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Abstract—We propose a predictive model of structural
changes in elementary subgraphs of social network based on
Mixture of Markov Chains. The model is trained and verified
on a dataset from a large corporate social network analyzed
in short, one day-long time windows, and reveals distinctive
patterns of evolution of connections on the level of local
network topology. We argue that the network investigated in
such short timescales is highly dynamic and therefore immune
to classic methods of link prediction and structural analysis,
and show that in the case of complex networks, the dynamic
subgraph mining may lead to better prediction accuracy. The
experiments were carried out on the logs from the Wroclaw
University of Technology mail server.

Keywords-social networks; mixture of Markov chains; pre-
diction;

I. INTRODUCTION

Network analysis has experienced a rapid development
of new methods and algorithms. Our capabilities of gath-
ering and processing data from networked systems lead to
many challenges of analysis and change prediction in fast
evolving network structures. Classical approaches, based on
structural graph theory and using structural measures for
characterization of network components, groups and entire
networks often fail or, at least, make network analysis
error-prone and difficult. When investigating the topologi-
cal properties and structure of complex networks we face
a number of complexity-related problems. In large social
networks, tasks like evaluating the centrality measurements
or finding cliques require significant computing resources. In
this context, methods which proved to be useful for medium
and small networks often fail when applied to larger struc-
tures. During last years we experienced the development of
a number of methods investigating complex networks by
means of their local structure (especially – frequent patterns
of connections between nodes). A biased distribution of local

network structures is widely observed in complex biological
or technology-based networks.

In this work we propose the application of Markov chains
to the prediction of local topology changes of dynamic, time-
dependent and therefore immune to standard methods of
structural analysis e-mail social network. We also show the
effectiveness of this approach for analysis of changing social
networks in very short time-scales – in our case the network
was analyzed in consecutive one-day time windows.

The paper is structured as follows: the next section briefly
presents the most important results od structural analysis of
dynamic networks, Section III discusses the experimental
setup and the properties of the network under investigation,
Section IV defines the Markov chain model, and last two
sections offer results analysis and outline the most appealing
directions of future research.

II. RELATED WORK

In large social networks, evaluating the centrality mea-
sures, finding cliques, etc. require significant computing
resources. However, the technology-based social networks
(like the one used in our experiments) add a new dimension
to the known problems of network analysis [15]. In this
family of complex networks the existence of a link is a result
of a series of discrete events (like email exchanges, phone
calls, posting of blog entries) which have some distribution
in time. As shown in [2] for various kinds of human activities
related to communication and information technologies, the
probability of inter-event times (periods between the events,
like sending an email) may be expressed as P (t) ≈ t−α

where typical values of α are between 1.5 and 2.5. The result
of such a distribution are detectable series of consecutive
events (‘bursts’) divided by longer periods of inactivity.
These phenomena have serious consequences when coupled
with structural network analysis. The standard approach



to dynamic complex network is to divide the available
time frame into windows to compute the chosen structural
network properties for networks created on the basis of data
from these windows [5]. This should show how the measures
like node centrality, average path length, group partitions etc.
change over time. However, the bursty behavior of the users
causes dramatic changes of any measure when switching
from one time window to another [4]. There is an inevitable
trade-off: short windows lead to chaotic and noisy dynamics
of network measures, while long windows give us no chance
to investigate time evolution of the network [14].

This opens a new research area, which encompasses
a number of approaches designed to predict changes in
the structure of dynamic networks [16]. The special case
of this family of methods is a so-called link prediction
problem – the estimation of probability that a certain link
will emerge/disappear during the next time window [17].
A good survey of link prediction methods is presented
in [7]. It should be noted that most methods of the link
prediction give rather poor results – the best predictors
discussed in [17] can identify < 10% of emerging links.
For big networks, the number of disconnected pairs of nodes
increases quadratically (the density of real-world networks
is small and the graphs are sparse) while the number of
links grows only linearly [8]. There are also link prediction
methods which utilize information external from the graph
network model itself (like in [1], where the content of Web
pages forming the network was used in the prediction).

In this work we propose a method designed for the
prediction of elementary network subgraphs – triads. Our
motivation is that the topology of complex networks is a
result of local interactions between the network components
[6] and modeling of interactions on this level is a key step
to more advanced methods of predictive structural analysis.

The simplest, and therefore popular, way to characterize
the network in the context of local connections is to examine
the links between the smallest non-trivial subgraphs, the
triads. The basic method utilizing such subgraphs is the well-
known triad census, allowing to reason about the functional
connection patterns of the nodes [23].

