, functional, 

voltage dependent channels are evidence that these interactions remain even if 

VSD and PD are not covalently bound. Here we have shown that D342 and Y347 

are crucial parts of the gating machinery in Kv10.1. To close down on the gating 

mechanism, it is necessary to find their interaction partners and identify other 

relevant interactions and their structural constraints. It would be extremely 
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satisfying to combine functional experiments in split channels with structural 

data. 
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Materials and methods 
 

Mutagenesis and expression in Xenopus oocytes 

 

The first split channels were generated from Kv10.1 sequence in the pSGEM 

oocyte expression vector by Dr. E. Lörinczi and Dr.  J.C. Gomez-Posada, as 

previously described[70]. In short, two different Stop-X-Start cassettes were 

introduced at the desired position between VSD and PD, where X is a unique 

BamHI or EagI restriction site. BamHI and EagI flank the channel open reading 

frame (ORF), so once one of the cassettes was introduced, the corresponding 

enzyme could be used to excise the fragment coding for VSD or PD. The vector was 

then religated. From that point, VSDs and PDs of the subsequent split channels 

were made by removing or inserting codons from the parent split channel 

sequences by PCR-based mutagenesis. All site-directed mutagenesis was 

performed with the Quik Change Kit (Agilent Technologies), following 

manufacturer’s instructions. For colocalization experiments, the relevant 

constructs were amplified by PCR and cloned in the multicloning site of pGEMHE-

X-EGFP vector. N-terminus of the channel was connected to the C-terminus of 

EGFP with the following 19-amino acid linker: GGSGGSGGSGGSGGRSRSS. mCherry 

fusions were generated with the In-Fusion kit (Clontech) by first cloning the 

relevant ORFs at the multicloning site of pmCherry-N1 vector (Clontech) and 

subcloning of the resulting fusion proteins into the oocyte expression vector 

pSGEM.  C-terminus of the channel was connected to the N-terminus of mCherry 

with 6-amino acid linker: GGSGGS. 

 DNA constructs were linearized with SfiI or NheI and cRNAs were 

synthesized using T7 mMessage mMachine kit (Ambion). For the full-length 

constructs, oocytes were typically injected with 0.05-0.5 ng of RNA. For the split 

channels, more RNA was injected, typically 5-10 ng of each part. Before 

experiments, oocytes were kept at 18 °C in ND-96 medium (in mM: 96 NaCl, 2 KCl, 

0.2 CaCl2, 2 MgCl2, 0.5 theophylline, 5 HEPES, pH 7.5/NaOH). Full-length 

constructs usually expressed very well on the following day, whereas the 

functional expression of split channels required 2-3 days.  
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Electrophysiological recordings 

 

2-5 days after RNA injection, membrane currents were recorded at room 

temperature under two-electrode voltage-clamp, using a TurboTEC 10-CD 

amplifier (NPI Electronics).  Signals were low-pass filtered at 1.3 kHz, digitized at 

10 kHz with the ITC-16 interface of EPC9 patch-clamp amplifier (HEKA 

Elektronik), and acquired with PatchMaster software (HEKA Elektronik). The 

recording pipettes had resistances of 0.3-1 MΩ, when filled with 2M KCl. The 

extracellular medium contained (in mM): 115 NaCl, 2.5 KCl, 1.8 CaCl2, 10 HEPES, 

pH 7.2/NaOH. In some experiments, 5 mM MgCl2 was added to the extracellular 

solution.  For measurement of tail currents or constitutively active channels, K+ 

concentration was elevated to 60 mM, replacing Na+. Capacitance currents were 

compensated with the analog circuitry of the amplifier to the best extent possible. 

In the case of channels which had no constitutive activity, P/4 or P/8 protocol was 

used to subtract leak and capacitance currents from a holding potential of -100 

mV or -120 mV. 

 

Voltage-clamp fluorometry 

 

To reduce unspecific labelling of endogenous cysteines on the oocyte surface, we 

took advantage of the fact that the trafficking mechanisms of Kv10.1 are 

temperature-dependent. The oocytes were kept at 12 °C for 3-4 days after RNA 

injection, during which time the channel protein was made, but was not sent to 

the plasma membrane. Subsequently, the oocytes were incubated for 30 min at 

room temperature with 0.1-0-5 mM glycine malemide to block endogenous 

cysteines, washed extensively with ND-96 and left overnight at room temperature 

to allow the nascent channels to come to the plasma membrane. On the next day, 

the oocytes were labelled with 12.5 µM TMRM (tetramethylrhodamine malemide, 

Invitrogen) diluted in depolarizing solution (in mM: 92 KCl, 1.8 CaCl2, 10 HEPES, 

pH 7.5/NaOH) for 1h on ice in darkness.  After labelling, the oocytes were washed 

extensively with ND-96 and kept at 16°C in darkness until recording. 
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VCF signals were recorded through 20x 0.75-NA fluorescence objective 

(Nikon). The illumination source was a 150W xenon lamp. In the light path, 

HQ535/50 excitation filter, HQ610/75 emission filter and Q565LP dichroic mirror 

were used (Chroma Technology). The emitted light was collected with a 

Hamamatsu HC120-05 photomultiplier tube. During fluorescence recordings the 

oocytes were voltage-clamped, using a Dagan CA1-B amplifier. Fluorescence and 

current signals were low-pass filtered at 1 kHz, digitized at 5 kHz with a Digidata-

1440A analog-to-digital converter (Axon Instruments), and acquired with 

pClamp10 software (Axon Instruments). To increase signal to noise ratio, each 

VCF trace was averaged 10 times. 

 

Single-molecule colocalzation 

 

Single-molecule imaging was performed 1 day after RNA injection, using Total 

Internal Reflection Fluorescence Microscopy (TIRFM). Manually devitellinized 

oocytes were placed on high refractive index coverglass (n=1.78) and imaged 

through Olympus 100x 1.65-NA oil immersion objective. EGFP-tagged VSDs and 

full-length subunits were excited with a 488-nm phoxX laser, and mCherry-tagged 

PDs and full-length subunits were excited with a 593-nm DPSS laser. z488/594-

rpc polychroic (Chroma) was used as the excitation filter; 525/50 and 629/53 

emission filters were used for EGFP and mCherry, respectively. The illuminating 

beam was set at the critical angle for total internal reflection, so that excitation 

was limited to the contact area between the specimen and the glass. This allowed 

us to image channels in the plasma membrane, without acquiring signal from the 

bulk of the oocyte. mCherry and EGFP were excited sequentially. Movies of 800 

frames (200 for mCherry and 600 for EGFP) were captured at the rate of 10 Hz 

with iXon DU-897 EMCCD camera (Andor). During acquisition, the fluorescent 

spots bleached completely. 

 The bleaching movies of the pore domain tagged with EGFP were acquired 

in a similar way, using Nikon 100x 1.49 NA oil immersion TIRF objective. 

Devitellinized oocytes were placed on 35 mm µ-dishes with glass bottom (n=1.52; 

IBIDI). They were excited with a 488-nm laser and the light path contained 
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525/50-nm emission filter. The movies were captured with iXon DU-897 EMCCD 

camera (Andor) at 10 Hz. 

 

Data analysis and statistics 

 

In each experiment, we used oocytes isolated from at least two different frogs. The 

sample numbers are indicated in the figure legends. For statistical analysis, we 

used Student’s t-test in case means of two groups were compared or analysis of 

variance followed by multiple comparisons with Bonferroni’s correction, if more 

groups were compared. 

Electrophysiological recordings were analysed with IGOR Pro 

(Wavemetrics) or FitMaster (HEKA Elektronik). The current-voltage curves were 

constructed by normalizing the current to the maximal value for each oocyte, 

averaging them and connecting the points representing the mean with straight 

lines. Conductance and current deactivation kinetics were obtained from 

biexponential fits to tail currents: 
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where I is the current, t is the time, τ1 and τ2 are the time constants of the fast and 

the slow component, A1 and A2 are the corresponding amplitudes, and I0 is the 

offset current. The conductance is proportional to I(t=0). However, in the case of 

constitutively active split channels, tail currents were contaminated by a 

capacitance transient, because P/n subtraction was impossible. The conductance 

was then calculated as the ratio of the steady-state current and the driving force: 
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where G is the conductance, I is the steady-state current, V is the voltage and VK is 

the equilibrium potential for K+. Since the constitutively active channels showed 

inward currents, VK was estimated from the zero-crossing of the current-voltage 

curve for each oocyte, assuming that K+ conductance was dominating. To compare 

the voltage-dependency between different channels, conductance was normalized 

to the maximal value, averaged between oocytes expressing the same construct, 

and fitted with the following Boltzmann function: 
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where G/Gmax is the normalized conductance, k is the slope factor (RT/zF), V is the 

voltage, and Vhalf is the voltage for which the conductance is half maximal. 

Maximum likelihood estimates of k and Vhalf were considered different between 

groups if the intervals encompassing the mean ± 3 SD were non-overlapping. 

Current activation kinetics were compared by quantifying the time needed for 

current to reach 90% of its maximal value. 

VCF recordings were analysed with Clampfit (Axon Instruments) and IGOR 

Pro (Wavemetrics). To measure kinetics, activation and deactivation phases of the 

fluorescence traces were fitted with single exponential functions. Steady-state, 

voltage-dependent changes of fluorescence were normalized to the maximal 

value, averaged between oocytes expressing the same channel and fitted with a 

Boltzmann function equivalent to the one used for conductance. 

