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The towing tank experiments conducted at the Yokohama National University from
November 30 to December 9 in 2005, suggested a new way of suppressing a dangerous
coupled motion between heave and pitch called porpoising. This research develops on the
observations made in the experiments and conducts numerical simulations to further in-
vestigate the parametric design space. Two Linear-Time-Invariant models were developed:
rigid-body planing craft (conventional float planes or flying boats) and flexibly supported
planing craft. The latter can simulate the new method found in the experiments for sup-
pressing porpoising. In this study, the stability of the oscillatory motions was analyzed to
see the effect of design variables to the inception of porpoising. The parametric study of
flexibly supported float planes in the context of porpoising is a new contribution in the
conceptual design of seaplanes.

Nomenclature

β Deadrise angle in [degrees]
ε Thrust line angle with respect to the keel line (positive upwards) in [degrees or radians]
η3, η5 Displacement in heave and pitch respectively from the inertial coordinate xb, zb
<(σ)max Maximum real part of the eigenvalues of a matrix K as in ẋ = Kx, unit in [1/s]
ξ3, ξ5 Displacement in heave and pitch respectively from the inertial coordinate xa, za
Aij Hydrodynamic added mass/moment of inertia in the direction of i due to the motion in the direction

of j
B Beam length (i.e. width) of a float in [m]
Bij Hydrodynamic damping coefficient in the direction of i due to the motion in the direction of j
cf,b Damping coefficients in the flexible support (front and back) in [N s/m]
Cij Hydrodynamic restoring force/moment coefficient in the direction of i due to the motion in the

direction of j
f Thrust line distance from CG (positive when pitch-up moment results) in [m]
FnB

Froude number based on the beam length defined as U/
√
gB, where g is gravitational acceleration

IA Pitching mass moment of inertia of the aircraft without the floats for the flexible-support model in
[kgm2]
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IB Pitching mass moment of inertia of the floats for the flexible-support model in [kgm2]
I55 Pitching mass moment of inertia of rigidly supported seaplane/model in [kgm2]
kf,b Spring constants in the flexible support (front and back) in [N/m]
lAf ,Ab Attachment locations of flexible supports on the aircraft relative to center of gravity of the aircraft

in [m]
lBf ,Bb Attachment locations of flexible supports on the floats relative to center of gravity of the floats in

[m]
lcg Longitudinal distance of center of gravity along the keel line measured from the step or transom in

[m]
mA Mass of the aircraft for the flexible-support model in [kg]
mB Mass of the float for the flexible-support model in [kg]
Nf Number simulation function calls
Ns Number of simulation function calls that satisfied the stability criteria
U Planing speed in [m/s]
vcg Vertical distance of CG from the keel line in [m]
xa, za Inertial coordinate moving with the aircraft’s CG’s equilibrium position without floats, xa pointing

horizontally to the stern, za pointing vertically upward
xb, zb Inertial coordinate moving with the aircraft’s CG’s equilibrium position when the supports are rigid

and moving along the floats’ CG’s equilibrium position when the supports are flexible, xb pointing
horizontally to the stern, zb pointing vertically upward

I. Introduction

Seaplanes and their amphibian versions have been largely a neglected type of aircraft in recent aviation
except for very specific missions and in limited geographic regions. This is due to higher maintenance

costs, less payload, and lower operational reliability (high waves are an additional weather hazard) compared
to land based aircraft. However, recent technological advances in materials and computational capabilities
along with macro-economic and ecological considerations may render this type of aircraft interesting. Point-
to-point operation in coastal area could alleviate traffic congestion in urban airports and make remote islands
more accessible. This in turn should help more balanced economic growth and better emergency services
in smaller cities and rural areas. This paper addresses one of the drawbacks of seaplanes called porpoising
which is a dynamic instability in planing seaplanes and high-speed boats.14

Porpoising is a coupled oscillatory motion between heaving and pitching that can manifest when sea-
planes are travelling on water at planing speed (Figure 1). This motion may become unstable and can pose
significant risk to the safe operation of waterborne aircraft. Traditionally, the rules of thumb in designing of
hulls and physical experiments4,6, 12,15 (combined with pilot training11,13) have been the methods of miti-
gating the risk. However, the phenomenon is poorly understood and sufficient parametric studies applicable
to seaplanes have not appeared in the literature. Current research aims to fill this gap. The objective is to
effectively mitigate or eliminate porpoising by design.

