873 research outputs found

    The motion of the freely falling chain tip

    Get PDF
    The dynamics of the tip of the falling chain is analyzed. Results of laboratory experiments are presented and compared with results of numerical simulations. Time dependences of the velocity and the acceleration of the chain tip for a number of different initial conformations of the chain are determined. A simple analytical model of the system is also considered.Comment: 29 pages, 13 figure

    Characterisation of Hybrid Pixel Detectors with capacitive charge division

    Get PDF
    In order to fully exploit the physics potential of the future high energy e+ e- linear collider, a Vertex Tracker providing high resolution track reconstruction is required. Hybrid pixel sensors are an attractive technology due to their fast read-out capabilities and radiation hardness. A novel pixel detector layout with interleaved cells between the readout nodes has been developed to improve the single point resolution. The results of the characterisation of the first processed prototypes are reported.Comment: 5 pages, 2 figures, presented at LCWS2000, Linear Collider Workshop, October 24-28 2000, Fermi National Accelerator Laboratory, Batavia, Illinois, U.S.A. Proceedings to be published by the American Institute of Physic

    Longitudinal stability augmentation of seaplanes in planing

    Get PDF
    The towing tank experiments conducted at Yokohama National University from November 30 to December 9 in 2005 suggested a new way of suppressing a dangerous coupled motion between heave and pitch called porpoising. The research in this paper was developed on the observations made in the experiments and conducted numerical simulations to further investigate the parametric design space. Two linear-time-invariant models were developed: rigid-body planing craft (conventional float planes or flying boats), and flexibly supported planing craft. The latter could simulate the new method found in the experiments for suppressing porpoising. In this study, the stability of the oscillatory motions was analyzed to see the effect of design variables on the inception of porpoising. The parametric study of flexibly supported float planes in the context of porpoising was a new contribution in the conceptual design of seaplanes

    Management of Bladder Cancer following Solid Organ Transplantation

    Get PDF
    Objective. Present our experience managing bladder cancer following liver and renal transplantation. Methods. Single institution retrospective review of patients diagnosed with bladder urothelial carcinoma (BUC) following solid organ transplantation between January 1992 and December 2007. Results. Of the 2,925 renal and 2,761 liver transplant recipients reviewed, we identified eleven patients (0.2%) following transplant diagnosed with BUC. Two patients with low grade T1 TCC were managed by TURBT. Three patients with CIS and one patient with T1 low grade BUC were treated by TURBT and adjuvant BCG. All four are alive and free of recurrence at a mean follow-up of 51 ± 22 months. One patient with T1 high grade BUC underwent radical cystectomy and remains disease free with a follow-up of 98 months. Muscle invasive TCC was diagnosed in four patients at a median of 3.6 years following transplantation. Two patients are recurrence free at 24 and 36 months following radical cystectomy. Urinary diversion and palliative XRT were performed in one patient with un-resectable disease. Conclusions. Bladder cancer is uncommon following renal and liver transplantation, but it can be managed successfully with local and/or extirpative therapy. The use of intravesical BCG is possible in select immunosuppressed patients

    Microenvironment generated during EGFR targeted killing of pancreatic tumor cells by ATC inhibits myeloid-derived suppressor cells through COX2 and PGE\u3csub\u3e2\u3c/sub\u3e dependent pathway

    Get PDF
    Abstract Background Myeloid-derived suppressor cells (MDSCs) are one of the major components of the immune-suppressive network, play key roles in tumor progression and limit therapeutic responses. Recently, we reported that tumor spheres formed by breast cancer cell lines were visibly smaller in a Th1 enriched microenvironment with significantly reduced differentiation of MDSC populations in 3D culture. In this study, we investigated the mechanism(s) of bispecific antibody armed ATC mediated inhibition of MDSC in the presence or absence of Th1 microenvironment. Methods We used 3D co-culture model of peripheral blood mononuclear cells (PBMC) with pancreatic cancer cells MiaPaCa-2 [MiaE] and gemcitabine resistant MiaPaCa-GR [MiaM] cells to generate MDSC in the presence or absence of Th1 cytokines and EGFRBi armed ATC (aATC). Results We show significantly decreased differentiation of MDSC (MiaE, p\u3c0.005; MiaM, p\u3c0.05) in the presence of aATC with or without Th1 cytokines. MDSC recovered from control cultures (without aATC) showed potent ability to suppress T cell functions compared to those recovered from aATC containing co-cultures. Reduced accumulation of MDSC was accompanied by significantly lower levels of COX2 (p\u3c0.0048), PGE2 (p\u3c0.03), and their downstream effector molecule Arginase-1 (p\u3c0.01), and significantly higher levels of TNF-α, IL-12 and chemokines CCL3, CCL4, CCL5, CXCL9 and CXCL10 under aATC induced Th1 cytokine enriched microenvironment. Conclusions These data suggest aATC can suppress MDSC differentiation and attenuation of their suppressive activity through down regulation of COX2, PGE2 and ARG1 pathway that is potentiated in presence of Th1 cytokines, suggesting that Th1 enriching immunotherapy may be beneficial in pancreatic cancer treatment