Colocalization between EGFP and mCherry puncta was analysed manually. 

The first 3-5 frames of the bleaching movies were averaged for each channel and 

the relative localization of EGFP and mCherry spots was determined (two spots 

were considered colocalized if they were within 3 pixels from one another, which 

corresponds to a distance of 150 nm). Only single, stable spots were included in 

the analysis. Colocalization coefficients presented in the Results section are 

defined as the number of overlapping spots divided by the sum of overlapping and 

non-overlapping spots. We used the following equation to subtract density-

dependent, random colocalization (the probability of finding two molecules in a 

diffraction-limited spot just by chance, without interaction between them): 

drdg

drdga
f




 , 

where f is the random colocalization, a is the area of a diffraction-limited spot with 

a radius of 150 nm, dg is the density of green puncta and dr is the density of red 

puncta. 
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Normal cell-cycle progression is a crucial task for every multicellular organ-

ism, as it determines body size and shape, tissue renewal and senescence,

and is also crucial for reproduction. On the other hand, dysregulation of

the cell-cycle progression leading to uncontrolled cell proliferation is the

hallmark of cancer. Therefore, it is not surprising that it is a tightly regulated

process, with multifaceted and very complex control mechanisms. It is now

well established that one of those mechanisms relies on ion channels, and in

many cases specifically on potassium channels. Here, we summarize the

possible mechanisms underlying the importance of potassium channels in

cell-cycle control and briefly review some of the identified channels that

illustrate the multiple ways in which this group of proteins can influence

cell proliferation and modulate cell-cycle progression.

1. Introduction
Regulation of cell division is of great relevance for eukaryotes. Cells must pro-

liferate throughout ontogenesis, tissue renewal and remodelling, and to repair

damaged areas during wound healing. Defective cell-cycle checkpoints are a

common feature of cancer cells and the inactivation of cell cycle regulators deci-

des the physiological or pathological fate of stem cells. Although there are a

large number of studies on the molecular and biochemical mechanisms control-

ling the cell cycle, the bioelectrical modulation of cell-cycle progression is still

poorly understood. Kþ channels have been implicated in the control of cell-

cycle progression both through their influence on the membrane potential

and non-canonical, permeation-independent mechanisms.
2. Checkpoints and transmembrane potential regulate
cell-cycle progression

The process that produces two daughter cells from a mother cell has been divi-

ded into several phases, each with very characteristic functional properties. Cell

division in eukaryotes starts with the G1 (gap 1) phase, which separates the

previous cell division from the period of DNA synthesis (S-phase), where

chromosome replication is accomplished. This is followed by the second gap

(G2) and the mitotic (M) phase. After M phase, a cell can proceed to a new G1

phase or enter a quiescent state (termed G0) that can last for a very long time,

even for the rest of the life of the cell in the case of end-differentiated cells. The

correct progression of the cycle is guaranteed because the initiation of a late

event is strictly dependent on the successful completion of the preceding step.

In eukaryotic cells, for example, mitosis will not start until the completion of

DNA synthesis. The interdependency of events is owing to a series of surveillance

or control mechanisms termed checkpoints, which have evolved to minimize the

production and propagation of genetic inaccuracies [1,2]. The complex machinery

of cell-cycle checkpoints includes in all cases a sensor supervising the complete-

ness of a particular task and a response element triggering the next downstream
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event, which will be a process involved in the actual replication

and segregation of the DNA. For instance, the downstream

event at the onset of S phase is DNA synthesis, the downstream

event at the onset of mitosis is the assembly of the spindle and

the downstream event at the end of mitosis is chromo-

some segregation [3,4]. Thus, checkpoints are constitutive

feedback control pathways safeguarding key cell-cycle tran-

sitions G1/S, G2/M and exit from mitosis [5]. The key

components of the mechanisms coordinating the downstream

events are cyclin/cyclin-dependent kinase (CDK) comp-

lexes, which need to be expressed in a timely fashion and/or

activated to allow cell-cycle progression.

The transmembrane potential has been reported as a cellu-

lar bioelectric parameter that influences the progression

through the cell cycle [6]. The concept came from the early

experimental observation of a correlation between the resting

membrane potential and the degree of mitotic activity [7];

forcing the membrane potential of Chinese hamster ovary

cells to a fixed hyperpolarized value completely inhibited

DNA synthesis measured as [3H]thymidine incorporation,

while cycling was recovered upon release of the potential

(figure 1). Cell types with a very hyperpolarized resting poten-

tial, such as muscle cells and neurons, typically show little or no

mitotic activity. Inversely, it was reported in the early 1970s that

ouabain-induced depolarization was followed by the initiation

of DNA synthesis and subsequent mitosis in chick spinal cord

neurons [8,9]. Moreover, it has been shown that the membrane

potential is not constant during progression through the

cell cycle [10,11]. For example, the distribution of membrane

potentials in cells from the breast cancer cell line MCF-7 is

multimodal. The frequency of events at each maximum can

be shifted when experimental treatments change the distri-

bution of cells among the different phases of the cell cycle.

The results of these experiments showed a pattern of positive

correlation where the membrane potential hyperpolarizes

during the G1/S transition, there is a significant contribution

of depolarized cells towards G0/G1 and an enrichment in

hyperpolarized cells towards G2/M transition [12].
3. Kþ channels as important players in the
cell cycle

If the membrane potential is not constant along the cell cycle,

cell-cycle-dependent changes in membrane permeability are

required (figure 2). Potassium conductance governs the resting

membrane potential in both excitable and non-excitable cells.
In contrast to an action potential fired by a neuron, the potential

changes along the cell cycle are much slower, gradual and

smaller, and can be intuitively explained by modifications

in the conductance that sets the resting membrane potential.

Proliferation was one of the first identified aspects of cell physi-

ology where potassium channels play a crucial role. The early

observation that wide-spectrum potassium channel blockers

inhibit proliferation [13] has been repeatedly confirmed in

many tissues and cell types (reviewed e.g. in [6]). Many differ-

ent potassium channels show cell-cycle-dependent variations

of expression or activity [14–17].

For instance, a large conductance, voltage-gated Kþ chan-

nel is expressed in unfertilized mouse oocytes; in the first cell

cycle of fertilized oocytes, the channel is active throughout M

and G1 phases, and inactive during S and G2. Thus, changes

in channel activity set the membrane potential along the cell

cycle in the oocyte [18]. Increasing evidence shows that vol-

tage-gated potassium channels are required for proliferation

and may also help to determine the final identity and mor-

phology of the cell [19–22]. The results of experiments in

lymphocytes where the inhibition of Kþ channel activity

induces a reversible cell-cycle arrest [23,24] or experiments

where potassium channel blockers inhibit Schwann cell pro-

liferation in a dose-dependent manner [22,25,26] have been

replicated in many systems and by many approaches; data

from those experiments have been compiled already in

several reviews (e.g. [27–31]).

Direct evidence for a change in ion channel composition

in G1 phase was obtained from embryonic retinal cells,

which express mainly two membrane conductances, delayed

rectifier (IK) and inward rectifier (IKir) potassium currents

[32]. Daughters of the same parental cell examined during

and after mitosis always expressed similar IK and IKir den-

sities. However, non-sibling cells showed quantitative and

qualitative differences in IK and IKir densities. The heterogen-

eity therefore arises after cells re-enter G1, because the density

distribution of potassium channels at cytokinesis is shown to

be symmetric in both daughter cells [33].

The mechanisms controlling ion channel densities along

the cell cycle appear to be manifold. For example, Kþ channel

activity in mouse oocytes is at least partly independent of the

nuclear cell-cycle clock, because channel activity continues

to cycle in bisected embryos in the anucleate as well as the

nucleate fragments [34]. This suggests the active contribution

of the cytoplasmic cell-cycle clock, which may involve changes

induced by surface contractions and deformations before the

cleavage of daughter cells on the channel activity [34,35].
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Thus, potassium channels are proposed to be involved in the

signal transduction elicited by cell-cycle checkpoints, and

help to elicit cell responses in the cell-cycle machinery, integrat-

ing the nuclear clock and the cytoplasmic cell-cycle clock.

Pointing towards this hypothesis, there have been reports

where Kþ channel blockers (TEA) and depolarizing agents

(veratridine) inhibit cell proliferation in oligodendrocyte pro-

genitors in cell culture and cerebellar tissue slices, inducing

G1 arrest through accumulation of p27kip1 and p21CIP1, two

CDK inhibitors known to regulate cell proliferation [36,37].
4. Importance of Kþ channels relies on both
ionic conduction and permeation-
independent mechanisms

The participation of Kþ channels in the control of cell cycle

could be an early event in evolution. The pore structure and

the selectivity filter have been conserved between the prokar-

yotic and eukaryotic Kþ channels [38], which suggests that

they evolved very early. The importance of Kþ channels in

the cell-cycle progression can also be illustrated in plant cells,

for which Kþ is a major nutrient. BY-2 tobacco cells require

an increase in the Kþ concentration in order to re-enter the

cell cycle. The elevated Kþ concentration increases the turgor

pressure, which is required for cell growth. This is achieved

by the activity of the inward rectifier Kþ uptake channels

[39]. By contrast, mitosis requires a transient decrease in

turgor pressure owing to Kþ efflux channels. In what could

be a reminiscence of this function, the role of Kþ channels in

homoeostatic cell volume regulation is well established, and

they play a role in cell volume changes along the cell cycle

[40,41]. For instance, in a subset of human medulloblastomas,

a voltage-gated Kþ channel (KV10.2) seems to be required for

the completion of mitosis, because it participates in cell

volume reduction prior to cytokinesis [21].