Last years have seen the development of more sophisti-
cated approaches, among them motif analysis which aims
to characterize the network by the difference between its
structures and an ensemble of random networks of the
same size and degree distribution. A biased distribution of
local network structures (subgraphs), a.k.a. network motifs
is widely observed in complex biological or technology-
based networks. Motif analysis stems from bioinformatics
and theoretical biology [9], [13], where it was applied to the
investigation of huge network structures like transcriptional
regulatory networks, gene networks or food webs [20], [18].
Although the global topological organization of metabolic
networks is well understood, their local structural organiza-
tion is still not clear. At the smallest scale, network motifs

have been suggested to be the functional building blocks
of network biology. So far several interesting properties
of large biological network structures were reinterpreted or
discovered with help of motif analysis [19], [22], [24]. The
discovered motifs and their numbers enable also to assess
which patterns of communication appear often in the large
social networks and which are rather rare.

However, in this work, we do not detect biased triad
occurrences but propose a method for the prediction of
changes in connection patterns in node triads.

III. DYNAMIC SOCIAL NETWORKS - DATASET AND

EXPERIMENTAL SETUP

The experiments were carried out on the logs
from the Wroclaw University of Technology (WUT,
http://www.portal.pwr.wroc.pl/) mail server, which were
pruned to contain only the emails originated from (or:
sent to) the staff members registered at the mail server of
the university. There are 5834 active email addresses on
the server, which implies that even for the shortest time
window of 1 day, there were on average approx. 2000
active network nodes. For our experiments we used data
from a period of 50 days, starting on the 4th of March
2010. In our former research we have investigated the local
structure of numerous technology-based networks, among
them the evolution of an e-mail social network of the WUT
during the period of two years [11], [12]. We have found
that, despite significant changes in networks structure the
statistical distribution of the subgraphs remains stable,
which led to the idea of characterizing network dynamics
by the evolutionary patterns of the subgraphs [11].

It should be noted that the email social networks undergo
rapid structural changes when investigated in short time
periods. Fig. 1 shows the changes in the number of the
links which connect 4560 users active during the timespan
assumed for our experiment (100 days out of which first 50
were used to train Markov model, the rest to verify it).

Figure 1. Number of links in the WUT social network.

As we can notice, the visible decrease in the number
of links observed every seven days clearly corresponds
with Sundays (or, in general, the weekends). One can even



recognize the annual student celebration in May which
resulted in two free days around the 90th day of the dataset.
However such a short timescale (1-day time widows) results
in huge variation in all classic structural characteristics of the
network (node degree, clustering, betweenness etc.). From
our point of view it was interesting that it also affects all
known methods of link prediction. For example, we have
checked the effectiveness of two methods presented in a clas-
sic survey work [4] and got the average accuracy of common
neighbors and preferential attachment predictors of 0.9% and
0.06% respectively (these results exactly correspond to the
effectiveness of these predictors from [4] where they turned
to be approx. 40 times better than random predictor).

Basing on these observations (and results from the works
cited in the previous section) we suggest that the accurate
predictions for fast-changing social networks observed in
short periods of time require the analysis of dependencies
and correlations of the activity of the nodes which may be
described in terms of temporal patterns of changes in local
network topology. In our research we analyze them from
the level of the simplest of these patterns – the connections
between triples of nodes. There are 64 different connection
patterns in a directed network of labeled nodes (Fig. 2).

Figure 2. Three-node triads in a directed, labeled graph.

The introductory analysis consisted of the following steps:
1) Creation of social networks from the email communi-

cation data. Each network corresponded to the server
logs from a single day, and 50 networks were created
in total.

2) Determining the connection patterns of any triad of
nodes out of which at least two were connected by at
least one directed link in any of the 50 networks.

3) The above patterns determine so-called triad trajecto-
ries – sequences of 50 numbers from 1 to 64. The

ith element of each triad trajectory corresponds to
the connections recorded in respective time window
between the three nodes being considered (Figure 2).
Each trajectory may be interpreted as a sequence of
connection patterns emerging between the triples of
nodes in the respective time windows.

The result was a test set of 1, 280, 363 triad trajectories,
out of which 896, 255 (70%) were used for the training of
Markov model (presented in the following section) and the
remaining 30% served as a test set for evaluating predictions.
The average number of non-empty (containing at least one
link) triads in one network was 167, 170.