Towing tank experiments7 showed that the moving center of gravity aft, or employing flexible supports
(between the aircraft and the floats) comparable to those of a car could improve the stability of the planing
craft (Figure 2). To understand these observations, Linear-Time-Invariant models were constructed and the
stability of oscillatory motions was studied. The numerical models were coherent with the experiments and
two major design question were answered, namely 1) the appropriate direction to move the center of gravity
when porpoising is a problem,10 2) whether flexible supports suppress porpoising globally or under certain
conditions.

In the literature, most of the work investigating longitudinal stability of planing seaplanes is experimental.
A large portion of them was conducted before the prevalence of fast personal computers (i.e., before the ’70s).
Parametric investigation of porpoising behavior based on numerical simulations and investigation of flexible
supports for mitigation of porpoising are two contributions of this work.

II. Methods

The first step in this study was to numerically recreate at least qualitatively the observation made in
the towing tank experiments. Particularly, the objective here is to confirm that the inception of porpoising
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Figure 1: Schematic of porpoising

Figure 2: An implementation of the Flexible Support System in an Ultra Light Plane

occurs at approximately 5 m/s of towing speed with the original CG location, and that by moving the CG
aft stabilizes the towed model. Then, observe numerically that the flexible support “stabilizes” the towed
model. The second step was to explore different designs by varying parameters in the numerical model. The
towed model consisted of a pair of floats in catamaran configuration and a frame on top of it (Figure 3).
The frame has adjustable weights to roughly simulate the inertia characteristics of the aircraft that the float
was designed for, which is a 1/3 scale Piper Cub. By changing the location of weights, one can also move
the location of the CG backward or forward. In the following, the numerical model of the conventional rigid
case and then the flexibly supported case are described.

For the numerical analysis, the catamaran configuration was replaced by a mono-hull representation of
prismatic hull as shown in Figure 4. The transom location in this figure corresponds to the step location in
the actual float. The afterbody of the float is neglected in the modelling and so is the curved front portion
of the forebody of the float. The dynamic stability was computed using small perturbation analysis as
presented in Faltinsen.5 The coordinate systems employed are shown in Figure 6. For the rigidly supported
case, the inertial coordinate system xb, zb was set to move along with the towed craft, its origin coincides
with the equilibrium position of the craft’s center of gravity. The x axes point to the stern of the craft. For
the flexibly supported case, separate inertial coordinate systems that move along the craft were employed for
above the support xa, za and the float xb, zb. These are an approximate way to represent the dynamics (for
the frame has surge component of motion that are neglected) but were done in order to facilitate the analysis.
The linear system of equation for the rigidly supported case is Equation (1), and for the flexibly supported
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Figure 3: Experiment with the flexible support at the towing tank of Yokohama National University

case, Equation (2). Added mass Aij , damping force coefficient Bij , and the restoring force coefficient Cij

were formulated according to chapter 8 and 9 of Faltinsen’s book.5 The numbers in subscripts i, j ∈ {3, 5}
denote heaving 3 and pitching 5 respectively. The first subscript i refers to the resulting force or moment
direction and the second subscript j refers to the motion causing the force or moment. For example, C35

refers to the heaving force coefficient due to pitching motion. One can also find relevant information on the
hydrodynamic forces for planing crafts in.1,2, 8, 10

B

l_cg
vcg

CG

Water Line

L_K

L_C
Spray Root

Side View

Bottom View

Rear View

β

f

ε Thrust Line

τ

Figure 4: Diagram of planing hull cut-out.