Kþ channels also provide the driving force required for

Ca2þ to enter the cell by shifting the membrane potential

towards negative values. Ca2þ is an important mediator of

intracellular signals implicated in the control of proliferation

among other crucial processes in cell physiology, and by keep-

ing the membrane potential at hyperpolarized values, Kþ

channels ensure efficient Ca2þ entry into the cell [42–45].
Still, regardless of whether the potassium gradient is used to

generate driving force for Ca2þ or to change the cell volume,

we traditionally tend to define the potassium current as

the only effector, and ignore possible additional actions

of the ion channel molecule itself. If only Kþ flow was required,

essentially any potassium channel expressed at the right

moment would be able to affect cell-cycle progression. Exper-

imental observations using either siRNA knockdown or

specific blockers, for example antibodies, have repeatedly

shown, however, that a specific potassium channel can be

important for proliferation (e.g. [46–50]). This would indicate

a permeation-independent, non-canonical mechanism that

could involve protein–protein interactions, dependent or inde-

pendent of the conformational changes of the channel

mediated by voltage. Non-canonical functions [51] have been

described for at least the Drosophila eag channel [52], its mam-

malian orthologue KV10.1 [53], KV1.3 [54] and KCa3.1 [55],

which are still able influence cell proliferation in the absence

of Kþ permeation. Moreover, an alternatively spliced form of

Drosophila eag that lacks the transmembrane regions, and there-

fore is not even a bona fide potassium channel has also been

reported to influence intracellular signalling and alter cell

morphology in the background of PKA/PKC activation [56].

In more general terms, the fact that more than 70 genes

encode Kþ channels suggests an exquisite distribution of

functions among specific molecular entities, rather than a

homogeneous function for all potassium channels. Along

these lines, the variability of Kþ channels is further increased

by the formation of heteromultimers, the influence of accessory

subunits and a large number of post-translational modifi-

cations, such as glycosylation [57], phosphorylation [58] and

sumoylation [59]. There is substantial evidence that several

Kþ channels play a role in cell cycle and proliferation by

means of both permeation-related and unrelated mechanisms

(figure 3). Below, we describe some of them in more detail.
5. KV1.3
KV1.3 (together with KCa3.1) was probably the first case

showing the involvement of Kþ channels in cell proliferation

[13,60]. In a very early report on T lymphocytes, mitogenesis

induced by phytohaemagglutinin caused Kþ channels to

open more rapidly and at more negative membrane

http://rstb.royalsocietypublishing.org/
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potentials, suggesting that they may play a role in mitogen-

esis [13]. KV1.3 blockade was shown to suppress T-cell

activation and Ca2þ signalling in human T cells owing to

membrane depolarization, resulting in a reduced driving

force for Ca2þ entry and impairment of activation by agents

inducing mitogenesis [61,62]. KV1.3 can act in conjunction

with KCa3.1, which is a Ca2þ-dependent Kþ channel activated

by Ca2þ–calmodulin [63]. KV1.3 and KCa3.1 have been found

to cluster at the immunological synapse following contact

with an antigen-presenting cell [60]. Together, KV1.3 and

KCa3.1 modulate calcium-dependent cellular processes in

immune cells, such as T-cell activation and proliferation

[43,64]. KCa3.1 has also been implicated in the control of

cell proliferation in rat mesenchymal stem cells, vascular

smooth muscle cells (VSMCs), hepatocellular carcinoma

cells as well as endometrial and prostate cancer cells

[45,46,65–68], although in glioma cells KCa3.1 knockdown

abolished the current but did not affect proliferation [69].

As KCa3.1 seems to play a crucial role in glioma cell migration

[70–75], it might be difficult to dissect both properties and

the results can depend very strongly on the methods used

to determine proliferation.

KV1.3 has also been implicated in the control of the

cell cycle in many other cell types, such active microglia cells

[76,77], proliferating oligodendrocyte progenitors during

G1/S transition [37] and macrophages [78–80]. In human

endothelial cells, vascular endothelial growth factor induces

a KV1.3-dependent hyperpolarization that results in an

increased Ca2þ entry, which is responsible for the effects on

proliferation [81,82]. It has been shown that the contractile

activity of VSMCs controlling blood flow changes during the

course of several vascular disorders and the cells acquire a pro-

liferative and migratory phenotype [83]. KV1.3 functional

expression is associated with the proliferative phenotype,

because the blockade of the channel induces a significant

inhibition of cell proliferation [81,84,85]. Switching from con-

tractile to proliferative phenotype is thus associated with

changes in ion channel activity. However, one study suggests
KV1.3 increases VSMC proliferation by voltage-dependent con-

formational changes of the channel that activate intracellular

signalling pathways, rather than by ionic conduction [54].
6. KV11.1
The voltage-sensitive human ether à go-go-related gene

(hERG, KV11.1) [86] potassium channels have emerged as

regulators of both proliferation and survival in cancer cells.

KV11.1 (encoded by KCNH2) channel expression in normal

adult human tissue is abundant in heart, brain, myometrium,

pancreas and haematopoietic progenitors [87–90]. KV11.1

expression has been reported in many cancer types as well

as cancer cell lines of different lineages, be it epithelial, leuke-

mic, connective or neuronal [89–91] Various studies have

demonstrated this expression to be largely confined to neo-

plastic cells both in solid and haematological malignancies,

when compared with neighbouring normal tissues or

normal bone marrow samples [90–94]. Studies over the

past decade have also shown its expression to be preferential

to the cancer stem cells especially in leukaemia when com-

pared with normal haematopoietic stem cells [90,94].

KV11.1 expression has also been linked to higher grade and

worse prognosis, both in the case of solid as well as haema-

tological malignancies [89,91–94]. KV11.1 expression is not

an epiphenomenon of cancer cells and rather plays a relevant

role in their proliferative capacity, for both haematological as

well as solid tumours [49,90–98]. Studies by various groups

on KV11.1 inhibition in cell lines derived from solid tumours

or leukaemias have shown a clear reduction in proliferation

[49,90–99]. The reduction in cell proliferation has been

explained by either increase in apoptosis or an arrest at the

G0/G1 phase of cell cycle [49,90–99]. Nevertheless, the

anti-tumour effects of blockers of KV11.1 appear to act

through a reduction in cell proliferation [49,82,98,99]. Some

studies have implicated the two isoforms of hERG (hERG1a

and hERG1b) to play a vital role not only in cell proliferation
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by affecting different phases of cell cycle but also in the chan-

nel kinetics and current amplitude [100]. Both isoforms have

been shown to coexist, but hERG1b expression is more pro-

minent in the S phase of the cell cycle and hERG1a

expression in the G1 phase. Modulation of these expression

patterns affects the cell proliferation [95]. Co-assembly of

hERG1a with hERG1b results in increased availability of chan-

nels on the plasma membrane and a larger current flow when

compared with homomeric forms of the channel [100]. Further

insight into the hERG isoforms and its role in cancer is needed

to conclusively designate hERG as a therapeutic target.
Phil.Trans.R.Soc.B
369:20130094
7. KV10.1
KV10.1 (Eag1, encoded by KCNH1) is one of the best-studied

ion channels in the context of cancer. Its oncogenic poten-

tial was first described in 1999 with the discovery that the

inhibition of KV10.1 expression reduces proliferation of sev-

eral somatic cancer cell lines [101]. KV10.1 overexpression,

in turn, increases cell proliferation and can confer a trans-

formed phenotype. In the same study, our laboratory also

reported that KV10.1 is undetectable in healthy tissues out-

side the brain and favours xenograft tumour progression in

immunodeficient mice in vivo. Along these lines, KV10.1 has

also been detected in approximately 70% of human tumour

biopsies of diverse origin [102–113]. Its widespread presence

in clinical samples, together with the fact that the physiologi-

cal expression of KV10.1 is confined to the brain (with the

exception of a few restricted cell populations [111]), aroused

a lot of interest in the channel owing to its potential thera-

peutic and diagnostic applications. It had been assumed

that KV10.1 is present only in solid tumours but recent

research has revealed its presence in leukaemias, correlating

with a poor prognosis [107]. KV10.1 expression also correlates

with poor prognosis for patients of ovarian [106], gastric

[112] and colon cancer [114], and with lymph node meta-

stasis in gastric cancer and head and neck squamous cell

carcinoma, where it also correlates with the disease stage

[105]. Moreover, a number of studies have supported the obser-

vation that KV10.1 blockage or knockdown decreases the

proliferation of many cancer cell lines and in vivo tumour

models [53,107,115,116]. An interesting exception here is glio-

blastoma, where the levels of KV10.1 are lower than that in

healthy brain tissue [109], while further silencing of channel

expression increases the responsiveness to interferon gamma

treatment [117]. Although it is probably not the only relevant

localization of KV10.1 [118], it is also worth mentioning here

that membrane localization makes KV10.1 an attractive target

for therapy, as it is easily accessible from the extracellular

side. In order to selectively induce apoptosis in cancer cells,

an anti- KV10.1 antibody has been coupled to TNF-related

apoptosis-inducing ligand, and this strategy has been

successfully tested in vitro [119].

The mechanisms of how KV10.1 is able to increase cell

proliferation and favour tumour progression remain elusive.