IV. MIXTURE OF MARKOV CHAINS

In this section a probability distribution over sequences
of triads is presented. A model based on mixture of Markov
chains is introduced. Such approach allows to group triad
trajectories into clusters of different behaviour types. Hence,
let denote the triad at the mth moment in the nth observation
as xnm and encode it as a zero-one sequence of length L,
e.g., xnm = (0, 1, 0, . . . , 0) if the second triad has appeared.
The observed data X consists of N sequences of triads X =
[X1, . . . ,XN ], where Xn = [xn1, . . . ,xnM ]. Moreover, let
denote a latent random zero-one vector of length K as zn,
e.g., zn2 = (0, 1, 0, . . . , 0) if the second cluster has occurred.
Then the mixture of Markov chains can be represented as a
probabilistic graphical model (see Fig. 3; a node with double
circles denotes an observable variable, and a node with one
– a latent variable). The latent variable z could be seen as
a group of behaviour types of a triad.
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Figure 3. Graphical representation of a mixture of Markov chains.

Furthermore, a multinomial prior distribution over vari-
able zn is chosen:

p(zn) =
K∏

k=1

θznk

k . (1)

Hence, each triad sequence is assumed to be a sample
from a first-order Markov chain with a multionomial prior
distribution πk over a first state and a transition matrix
Ak = [Akij ], i, j = 1, 2, . . . , L:

p(xn1|zn) =
K∏

k=1

L∏

l=1

πxn1l∙znk

kl , (2)

p(xn(m+1)|xnm, zn) =
K∏

k=1

L∏

i=1

L∏

j=1

A
xn(m+1)j ∙xnmi∙znk

kij .

(3)



For further simplicity the following notation is introduced:

Markov(Xn|πk,Ak) =p(xn1|zn)×
M−1∏

m=1

p(xn(m+1)|xnm, zn). (4)

A. Learning stage

In order to start the inference procedure, the model should
be first trained on data. The goal of the learning algorithm
is to obtain parameters π, A, θ that could be accomplish by
maximizing the following likelihood:

p(X|π,A, θ) =
N∏

n=1

K∑

k=1

θkMarkov(Xn|πk,Ak). (5)

However, the likelihood is a mixture distribution and an
analytical solution is intractable to be obtained. Therefore,
an expectation-maximization procedure [3] is applied.
E-step. The posterior distribution over the sequence of latent
variables is expressed in the form:

p(z|X, π,A, θ) ∝
N∏

n=1

K∏

k=1

{θkMarkov(Xn|πk,Ak)}znk .

(6)
Thus the following expectations can be obtained due to the
fact that znk ∈ {0, 1}:

γ(znk) = E [znk] =
θkMarkov(Xn|πk,Ak)

K∑

h=1

θhMarkov(Xn|πh,Ah)

(7)

M-step. Then new values of the parameters can be expressed
in a closed form as a result of maximization procedure of
the expected value of the joint log-likelihood with respect
to the distribution (6). Because of the constraints on the
parameters π,A, θ the Lagrange multipliers have to be used
in order to obtain the following solution:

θnew
k =

1
N

N∑

n=1

γ(znk), (8)

πnew
kl =

N∑

n=1

γ(znk)xn1l

N∑

n=1

γ(znk)

, (9)

Anew
kij =

N∑

n=1

γ(znk)
M−1∑

m=1

xnmixn(m+1)j

N∑

n=1

γ(znk)
M−1∑

m=1

xnmi

. (10)

STOP: The EM procedure stops iterating when the change
in the likelihood (5) in two consecutive steps is less then
given threshold ε.

B. Prediction stage

The goal of the inference is to predict the next triad xp+1,
given the triad sequence X1:s = [x1, . . . ,xs]. It could be
done using following conditional probability:

p(xs+1|X1:s) =

K∑

k=1

θkMarkov(X1:s+1|πk,Ak)

K∑

k=1

θkMarkov(X1:s|πk,Ak)

. (11)

Then the triad xs+1,m with the highest probability is taken
as a predicted value. The extension of this procedure to pre-
dict sequences of the triads xs, . . . ,xs+r is straightforward
and can be obtained by using the dynamic programming
procedure in order to find the most probable sequences.