    Electrochemical Sensor Research at the Laboratoire d'Electrochimie of the EPFL

    Get PDF
    This review presents some recent developments in the field of electroanalytical sensors. We first explain the working principle of electrochemistry at the interface between two immiscible electrolyte solutions (ITIES), illustrated by the example of copper transferring through a water/1,2-dichloroethane interface when the ionophore 1,4,7,10-tetrathiacyclododecane is present in the organic phase. The obtained results show that assisted ion-transfer reactions take place with both CuI and CuII, but that the interfacial process is complicated by the fact that CuI disproportionates in water and that CuII can be reduced in the organic phase.Based on the same experimental methodology, a new type of amperometric detector for non-redox ions has been developed using a composite polymer membrane supporting a gelified organic phase that can incorporate an ionophore such as valinomycin. We report here the use of a (o-nitrophenyloctylether)-(poy(vinyl chloride) (NPOE-PVC) gel micro-interface as a detector for cations and anions in ion-exchange chromatography. The main advantage of this approach is that selectivity and sensitivity can be tailored by the choice of the ionophore and by the polarisation potential.This ion detector has also been incorporated in a miniaturised total-analysis system (µ-TAS) fabricated in a polymer sheet by UV-laser photoablation. This microfabrication technique is used for the prototyping of a disposable capillary-electrophoresis microsystem comprising on-chip injector, separation column and electrochemical detector. This system is further used with built-in carbon-ink electrodes for the detection of electroactive species. These microsystems are now under development for immuno-sensor applications

    A bioactive hybrid three-dimensional tissue-engineering construct for cartilage repair

    Get PDF
    The aim was to develop a hybrid three-dimensional-tissue engineering construct for chondrogenesis. The hypothesis was that they support chondrogenesis. A biodegradable, highly porous polycaprolactone-grate was produced by solid freeform fabrication. The polycaprolactone support was coated with a chitosan/polyethylene oxide nanofibre sheet produced by electrospinning. Transforming growth factor-3-induced chondrogenesis was followed using the following markers: sex determining region Y/-box 9, runt-related transcription factor 2 and collagen II and X in quantitative real-time polymerase chain reaction, histology and immunostaining. A polycaprolactone-grate and an optimized chitosan/polyethylene oxide nanofibre sheet supported cellular aggregation, chondrogenesis and matrix formation. In tissue engineering constructs, the sheets were seeded first with mesenchymal stem cells and then piled up according to the lasagne principle. The advantages of such a construct are (1) the cells do not need to migrate to the tissue engineering construct and therefore pore size and interconnectivity problems are omitted and (2) the cell-tight nanofibre sheet and collagen-fibre network mimic a cell culture platform for mesenchymal stem cells/chondrocytes (preventing escape) and hinders in-growth of fibroblasts and fibrous scarring (preventing capture). This allows time for the slowly progressing, multiphase true cartilage regeneration.Peer reviewe

    Integration of genetics into a systems model of electrocardiographic traits using humanCVD BeadChip

    Get PDF
    <p>Background—Electrocardiographic traits are important, substantially heritable determinants of risk of arrhythmias and sudden cardiac death.</p> <p>Methods and Results—In this study, 3 population-based cohorts (n=10 526) genotyped with the Illumina HumanCVD Beadchip and 4 quantitative electrocardiographic traits (PR interval, QRS axis, QRS duration, and QTc interval) were evaluated for single-nucleotide polymorphism associations. Six gene regions contained single nucleotide polymorphisms associated with these traits at P<10−6, including SCN5A (PR interval and QRS duration), CAV1-CAV2 locus (PR interval), CDKN1A (QRS duration), NOS1AP, KCNH2, and KCNQ1 (QTc interval). Expression quantitative trait loci analyses of top associated single-nucleotide polymorphisms were undertaken in human heart and aortic tissues. NOS1AP, SCN5A, IGFBP3, CYP2C9, and CAV1 showed evidence of differential allelic expression. We modeled the effects of ion channel activity on electrocardiographic parameters, estimating the change in gene expression that would account for our observed associations, thus relating epidemiological observations and expression quantitative trait loci data to a systems model of the ECG.</p> <p>Conclusions—These association results replicate and refine the mapping of previous genome-wide association study findings for electrocardiographic traits, while the expression analysis and modeling approaches offer supporting evidence for a functional role of some of these loci in cardiac excitation/conduction.</p&gt

    4mu spectra of AGB stars I: Observations

    Full text link
    We present times series of high resolution spectra of AGB variables at 4mu. Line profiles from the major contributors to the spectra of oxygen rich stars at 4mu, OH, H2_2O, HCl and SiO, are examined. The velocity as well as shape variations of these profiles with time are discussed. The line profiles investigated frequently have emission and multiple absorption components. The changes with time of the 4mu region lines do not always follow the cyclic variability seen in NIR spectra and in the photometric light curve. We interpret and discuss the results qualitatively considering comparing the spectral variability with that of the well behaved 1.6mu region and of dynamical model atmospheres. Miras and semiregular variables are compared. The origins of non-periodic behavior are discussed, including the role of spatial inhomogeneities in the stellar atmosphere.Comment: 14 pages, 12 figures, accepted for publication in A&
    corecore