Ion permeation does not seem to be a necessary condition

for either of the above, as non-conducting mutants retain

the ability to influence proliferation and tumourigenesis

[52,53]. By implication, the advantage KV10.1 expression con-

fers is independent of the ‘classical’ contributions of Kþ

channels to proliferation: regulating cell volume, maintaining

the driving force for Ca2þ and G1/S hyperpolarization. As
we already indicated earlier, this is less surprising than it

may appear, because if the features associated with Kþ per-

meation were enough to render a transformed phenotype,

many more Kþ channels would be oncogenic. Moreover,

the loss of ionic conductances can often be compensated

for by other channels, which also does not fit into the pic-

ture where removing a particular conductance drastically

reduces proliferation in so many cancer cell lines, as well as

tumourigenesis in vivo. In contrast to ion permeation, vol-

tage-dependent conformations may be crucial for KV10.1 to

support proliferation, as the non-conducting mutants that

have a preference for the open conformation fail to influence

proliferation [52]. It is important to note that channel blockers

could reduce proliferation not only by inhibiting permeation,

but also by trapping the channel in a particular conformation.

Hegle and co-workers also described an increase in p38-MAP

kinase activity in non-cancer cells transfected with KV10.1,

and abolishing the effect of KV10.1 on cell proliferation

by p-38MAPK inhibition. Interestingly, modulation of KV10.1

expression levels by p-38MAPK pathway has been described

in MG-63 cells from osteosarcoma [102], so the relation

between the channel and p-38MAPK signalling needs further

clarification. Another non-conducting function of KV10.1 is

an increase in hypoxia resistance by boosting HIF-1 levels

and VEGF secretion, eventually leading to better tumour vas-

cularization [53]. Nevertheless, the mechanisms described

above remain insufficient to explain the benefit KV10.1

expression brings to the proliferation of so many different

cancer cell lines.

Finally, in some models, KV10.1 appears to be regulated

by cell cycle. Inducing the G2/M transition by progesterone

in Xenopus oocytes heterologously expressing KV10.1 causes

a reduction in current [17]. This reduction is dependent on

the mitosis-promoting factor (MPF, a complex of cyclin B

and p34cdc2) and obeys a voltage-dependent block by intra-

cellular Naþ [16]. MPF induces an increase in selectivity

during the M phase [120] that results in block by Naþ,

which leads to a rectification of the current–voltage relation.

The resulting net loss of Kþ conductance at G2/M transition

may be a way to achieve membrane depolarization associated

with mitosis. Cell-cycle regulation of KV10.1 has also been

studied in MCF-7 breast cancer cells. Synchronization of

these cells in G0/G1 by serum starvation leads to an increase

in Eag1 mRNA expression compared with unsynchronized

controls, with a further increase during the progression

through G1 and a decrease in the S-phase [121]. At the func-

tional level, this is accompanied by an increase in outward-

rectifier Kþ current that hyperpolarizes the membrane

towards the S-phase [121]. Both KV10.1 mRNA and KV10.1-

mediated current in MCF-7 cells can also be increased by

stimulation with insulin-like growth factor 1 (IGF-1) via

the PI3 K/Akt pathway, suggesting that the progression

through G1 to S triggered by IGF-1 can partially be owing

to its effect on KV10.1 [122]. Defective checkpoint control

between G1 and S-phase can also result in KV10.1 upregula-

tion. In SH-SY5Y neuroblastoma cells, KV10.1 expression is

regulated by the p53/mir34/E2F1 pathway [123]. Addition-

ally, keratinocytes immortalized with human papilloma

virus oncogenes E6 and E7 targeting p53 and Retinoblastoma

protein (pRb) start to transcribe KV10.1 mRNA [124]. One can

thus expect that p53 or pRb/E2F pathway inhibition or mal-

functions, which are very common in cancer, can give rise to

higher KV10.1 expression levels. However, further research is
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needed to establish that KV10.1 expression is cell-cycle

dependent and to elucidate the effect(s) of the channel on

cell-cycle progression.
royalsocietypublishing.org
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8. Conclusion
Progression through the cell cycle is guarded by several

checkpoint control pathways that have the ability to delay or

stop further events, such as DNA synthesis or assembly of

the mitotic spindle, before commitment into cell division.

In accordance with the experimental data compiled in this

review, there can be little doubt that Kþ channels play an

active role in cell-cycle progression. On the other hand,

their expression or function can be regulated by the cell cycle.

Therefore, Kþ channels could also be viewed as effectors of

the checkpoint machinery. As molecular machines that

enable the passage of Kþ ions through the membrane, they
can regulate cell volume, provide driving force for Ca2þ

entry, hyperpolarize the cell at the G1/S transition and

depolarize it towards mitosis. Additionally, non-canonical,

permeation-independent mechanisms may be involved,

where Kþ channels recruit or modulate signalling cascades

via protein–protein interactions. It is tempting to assume that

signalling cascades activated by such interactions could link

the nuclear clock control with its cytoplasmic counterpart.

Unfortunately, to date we have only a rough estimate of

how membrane potential changes along the cell cycle. More-

over, very little is known about the non-conducting functions

of Kþ channels. Which signalling cascades can they modify?

How do they interact with other proteins? There are also

more general questions that remain unanswered. How exactly

does membrane potential affect the cell-cycle machinery?

Further research on Kþ channels in cell cycle and proliferation

will give us better understanding of these fundamental

processes and may have therapeutic implications.
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Voltage-dependent gating of KCNH potassium
channels lacking a covalent link between
voltage-sensing and pore domains
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Ulrike Leipscher3, Walter Stühmer1,4, Francisco Barros2,* & Luis A. Pardo3,*

Voltage-gated channels open paths for ion permeation upon changes in membrane potential,

but how voltage changes are coupled to gating is not entirely understood. Two modules can

be recognized in voltage-gated potassium channels, one responsible for voltage sensing

(transmembrane segments S1 to S4), the other for permeation (S5 and S6). It is generally

assumed that the conversion of a conformational change in the voltage sensor into channel

gating occurs through the intracellular S4–S5 linker that provides physical continuity between

the two regions. Using the pathophysiologically relevant KCNH family, we show that

truncated proteins interrupted at, or lacking the S4–S5 linker produce voltage-gated channels

in a heterologous model that recapitulate both the voltage-sensing and permeation properties

of the complete protein. These observations indicate that voltage sensing by the S4 segment

is transduced to the channel gate in the absence of physical continuity between the modules.
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V
oltage-gated potassium (KV) channels are crucial
regulators of cell excitability. They allow potassium to
flow along its electrochemical gradient upon depolariza-

tion of the plasma membrane. Similar to voltage-gated Naþ and
Ca2þ channels, KV channels have four-fold symmetry that is
generated by internal repeats in Naþ and Ca2þ channels and by
independent subunits in Kþ channels. Thus, KV channels are
tetramers, each monomer containing six transmembrane seg-
ments (S1 to S6). A modular structure can be recognized in the
arrangement of these channels. Functional KV channels are
formed by an ensemble of a ‘permeation module’ or pore domain
that allows potassium flow, constituted by four S5 and S6
segments and their intervening pore loop, and that is surrounded
by a ‘voltage-sensing module’ comprised of four functionally
independent voltage-sensor domains1–3. The permeation module
would be equivalent to the two transmembrane segments of the
bacterial KcsA or of the inward rectifier channels, which have
little or no intrinsic voltage dependence (reviewed by Vardanyan
and Pongs4). Voltage dependence is conferred by the rest of the
transmembrane protein (segments S1–S4, although intracellular
parts or even additional proteins can participate and modulate
the process (see, for example, refs 5,6). Within the voltage-sensing
domain, S4 shows an array of positive charges that drive its
movement upon changes in voltage across the membrane2,3,7.
Periodically distributed positively charged amino-acid residues at
the S4 segment sense changes in the electric field across the
membrane, and this stimulus is transduced into a conformational
change in the permeation module that finally allows ion flow4.

The mechanism responsible for converting the changes
occurring in the ‘voltage-sensing module’ into an opening of
the gate of the ‘permeation module’ is not well understood.
Current knowledge indicates that the intracellular linker between
S4 and S5 segments is crucial for the so-called ‘electromechanical
coupling’ in potassium channels by forming a rigid a-helical
connection8,9 between the voltage sensor and the pore
module10,11 that acting as a mechanical lever12–14 exerts force
on the bottom part of S6, constituting the structural link coupling
voltage sensing to channel gating4,15. Most evidence stems from
channels of the families KCNA to D, although some studies have
also been performed on HERG (KCNH2, KV11.1) (refs 10,16–18).
In this case, it has been proposed that an electrostatic interaction
between the S4–S5 linker and the bottom part of S6 stabilizes the
closed conformation, and that outward S4 movement should pull
on the linker, subsequently pulling also the S6 bottom resulting in
pore opening10,19,20.

We decided to test the relevance of the S4–S5 linker in
channels of the KCNH family (KV10.1, KV10.2 and KV11.1) for
several reasons. Although these channels lack the PVP motif at
the end of S6 that induces a kink that allows channel gating in
classical Shaker-like KV channels21, trapping of high- and low-
affinity blockers upon channel closing22,23 and cysteine and
proline scans of the S6 segment24,25, indicate that in KV11.1
channels the main ion conduction gate (‘activation gate’) is also
formed by the bundle crossing of the inner portion of the four
pore domain helices. In addition, KCNH channels share a
relatively negative activation threshold and are open at 0 mV,
raising the possibility that coupling between the voltage-sensing
and permeation modules may be required to maintain the
channel closed, rather than to open the gate. Finally, KV10.1
(KCNH1, Eag1) offers an interesting model for the study of
voltage-dependent gating, because its activation is slow,
permitting relatively easy characterization, but also because the
time constant of activation depends very strongly on the prepulse
potential and is modulated by extracellular magnesium26 allowing
an unequivocal identification of its currents. Moreover, the
activation/inactivation properties of KV11.1 and the implication

of different regions of the channel in determining such properties
have been studied in great detail, because its peculiar kinetic
properties are crucial for the physiological role of KV11.1 during
the cardiac action potential27.