The flexibly supported case contains additional parameters on the characteristics of the support, namely
the spring constants kf , kb and the damping coefficients cf , cb. The subscripts denote their locations: f

for front and b for back. Likewise, the attachment locations relative to center of gravity are denoted lAf ,
lAb for the front and back attachment point on the aircraft side respectively, and lBf , lBb on the float side.
These parameters are visualized in Figure 5. We have kept the attachment points fixed and varied the spring
constants and damping coefficients in our numerical simulations.

In the rigidly supported case, we also used Self-Organizing Map Based Adaptive Sampling (SOMBAS)9

to search for stable designs. SOMBAS is suitable for the task of searching for multiple and diverse solutions
satisfying certain objective conditions. We searched for designs with negative values in maximum real part
of the eigenvalues. For the two-design-variable case, we use the longitudinal distance of CG along the keel
line lcg measured from the step or transom, and vertical distance of CG from the keel line vcg. For the seven-
design-variable case, we use the beam length B, the deadrise angle β (in degrees), the pitching moment of
inertia I55, the thrust line distance f from CG (positive when pitch-up moment results) and the thrust line
angle with respect to the keel line (positive upwards) ε. Figure 4 shows a diagram describing the design
variables except the inertial variable I55.

4 of 13

American Institute of Aeronautics and Astronautics



    

M
+
A

3
3

A
3
5

0
0

A
5
3

I 5
5

+
A

5
5

0
0

0
0

1
0

0
0

0
1

    

    

η̈ 3 η̈ 5 η̇ 3 η̇ 5

    
+

    

B
3
3

B
3
5

C
3
3

C
3
5

B
5
3

B
5
5

C
5
3

C
5
5

−
1

0
0

0

0
−

1
0

0

    

    

η̇ 3 η̇ 5 η 3 η 5

    
=

    

0 0 0 0

    
(1

)

             

m
A

0
0

0
0

0
0

0

0
I A

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

m
B

+
A

3
3

A
3
5

0
0

0
0

0
0

A
5
3

I B
+
A

5
5

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
1

             

             

ξ̈ 3 ξ̈ 5 ξ̇ 3 ξ̇ 5 η̈ 3 η̈ 5 η̇ 3 η̇ 5

             

+

              

c f
+
c b

c f
l A

f
−
c b
l A

b
k
f

+
k
b

k
f
l A

f
−
k
b
l A

b
−
c f
−
c b

−
c f
l B

f
+
c b
l B

b
−
k
f
−
k
b

−
k
f
l B

f
+
k
b
l B

b

c f
l A

f
−
c b
l A

b
c f
l2 A

f
+
c b
l2 A

b
k
f
l A

f
−
k
b
l A

b
k
f
l2 A

f
+
k
b
l2 A

b
−
c f
l A

f
+
c b
l A

b
−
c f
l A

f
l B

f
−
c b
l A

b
l B

b
−
k
f
l A

f
+
k
b
l A

b
−
k
f
l A

f
l B

f
−
k
b
l A

b
l B

b

−
1

0
0

0
0

0
0

0

0
−

1
0

0
0

0
0

0

−
c f
−
c b

−
c f
l A

f
+
c b
l A

b
−
k
f
−
k
b

−
k
f
l A

f
+
k
b
l A

b
B

3
3

+
c f

+
c b

B
3
5

+
c f
l B

f
−
c b
l B

b
C

3
3

+
k
f

+
k
b

C
3
5

+
k
f
l B

f
−
k
b
l B

b

−
c f
l B

f
+
c b
l B

b
−
c f
l A

f
l B

f
−
c b
l A

b
l B

b
−
k
f
l B

f
+
k
b
l B

b
−
k
f
l A

f
l B

f
−
k
b
l A

b
l B

b
B

5
3

+
c f
l B

f
−
c b
l B

b
B

5
5

+
c f
l2 B

f
+
c b
l2 B

b
C

5
3

+
k
f
l B

f
−
k
b
l B

b
C

5
5

+
k
f
l2 B

f
+
k
b
l2 B

b

0
0

0
0

−
1

0
0

0

0
0

0
0

0
−

1
0

0

              

             

ξ̇ 3 ξ̇ 5 ξ 3 ξ 5 η̇ 3 η̇ 5 η 3 η 5

             

=

             