V. EXPERIMENTAL RESULTS

A. Details

The parameters of the probabilistic model considered
in the previous section were calculated due to the EM
procedure based on the 896, 255 triad trajectories and each
trajectory consists of 50 moments. A single triad trajectory
concerns a single triad that links could disappear and appear
in time. An example of the triad trajectory is presented in the
Fig. 4 where in the first moment the triad is of the 44th type
(see Fig. 2), then in the second moment it evolves to the 42nd

type, and next to the 2nd type, and so on. Notice that we are
able to observe the triad at each moment and assuming the
dependency between two triads at two following moments
we get the first order Markov chain.
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Figure 4. An exemplary triad trajectory.

After the learning stage the model was evaluated based on
the 384, 108 triad trajectories. The one-step-ahead prediction
was made for all moments starting from the 3rd to the 50th

moment. In the Table I the results concerning the mean
value of error for all observations and 50 moments (referred
as Mean), as well as the standard deviation (Std. Dev), the
worst and the best case among all moments (Worst case and
Best case, respectively) for mixture of Markov chains with
different values of K = 1, 3, 5 are presented (results for K =
2, 4 being quite similar). Additionally, below the double line
the results for random method (prediction was made due to
the random uniform distribution; referred as Random), and a
method that always returns 1 (the triad that occurs most often
in the dataset; referred as Constant) are given. Both methods
are used as a comparison and a reference. In the experiment
no context information was used, e.g., if considered moment
is a working day or a weekend.



Table I
RESULTS FOR MIXTURE OF MARKOV CHAINS.

K Mean Std. Dev. Worst case Best case

1 0.079 0.126 0.662 0.016

2 0.081 0.122 0.661 0.015

3 0.080 0.120 0.662 0.018

4 0.079 0.126 0.661 0.019

5 0.082 0.117 0.662 0.017

Random 0.984 0 0.945 0.984

Constant 0.085 0.129 0.669 0.002

Figure 5. Mean error for each moment and K = 1.

Figure 6. Mean error for each moment and K = 3.

Figure 7. Mean error for each moment and K = 5.

B. Discussion

Obtained results indicate that application of the mixture
of Markov chains gives very promising outcome (the mean
error at the level of approx. 8%). Nevertheless, the Constant

Figure 8. Mean error for each moment and the Constant method.

method that always returns the triad number 1 performed
also quite well. However, it could be easily explained
because in the dataset only around 170, 000 of triads were
other type than No. 1. However, when comparing graphs
for the mixture of Markov chains (Fig. 5 - 7) with the one
for the Constant method (Fig. 8) it could be noticed that
during weekends the dynamics of the network is very low
and almost all triads have no links. Hence, the Constant
method made almost no error in prediction. On the other
hand, the Constant method got worst results during working
days than the mixture of Markov chains. Therefore, it could
be stated that the proposed probabilistic model performed
very good during working days but a little worse during
weekends.

Moreover, considering the K value it could be said that
the best results were obtained for one group (K = 1, see
Table I) and four groups (K = 4, see Table I). It is an
indication that in the considered dataset there could be four
groups of trajectories (behaviour types). Nevertheless, such
analysis needs further and more detailed research.

Furthermore, quite peculiar is a very bad performance of
all methods at 40th and 42nd moments of time. First, triad
trajectories included in the test set concern staff members
only from several departments at the university. Second,
those days (around the 15th of April) special events took
place at those departments, e.g., conferences and open days.
Therefore, there was an extra activity at the e-mail server.
These moments could be treated as anomalies or outliers
that are impossible to predict without any additional context
knowledge.

The results for the Random are not shown since this
method returned results exceeding mean error value of 98%
for all cases.

VI. CONCLUSIONS

Our experiments have shown that it is possible to predict
the evolution of the links in node triads of fast-changing
social network with a good accuracy. Is is also interesting
that the dynamic network structures built from real-life
datasets reflect the influence of external events which may
significantly distort the network structure, which was visible



in our experiments. This results are preliminary and form the
basis of our future experiments which will be carried on in
the following directions:

1) The classification of nodes according to their activity
patterns.

2) The link prediction method based on prediction of the
triad structure.

3) The structure prediction – building the characteristics
of network groups from the triad evolutionary patterns.

4) Including link attributes in the analysis. The obvious
one is link weight; a link may exist as a consequence
of sending one or many messages, and in most cases
it is far more stable in the second case. This issue may
be used to tune our method.

5) Application of more complex probabilistic models.
First of all, instead of first order Markov chains
the hidden Markov models [21] should be applied.
Further, the nonparametric Bayesian approach [10]
could be presumably used to increase the accuracy
and automatize the whole process of inference.
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