In this report, we demonstrate that at least for KCNH channels,
the physical continuity between the voltage sensing and the pore
modules is not necessary for voltage-dependent gating, challen-
ging the classical view of a S4–S5 linker acting as a rigid
mechanical coupler between them, and opening new questions
about the nature of the molecular and functional interactions
between the voltage-sensing and pore modules of the protein.

Results
Voltage-gated currents in channels split at the S4–S5 linker. To
study the requirement of the integrity of the S4–S5 linker, we
introduced a stop codon in KV10.1 after each residue in the linker
(341–349: sequence LDHYIEYGA) and removed the rest of the
channel sequence. The truncated proteins were expressed in
Xenopus oocytes in combination with the carboxyl-terminal
(C-terminal) half of the channel, generated by removal of the
initial coding sequence and positioning a start codon at the
beginning of S5 (before residues 342 to 350, see schematic
representation in Fig. 1a). The resulting constructs were
transcribed in vitro and combinations of two RNAs (encoding
together the whole sequence interrupted at each of the positions:
for example, 1–347 with 348–962) were co-injected into oocytes.
None of the tested constructs gave rise to current when injected
alone (Fig. 1d; 420 oocytes measured of each type in at least
five independent injections). In contrast, when any of the com-
binations of interrupted amino (N)- and C-terminal truncated
proteins were expressed together (as split channels28), it was
possible to measure voltage-dependent potassium currents.
Current amplitudes were smaller in split than in continuous
channels (for example, at þ 40 mV, 12.26±1.27 mA, mean±s.e.,
n¼ 29 in the split versus 21.55±4.58 mA, mean±s.e. n¼ 27 for
the wild type, when injecting 1 ng RNA), but the difficulties in
adjusting RNA concentration per oocyte when injecting two
different species at the same time and the requirement of longer
incubation periods for robust expression of the split channels
prevented a systematic study of crude current amplitudes.
Representative current traces of the split channel interrupted
after Y347 are shown in Fig. 1b,c in 2.5 and 60 mM extracellular
Kþ , respectively, and its voltage dependence is shown in
Fig. 1e. The conductance/voltage plots were obtained through
extrapolation to time zero of a double exponential fit of the tail
current obtained in the presence of 60 mM Kþ in the external
solution (substituting 60 mM Naþ ) as indicated by the
corresponding symbols in Fig. 1c. The semi-maximal activation
was shifted in the split channel to less depolarized potentials
(11.9±0.67 –split, mean±s.d., n¼ 8– versus 16.3±0.58 mV
–wild type, mean±s.e., n¼ 13–) and the slope was shallower
(26.2±0.46 versus 20.5±0.30 mV, mean±s.e.). The differences
were nevertheless not dramatic, indicating that the combination
of the two independent demi-channels results in a functional,
voltage-gated ion channel with properties similar to the
continuous protein.

Our approach allowed us to combine any of the N-terminal
halves with the C-terminal demi-channel starting at position 350,
generating de facto deletions of 1 to 9 residues in the linker. In the
case of the longest deletion (co-expression of demi-channels
1–341 and 350–962), the complex would eventually have no
S4–S5 linker. When injected into oocytes, every combination of
constructs gave rise to voltage-dependent currents consolidating
the concept of a functional coupling between the voltage-sensing
module and the permeation module in the absence of physical
continuity. This was also true for the split channel completely
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lacking a S4–S5 linker (Fig. 1b). Although in this case the
threshold for activation was strongly shifted to depolarized
potentials (Fig. 1e), and the I/V curves did not reach saturation in
the voltage range tested, precluding an accurate estimation of
voltage-dependence parameters, there was unequivocal voltage
dependence. The activation of this construct was also remarkably
slower than wild type, and therefore the accurate estimation of
conductance at moderate depolarizations would require very long
stimuli. This lack of accuracy at low depolarizations could explain
the apparent biphasic behaviour of this construct, but we have not
further studied this property.

Demi-channels coexist at the plasma membrane of oocytes. Our
results unequivocally show that co-expression of two independent
RNAs each encoding a ‘demi-channel’ give rise to voltage-gated
currents. This can be due to the assembly of the two independent
proteins into multimers that recapitulate properties of the con-
tinuous channel, but it could also be possible that expression of
both fragments induce the functional expression of an otherwise
not detected endogenous voltage-gated channel. However, this
cannot be due to only one of the fragments, since we did not
observe either outward or tail currents upon injection of any of
the demi-channels alone (Fig. 1d). Interestingly, surface biotiny-
lation experiments (Fig. 2a) combined with immunoblot using a
polyclonal anti-KV10.1 C-terminal antibody to detect only pro-
tein exposed to the extracellular medium revealed that the
C-terminal demi-channel is indeed expressed on the surface of
injected oocytes, not only when injected together with the
N-terminal part (second lane in Fig. 2a), but also when injected
alone (third lane). As stated below, the results with non-con-
ducting mutant demi-channels also indicate that the currents
elicited by co-expression of both channel halves are not due to an
endogenous oocyte channel.

To confirm that the two demi-channels actually co-assemble
into a single complex and are still independent proteins, we
tagged each of them using 5�Myc (on the N terminus) or a
4�HA tags (C-terminal) to perform cross pull-down experi-
ments. Pull down of HA gave a signal in Myc immunoblots
(Fig. 2b) and vice versa, pull down of the N-terminal fragment
(Myc) gave a positive signal in HA western blot (Fig. 2c). In both
cases, the pulled-down fragments had the expected size (B50 kDa
for the N-terminal and B70 kDa for the C-terminal demi-
channels), indicating that the two halves are not covalently bound
in the oocyte. The full-length protein carries sugar moieties in the
S5–S6 linker, close to the pore29. To test if the C-terminal
fragment (HA), which contains the glycosylation sites, could also
be glycosylated in the split channels, we performed enzymatic
deglycosylation of oocyte extracts (Fig. 2c). Treatment with
PNGase F induced changes in the electrophoretic mobility of the
HA-positive band, compatible with complex glycosylation of the
truncated protein. The same treatment did not induce changes in
the migration pattern of the band detected by Myc, which is not
expected to carry glycosylation (Fig. 2b).

Finally, when extracts from oocytes were run under native
conditions, co-expression of the two fragments gave rise to a large
complex, with migration similar to the full-length channel
(Fig. 2d). This again indicates that both fragments are expressed
and share the same complex.

In summary, we conclude that upon expression of the channel
fragments, a functional complex is formed by the apposition of
voltage sensors and permeation modules that gives rise to a
functional, voltage-dependent ion channel.

Split channels retain the properties of both functional modules.
If the demi-channels indeed form a voltage-gated complex,
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properties typical of both voltage sensor and pore modules should
be conserved in the split channel. A defining feature of KV10.1 is
its high sensitivity to the prepulse potential30. The channel
activates faster the more depolarized the potential before the
stimulus (Fig. 3), and this phenomenon is strongly dependent
on extracellular magnesium through interaction with residues
located in the voltage-sensing module of the channel31. Moderate
concentrations of Mg2þ slow down the activation and make the
phenomenon most evident (Fig. 3a). The activation of the split
channel was slower under all experimental conditions, but the
dependence on the prepulse potential was preserved, as depicted
in Fig. 3b. A comparison between the continuous and the split
channel in the presence of 1 mM extracellular Mg2þ is shown in
Fig. 3c. Over 1 mM, the activation of the split channel was so slow

that the changes induced by hyperpolarized prepulses became less
obvious (Fig. 3d). In summary, the split channel maintains both
the dependence on the prepulse potential and dependence on
extracellular Mg2þ .

To further confirm that the activation of the split channel still
depends on the voltage-sensor domain, we co-expressed a
mutated N terminus where the voltage dependence had been
shifted by neutralization of one of the positive charges in S4
(R336Q) with the wild-type C-terminal module. The resulting
split channel displayed a shift of voltage dependence with respect
to the wild-type split (Fig. 4a) comparable to the one observed in
the continuous channel, strongly indicating that the voltage
dependence observed in the split channel is indeed conferred by
the properties of the voltage-sensing module.

To probe the properties of the permeation module of the split
channel, we used astemizole, which is a relatively well-studied
blocker of channels of the KCNH family32. The crucial residues
for astemizole block lie in the C-terminal half of the channel
(F468) (ref. 33), and we expected them to be largely conserved in
the split channel. Indeed, astemizole still blocked both the split
and the channel without a S4–S5 linker, although the IC50 was
shifted to the right in both cases (Fig. 4b). In addition, we
generated a split channel carrying a mutation in the deep pore of
KV10.1 that abolishes permeation (G440S)34. This combination
did not give rise to detectable currents in oocytes (Fig. 4c–e),
further indicating that the currents detected in the presence of the
split are not due to endogenous overproduced oocyte channels.
Fig. 4e shows the average current–voltage relationships obtained
from 10 oocytes in those experiments.

Altogether, the expression of KV10.1 as two independent
proteins containing the voltage-sensing and the permeability
module, respectively, generated currents recapitulating properties
attributable to either module, strongly indicating that the
detected current depends on the association and interaction
of both independent proteins, that correctly assemble and
generate functional channels in the absence of physical continuity
between them.

Functional expression of other S4–S5 split KCNH channels.
A relevant question is whether our observations respond to a
peculiar behaviour of KV10.1 or are rather extendable to other
channels. We therefore tested two other KCNH members, KV10.2
(Eag2, encoded by KCNH5) and KV11.1 (HERG, encoded by
KCNH2). KV10.2 shares high homology with KV10.1, and was
truncated at Y344, the position equivalent to Y347 of KV10.1.
Expression of KV10.2 wild type (Fig. 5a) is in our hands much less
efficient than that of KV10.1, and so was also the case for the split
channel (Fig. 5b). The conductance/voltage plot of the KV10.2
split channel showed a marked shift to more positive potentials
and thereby lost the very negative activation threshold of the
parental channel (Fig. 5c). Nevertheless, we could observe
potassium currents compatible with KV10.2 in oocytes injected
with the two truncated proteins.

KV11.1 (HERG) could also be expressed as combination of two
demi-channels: an initial half truncated after Y545, in the middle
of the putative S4–S5 linker, thus corresponding to residues
1–545, and a truncated channel covering residues 546-1159.
Voltage-evoked currents reminiscent of those of continuous
KV11.1 (Fig. 6a) were obtained upon expression of the split
HERG. Thus, while the magnitude of the wild-type peak tail
current measured at � 50 mV in 2 mM extracellular Kþ

amounted 1.68±0.32 mA (mean±s.e., n¼ 26, N¼ 11), the Y545
split peak tail current reached 0.36±0.06 mA (mean±s.e., n¼ 19,
N¼ 9). This value increased to 0.6±0.1 mA (mean±s.e.) when
the tail current magnitude was estimated by extrapolation at zero
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(a) Biotinylation of surface proteins and subsequent pull down of labelled

molecules allowed the detection of full-length channel using an anti-KV10.1

C-terminal antibody, and also of the C-terminal truncated protein when

expressed either alone or as split channel. (b) Co-immunoprecipitation of

N- and C- terminal demi-channels. The N-terminal fragment was labelled

with 5�Myc and the C-terminal was 4�HA tagged. Immunoprecipitation

with HA-tag pulled down a fragment of size compatible with the N-terminal

demi-channel (arrow), recognized by anti-Myc immunoblot. Asterisks

indicate bands corresponding to the antibody used to immunoprecipitate.

(c) Immunoprecipitation with anti-Myc also pulled HA-tagged fragments

detected as a double band (arrows). The migration distance of the upper

band was modified by deglycosylation (PNGase F lanes), as expected for

the C-terminal fragment of KV10.1, which contains the glycosylated

residues. Input lanes were loaded with the extract corresponding to half an

oocyte; the equivalent to 30 oocytes were used to immunoprecipitate.

(d) Native electrophoresis and immunoblot shows the presence of a

complex with size similar to that of the continuous channel when

demi-channels were expressed together, recognized by both anti-Myc

and anti-KV10.1 antibodies.
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repolarization time to prevent the reduction in the peak current
imposed by the very fast deactivation decay of the split tails (see
below). As expected, no detectable currents were observed when
any of the demi-channels were separately expressed in the oocytes
(Supplementary Fig. 1). The split channel currents exhibited the
typical KV11.1 inward rectification at positive voltages. The
voltage dependence of the steady-state activation was only slightly
shifted to positive potentials (Fig. 6b). Also, the voltage-
dependent activation rate of the split was only slightly slower
than wild type at positive voltages (Fig. 6c). Alterations in the
S4–S5 loop of KV11.1 are expected to produce an acceleration of
deactivation35. Consistently, the deactivation time constant of the
discontinuous channel was accelerated by an order of magnitude

(Fig. 7a). Finally, the inactivation of the split KV11.1 was also
similar to the wild-type channel (Fig. 7b) and appeared clearly
slowed when the extracellular Kþ level was raised from 2 to
50 mM (refs 27,36). Thus, co-expression of the two demi-
channels rendered currents with the predicted properties, further
indicating that the S4–S5 linker is indeed interrupted, and that
there is no covalent fusion of the two proteins during synthesis,
assembly and/or trafficking.

Similar to the results observed with the split KV10.1 channel,
the currents elicited after co-expressing the two truncated HERG
halves were sensitive to E-4031 (Fig. 8a), a very specific blocker of
HERG37, although with lower affinity than the intact channel38.
Furthermore, a permeation-inhibiting mutation (G628S)39,40
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equivalent to the one reported for KV10.1 in Fig. 4 also abolished
functional expression of the split HERG channel (Fig. 8b).
Introduction in the split C-terminal permeation module of a
S620T pore domain point mutation, known to antagonize KV11.1
inactivation27, reduced (at 2 mM Kþ ) or eventually abolished
(in 50 mM) inactivation of the split channel (Fig. 8c), without
affecting the voltage dependence of activation (Fig. 8c) or
deactivation (Supplementary Fig. 2). Finally, deletion of the N
terminus proximal domain (residues 138–373; see ref. 41), which
shifts the activation voltage dependence towards more negative
values and accelerates activation of HERG channels, induced
similar effects when performed in the split N-terminal half of the
channel (Fig. 9 and refs 35,41). In conclusion, the voltage sensor
of the initial half is able to confer near normal voltage-dependent
properties to the assembled construct, and the functional
properties of the pore domain leading to the characteristic
voltage-dependent inactivation of HERG are maintained in
the co-assembled channels. Altogether our data unequivocally
demonstrate that the permeation properties of the split channels
are determined by the C-terminal domain, but it is the initial
voltage sensor-containing module what crucially determines the
voltage-dependent properties of the assembled protein.

Hybrid split channels from different KCNH family members.
To check for the specificity of the split channel assembly, we tried
combinations of the N- and C-terminal halves from KV10.1 and
KV11.1 as well as KV10.1 and KV10.2. No active channels were
recorded when the voltage sensor-containing N-terminal half of
KV11.1 was co-expressed with the C-terminal half of KV10.1.
However, co-injection in the oocytes of the N-terminal voltage-
sensing module of KV10.1 (corresponding to residues 1–347, this
last one in the middle of the S4–S5 linker) with the C-terminal
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permeation module of HERG (from residues 546 in the S4–S5
loop to 1,159 at the C terminus) yielded voltage-dependent cur-
rents that basically recapitulated those obtained with the KV10.1
split (Fig. 10a). No HERG-type inward rectification at positive
voltages was observed with this combination, and only a little

nonlinearity of the I/V relationship at voltages positive to
þ 40 mV was obtained in 2 mM extracellular Kþ , that was
virtually abolished by raising the concentration of the cation to
50 mM. Similarly, the voltage-sensing domain of KV10.2 was able
to generate functional channels when combined with the pore
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module of KV10.1 (Fig. 10b). Furthermore, the speed of activation
of the KV10.1/KV11.1 combination during the depolarization
pulses became faster when the holding potential was maintained
at more depolarized values (Fig. 10c), a typical signature of
KV10.1 (Fig. 3) and KV10.2 channels30 that is not exhibited by
KV11.1 (ref. 41). This demonstrates not only that the ability to
voltage-dependent gate the HERG pore is maintained upon
heterologous co-assembly with the KV10.1 voltage sensor in the
absence of physical continuity between them, but also that
the voltage-dependent properties are mainly conferred by the
voltage-sensor moiety of the split. Finally, the truncation of

channels of the KCNA (KV1.4) or KCNQ (KV7.2/3) families did
not produce functionally active channels. As discussed below, the
reason(s) for this differential behaviour remains to be established.

Discussion
Our data demonstrate for the first time that the covalent link
between voltage sensor and pore module is not necessary to
confer voltage-dependent gating properties to KCNH channels.
Our results challenge the classical view of voltage-dependent
channel activation in which the outward movement of the S4

2

4

0.01

2

4

0.1

2

4

D
ea

ct
iv

at
io

n 
ta

u 
(s

)

Vm (mV)

Y545 split

Continuous

1

2

3

4
5
6
7

10

In
ac

tiv
at

io
n 

ta
u 

(m
s)

100806040200

Vm (mV)

Cont. 2 K+
o

Cont. 50 K+
o

10 ms

100 ms

200 ms

+40

–120

+40
+100

100 ms

2 μA 1 μA

Continuous Y545 Split

2 mM K+
o

50 mM K+
o

–60–80

1 μA

–140 –120 –100 –80 –60 –40

–80

–20

10 ms

Figure 7 | Characterization of deactivation and inactivation properties of Y545 Split KV11.1 channels. (a) Voltage-dependent deactivation. Top panels,

representative current traces recorded in 50 mM extracellular Kþ during steps to potentials ranging from � 20 to � 120 mV at 10 mV intervals, following

depolarizing pulses to þ40 mV from a holding potential of �80 mV as schematized at the top. Currents from oocytes expressing continuous wild-type

(left) and Y545 Split KV11.1 (right) are shown for comparison. For the split, also an enhanced view of the peak tail currents during the repolarization steps is

shown in the inset. Lower panel, plot of fast deactivation time constant for different repolarization voltages for split (open circles, n¼4) and wild-type

non-split channels (dashed line). Error bars, s.e. (b) Measurement of Y545 Split KV11.1 inactivation rates. Left panel, onset of fast inactivation at different

voltages was studied in 2 mM extracellular Kþ with the triple pulse protocol shown at the top, in which the channels were activated and inactivated

with a 1 s prepulse to þ40 mV, followed by a second short prepulse to � 100 mV to recover the channels from inactivation and a test pulse to different

voltages from �60 to þ 100 mV at 10 mV intervals to reinactivate them. Membrane currents starting at the end of the depolarizing prepulse for

depolarizations between þ 20 and þ 100 mV at which the inactivation and deactivation kinetics barely overlap, are shown in the inset. Right panel,

plot of time constants for the onset of inactivation in 2 mM (closed circles) and 50 mM (open circles) extracellular Kþ as a function of voltage, obtained

from single-exponential fits to the decaying portion of the currents during the test pulses. Values from wild-type non-split channels at the same Kþ

concentrations are shown as black (2 mM) and grey (50 mM) dashed lines for comparison.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms7672

8 NATURE COMMUNICATIONS | 6:6672 | DOI: 10.1038/ncomms7672 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


voltage-sensor helix tracks the S4–S5 linker that acting as a rigid
mechanical lever pulls apart the N-terminal portion of S5 and the
C-terminal end of S6 lining the channel gate to open it. Such a
mechanism would be incompatible with voltage dependence in a

split KCNH channel. What molecular system could be involved
in coupling the voltage sensor to the pore module in the presence
of a structurally interrupted S4–S5 linker? One possibility is that
the C-terminal end of S4 and/or the initial half of the S4–S5 linker
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pushes the S5–S6 module to maintain the gate closed at rest,
whereas its movement upon depolarization allows for passive
relaxation of the pore module to its default conducting
conformation42. Unlike Shaker-like KV channels43, an
intrinsically more stable open state has been proposed for

KV11.1 (refs 4,10,35,44). However, our data indicate that when
injected alone the C-terminal domain does not give rise to
detectable potassium currents, even though it is expressed at the
plasma membrane, as suggested by the dominant negative effect
of the non-permeant demi-channel modules, and directly
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comparison. (c) Voltage-dependent deactivation. Left panel, representative current traces recorded in 50 mM extracellular Kþ during steps to potentials
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demonstrated by the biotinylation experiments in the case of
KV10.1. Further experiments would be necessary to know if this
absence of permeability with the isolated pore module is due to a
closed conformation of the pore of the demi-channel, a collapse
of the pore loops, aggregation or misfolding of the protein in the
absence of the other parts of the channel.

A second alternative to explain the functional integrity of the
splits is that the end of S4 and/or the beginning of the S4–S5 loop
are used to transmit a conformational non-covalent coupling of
the voltage sensor movement to opening and closing of the gate at
the bundle crossing of S6 (ref. 45). In this case, the interaction
between these two structures would transfer the energy generated
by S4 movement, to push or pull the opening of the S6-limited
gate15. Indeed, previous work both in KV11.1 (ref. 10) and other

Shaker-like KV channels11,12,46 identified a direct interaction
between the S4–S5 linker and the C-terminal portion of the S6
helix as a crucial component of the gating process. It has been
proposed that this intrasubunit interaction is further
complemented by a intersubunit interaction between the lower
S4 and the S5 of the neighbouring subunit to drive the final
cooperative gating transition leading to pore opening47–49. In this
context, our results identifying the C-terminal end of S4 and/or
the initial segment of the S4–S5 loop (but not the integrity of this
linker) as a crucial component of the gating mechanism, point to
the possibility that these type of interactions are also involved in
voltage-dependent gating of the KCNH channels. Interestingly, a
nearly unaltered functionality in channels carrying a cleaved
backbone between the voltage-sensing and the pore domains
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would be consistent with the recently recognized need of a flexible
N-terminal segment in the S4–S5 linker for proper KV11.1
channel gating19,20. Altogether, this indicates that instead of a
classical electromechanical coupling based in an S4–S5 loop
acting as a rigid mechanical lever, at least for KCNH channels the
coupling of the voltage-sensing and pore modules is based in an
‘electrointeractional’ mechanism probably involving the end of S4
and/or the beginning of the S4–S5 loop as well as the C-terminal
portion of the S6.

The currents observed with the splits are very unlikely due to
proteins other than the injected channels. Tagged KV10.1 demi-
channels are able to immunoprecipitate the counterpart in both
directions, that is, precipitating the N terminus pulls down the
C-terminal part and vice versa. Furthermore, the split channel is
not only detectable on the surface of the oocyte, but it also shows
glycosylation resembling the pattern obtained for the continuous
channel. The C-terminal demi-channels are detected in native
gels in a complex with a size compatible with association with the
N-terminal part. These results indicate that both demi-channels
associate to form a functional potassium channel.

It is important to note that although maintenance structural
integrity of the S4–S5 loop is not strictly necessary to confer
voltage-dependent gating, our results also indicate the existence
of subtle differences in the behaviour of the splits, that can be
aggravated upon complete removal of the linker (see, for example,
Fig. 1d). The overall current amplitude was reduced in all
channels tested as compared with the respective continuous
channel. In addition, splitting induces some alterations in voltage
dependence and, at least at certain voltages, a slower activation
rate both for KV10.1 and KV11.1 (Figs 3, 5). Also, the
modifications in gating properties induced by removal of the
KV11.1 N-terminal proximal domain, are less prominent in the
split than in the continuous channel (Fig. 9 and refs 35,41). These
observations suggest that the assembly of channels is less
efficacious and, once assembled, the communication between
the voltage sensing and the permeation modules is altered to a
certain extent. On the other hand, some changes in deactivation
were observed in split channels of both KV10.1 and 11.1. Thus,
the marked acceleration of the KV11.1 split closing indicates that
the S4–S5 segment is also relevant for deactivation, but that its
exact role is probably determined by interactions with other parts
of the protein, as repeatedly reported for this channel18,50–53. This
can be expected from the recognized role of the S4–S5 linker as a
coupler of voltage sensing to gate, but also as an integrator of
cytoplasmic signals that modulate activation and deactivation
gating9. Indeed, a direct interaction of some intracellular channel
structures with the S4–S5 domain has been demonstrated
previously (reviewed in ref. 5). In other words, our results
indicate that although not completely necessary for voltage-
dependent gating, the S4–S5 segment still plays a relevant role for
proper function also in KCNH channels. Previous studies with
KV11.1 carrying mutations at residue 540 or after crosslinking
this position to the end of helix S6 (refs 10,35) indicate that the
N-terminal end of the S4–S5 linker plays a crucial role in
coupling voltage sensing to channel gating. A similar mechanism
may be involved in voltage-dependent coupling of the splits.
However, the rest of the S4–S5 linker, probably through
interaction(s) with other parts of the channel (for example, the
N-terminal eag/PAS and/or proximal domains, or the C-linker
immediately below the gate9,17,19,20,41,50–53) can also strongly
influence the properties and extent of such coupling. The reduced
voltage sensitivity of split channels lacking a S4–S5 linker would
reinforce this view.

Importantly, properties attributable to each part of the full
channel, voltage-sensing domain and pore domain, are trans-
ferred to the corresponding split channels. Pore blockers such as

astemizole and E-4031 inhibit currents through KV10.1 and
HERG split channels, respectively; pore mutations in both the
channels abolish permeation also in the split channels; mutation
of the S4 segment induces shift in the same direction in both split
and continuous channels and KV10.1 split channels retain a
marked Cole–Moore shift. Furthermore, Cole–Moore shift, which
is not detected in HERG channels, is conferred to KV10.1/KV11.1
hybrid split channels by the voltage-sensing domain of KV10.1,
reinforcing the concept of modularity of ion channels.

Up to now, the results obtained with the split KCNH channels
were not reproduced with members of the KCNA or KCNQ
families. This could be attributed to mechanistic differences in the
process of gating, but also to differences in the biosynthesis of the
different families. For example, KCNA channels depend on a
N-terminal T domain for tetramerization, while KCNH channels
rely most primarily on C-terminal tetramerization domains,
although there is indication that N-terminal domains affecting
multimerization also exist54. Perhaps this results in inactive
N-terminal tetramers of KCNA channels, while the correct
association of KCNH channels would be favoured by their
multimerization domains. However, KCNQ channels also have
C-terminal tetramerization domains55,56 as KCNH, and we did
not observe functional channels in this family either.

Finally, our data open new unanswered questions. Thus, the
specific step(s) of the synthesis, processing, assembly, quality
control or trafficking pathways at which the modules come
together remain to be established. Also, the molecular determi-
nants for specificity of recognition of the two channel halves are
unknown, although our preliminary experiments suggest that at
least the N terminus can be important to build fully functional
KV11.1 channels. Further work will be necessary to provide
adequate answers to these questions.

Methods
Molecular biology. The initial split channels were generated from KV10.1 or
KV10.2 in the pSGEM oocyte expression vector (M. Hollmann, Bochum57) by
inserting at the chosen position in a ‘StopXStart’ cassette, where X is a particular
restriction enzyme flanked by the TGA stop and ATG start codons. Sequences of
oligonucleotides used are listed in Supplementary Table 1. In the case of the
N-terminal demi-channel, X was a previously absent restriction enzyme. The
fragment was then excised with X and a second single cutter from the polylinker
and ligated into the empty pSGEM. For the C-terminal demi-channels, X was
chosen among already present single cutters, now becoming a double cutter.
Restriction with this enzyme and subsequent religation of the larger DNA fragment
resulted in the deletion of the N-terminal part of the sequence. KV10.1 was split by
inserting a ‘StopBamHIStart’ or ‘StopEag1Start’ cassette after position Y347. For
KV10.2, ‘StopHindIIIStart’ or ‘StopEag1Start’ cassettes were used after Y344.
Subsequent split channels were generated by deleting the sequence after the start
codon up to the desired position (C-terminal constructs) or the sequence between
the desired position and the stop codon (N-terminal constructs).

The split channels for KV11.1 were generated as PCR fragments containing
the desired coding sequences that were inserted into the pSP64Aþ vector as
HindIII–BamHI fragments. The N-terminal fragment was synthesized using a
sense oligonucleotide containing a HindIII site, a Kozak’s signal and the sequences
for the initial eight KV11.1 residues together with an antisense oligonucleotide
carrying the coding sequence for residues 535 to 545, a stop codon and the
BamHI-recognition site. For the C-terminal KV11.1 fragment synthesis, the sense
oligonucleotide was designed to contain a HindIII site, a Kozak’s sequence and the
start codon followed by the 546 to 557 KV11.1 coding sequence, whereas the
antisense oligonucleotide covered the last KV11.1 residues (1,049–1,059) and
carried a stop codon and the BamHI-recognition sequence. The S620T C-terminal
fragment was generated the same way using a template carrying the mutation41.
Sequences of oligonucleotides used are listed in Supplementary Table 1.

Deletions and point mutations were generated using the Quick Change Kit
(Agilent Technologies).

Tagged fragments were generated by overlapping PCR. Sequences of
oligonucleotides used are listed in Supplementary Table 1. The 5-Myc tag was
obtained by PCR from a tagged KV7.2 construct (a generous gift from A. Villarroel,
Biophysics Unit, UPV-EHU58) and overlapped to the KV10.1 N-terminal
demichannel. The 4-HA tag was generated by insertion of a synthetic
oligonucleotide encoding two HA tags into a fragment with two additional HA tags
generated by PCR and overlapped to the C-terminal constructs.

All constructs were confirmed by sequencing.
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cRNA synthesis and oocyte microinjection. cRNAs from pSGEM and
pSP64Aþ constructs were prepared in vitro from linearized templates using the
T7 or SP6 promoters, respectively, and the mMessage mMachine kit (Ambion).
Xenopus laevis oocytes were microinjected with a total amount of cRNA ranging
from 5 to 25 ng using similar quantities of split channels cRNAs in a final volume
of 50 nl. Oocytes were kept at 18 �C in ND96 (96 mM NaCl, 2 mM KCl, 0.2 mM
CaCl2, 2 mM MgCl2, 0.5 mM theophylline, 5 mM HEPES, pH 7.5) or OR-2
(82.5 mM NaCl, 2 mM KCl, 2 mM CaCl2, 2 mM MgCl2, 1 mM Na2HPO4,
10 mM HEPES, at pH 7.5) solutions.

Surface biotinylation. We used the Surface Biotinylation kit (Pierce). Oocytes
expressing the corresponding constructs were washed with PBS and incubated for
30 min at 4 �C with 1 mg ml� 1 sulfo-NHS-biotin under continuous agitation. The
reaction was stopped by addition of 25 ml quencher. Oocytes were then homo-
genized by pipetting through 1,000 and 100ml tips in 20ml per oocyte 1% Triton-X-
100, 150 mM NaCl, 20 mM Tris-HCl, 5 mM MgCl2, 5 mM EDTA and protease
inhibitors (Complete; Roche). The homogenate was incubated 30 min on ice and
centrifuged twice at 20,000g for 3 min. The pellet was discarded and the clarified
extract was incubated with Neutravidin resin for 60 min at room temperature. The
resin was washed three times and finally the bound proteins were eluted by
incubation with NuPage LDS sample buffer for 60 min at room temperature. The
eluted proteins were concentrated by precipitation with trichloroacetic acid, and
then reconstituted in LDS sample buffer and separated by polyacrylamide gel
electrophoresis.

Immunoprecipitation and immunobloting. Ninety-six hours after injection of
cRNA coding for the N-terminal KV10.1 demi-channel labelled with 5�Myc plus
the C-terminal 4�HA-tagged demi-channel, 30 oocytes per group were collected
and lysed as above. The pellet was discarded and the supernatant was precleared
1 h at 4 �C with 25ml Protein G-Magnetic Beads (New England Biolabs).
Immunoprecipitation was performed for 1 h at 4 �C on the precleared lysate with
3 mg anti-c-Myc (Santa Cruz cat # sc-40), 2 mg anti-HA (Roche cat. #11867423001)
or 2 mg control mouse IgG 2b (Abcam) and 90 min with 50 ml Protein G-Magnetic
Beads. The beads were washed three times with 0.1% Triton-X-100, 50 mM Tris-
HCl, 300 mM NaCl, 5 mM EDTA plus protease inhibitors. Immunoprecipitated
proteins were recovered by heating at 70 �C for 10 min in LDS sample buffer
(Invitrogen). Samples to be deglycosylated with PNGase F (Sigma) were resus-
pended in 16.5 ml water to be digested overnight at 37 �C. For immunoblot analysis,
total protein was separated by SDS–polyacrylamide gel electrophoresis, probed
with anti-HA (1:1,000, Roche cat. #11867423001) or anti-c-Myc (1:1,000, Sigma cat
#M4439). The membranes were stripped and reprobed against the epitope used to
immunoprecipitate. Secondary antibodies (HA conjugated) were used at 1: 10,000
dilution (mouse, GE Healthcare #NA931V, rabbit, GE Healthcare #NA934V and
rat (Jackson Immunoresearch #112-035-006). Crude extract from 1/2 oocyte was
used as input control.

For Blue native electrophoresis, oocytes were washed and homogenized in
0.1 M sodium phosphate buffer, pH 8.0 containing: 0.4 mM Pefabloc SC
(Fluka, Buchs, Switzerland) plus 1.5% digitonin (Fluka). Extracts were incubated
10 min on ice and cleared at 25,000g for 10 min. 5 ml extract (1/2 oocyte) were
mixed with 20 ml Native Sample Buffer plus 0.375% G250 (NuPAGE) and run
in 4–16% precast Native Gels (Invitrogen) at 150 V in dark blue buffer for
45 min and at 250 V in light blue buffer. Semi-dry blotting was performed on
polyvinylidene difluoride membranes, and immunodetection was performed as
above. The anti-KV10.1 antibody (polyclonal 9391 (ref. 59)) was used at a dilution
of 1:1,500.

Uncropped images of blots are presented in Supplementary Fig. 3.

Electrophysiology. Two-electrode voltage-clamp recordings were performed at
room temperature 2–5 days after injection, using Turbo TEC-10CD and -10C
amplifiers (NPI electronics). The intracellular electrodes had resistances of
0.5–1.0 MO when filled with 2 or 3 M KCl. For KV10 recordings, the extracellular
measuring solution contained 115 mM NaCl, 2.5 mM KCl, 1.8 mM CaCl2, 10 mM
HEPES/NaOH, pH 7.2, with or without the indicated concentrations of MgCl2.
KV11.1 currents and those of the KV10.1/KV11.1 mixed demi-channels were rou-
tinely recorded in OR-2 medium. For recordings in high extracellular Kþ , KCl was
increased to 50 or 60 mM substituting NaCl. Oocytes showing membrane poten-
tials more positive than � 30 mV and holding currents bigger than 200 nA at
� 80/� 100 mV after impalement with the first and second electrode, respectively,
were discarded. Data acquisition and analysis were performed with the Pulse-
PulseFit (HEKA Electronics) and IgorPro (WaveMetrics) software packages. Ionic
currents sampled at 1 KHz were elicited using the voltage protocols indicated in the
graphs. A P/n method was used for leak and capacitive current subtraction, except
in the case of Cole–Moore protocols, where no subtraction was performed. For
KV11.1, the voltage dependence of activation was assessed by standard tail current
analysis using depolarization pulses of variable amplitude. For very rapidly deac-
tivating constructs, fitting the relaxation of the tail currents and extrapolating the
magnitude of the decaying current to the time the depolarizing pulse ended were
used to determine the amount of current passing through channels opened on
depolarization without influence of rapid inactivation. Tail current magnitudes

normalized to maximum were fitted with a Boltzmann function to estimate the V1/2

and equivalent gating charge (zg):

Itail=Imax ¼ 1
�

1þ exp V1=2 �V
� �

zgF=RT
� �� �

;

where V is the test potential and F, R and T are the Faraday constant, gas constant
and absolute temperature, respectively. The time course of voltage-dependent
activation was studied using an indirect envelope-of-tail-currents protocol, varying
the duration of depolarization prepulses, and following the magnitude of the tail
currents on repolarization. The time necessary to reach a half-maximal tail current
magnitude was used to compare the speed of activation of the different channels.
The rates of deactivation were determined from negative-amplitude biexponential
fits to the decaying phase of tail currents using a function of the form:

y ¼ Af expð� invtf : xÞþAs expð� invts: xÞþC

where tf and ts are the time constants of fast and slow components, Af and As are
the relative amplitudes of these components and C is a constant. In this case, the
first cursor of the fitting window was advanced to the end of the initial hook
because of the recovery of inactivation. Onset of fast inactivation was studied after
activation and inactivation of the currents with a prepulse to positive voltages,
followed by a second short prepulse to around � 100 mV used to recover the
channels from inactivation, and a subsequent test pulse to different voltages to
reinactivate the channels. Time constants for the onset of inactivation were
obtained from current traces fitting a single-exponential function to the decaying
portion of the currents during the test pulses.
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