0 0 0 0 0 0 0 0

             

(2
)

5 of 13

American Institute of Aeronautics and Astronautics



III. Results

Figure 7 - Figure 9 and Figure 14 - Figure 15 are for the rigidly supported case and Figure 10 - Figure 13
are for the flexibly supported case. Nominal conditions for the calculation are as following unless otherwise
specified: the planing speed U = 6.0 [m/s], the mass of craft for the rigid case M = 16.18 [kg] and for the
flexible case mA = 10.79 [kg] (aircraft), mB = 5.39 [kg] (float), the beam length B = 0.2 [m], the moment of
inertia for the rigid case I55 = 5.981 [kgm2], for the flexible case IA = 4.351 [kgm2] (aircraft), IB = 1.630
[kgm2] (float), the length along the keel from step to center of gravity lcg = 0.104 [m], the distance of
CG from the keel vcg = 0.453 [m], and the moment arm length from CG to the supports (Figure 5) are
lAf = lAb = lBf = lBb = 0.2 [m]. Froude number is defined based on the beam length FnB

= U/
√
gB. The

beam length B and lcg are not reported in Hirakawa’s paper7 and their values are educated guesses. In the
simulation, we use the half body representation. That means we half the mass and moment of inertia in the
calculations, and model as a mono-hull float plane.

For plots with vertical axis showing the maximum eigenvalue <(σ)max of the linear system, any positive
value of the real part of the eigenvalue signifies divergence of the oscillation mode and therefore is unstable.
The eigenvalues are calculated from the matrix obtained in the following way. K = M−1(−R), where
Mẋ + Rx = 0 and x is the state vector, where M and R represent the matrices in Equation (1) and
Equation (2).

Figure 7 confirms that moving the CG backwards towards the step helps the craft to remain stable
until a higher velocity. The figure shows the maximum real part of the eigenvalues <(σ)max

√
B/g with

respect to Froude number FnB
. We kept the beam length B constant. Thus, Froude number is essentially

a non-dimensionalized speed. In the towing tank experiment, divergence (porpoising) occurred at about
U = 5.0 [m/s]7 (FnB

= 3.57) with the nominal lcg/B location of 5.2. Figure 7 shows that, in the numerical
simulation, planing craft with lcg/B = 0.50 turns unstable at just under FnB

= 5.0 and with lcg/B = 0.65,
just under FnB

= 3.5. Note that in the physical dimensions, the two lcg values differ only by 0.03 [m] (or
1.95% of the float length of 1.54 [m]7) and the speed limit for stable planing changed by 2.10 [m/s] (or 42.8%
difference). Thus, the planing speed U at which the craft turns unstable is very sensitive to the CG location.
Considering the fact that values for B and lcg are only approximately known, the numerical results are very
reasonable in light of the experimental evidence.

The trim angles τ corresponding to the two lcg values with respect to FnB
are shown in Figure 8. The

trim angles are found by driving the moment equation to have near zero residue moment. This is done using
Brent’s method [3, Ch.3-4] implemented in Scipy optimize module of the Python programming language.
One can let the solutions to have small residues so that the trim angles found can be used as a small
perturbation in the subsequent eigenvalue computations.

Figure 9 indicates that the desirable direction of moving the CG ,i.e. forward or backward, to stabilize
an unstable planing condition depends on the current value of lcg. There is a band of lcg values at which a

non-decaying oscillation manifests with positive <(σ)max

√
B/g. This band of instability increases in width

as FnB
increases from 2.86 to 5.71 as seen in Figure 9a to Figure 9c. The contour plots show that the

sensitivity of the stability to changes in vcg is not as marked as changes in lcg. A small portion of the design
space near the transom or very small value of lcg generates stable designs, and most float planes have this
configuration to facilitate the pitch up at the moment of take off. This means that to make the planing
stable, it is a good idea to shift the CG aft. However, once airborne, it is better to have CG forward to have
enough “static margin” for a stable flight.

Figure 10 checks whether the two simulation codes, one for the rigid-body case and the other for the flex-
ibly supported case, agree if the flexible support’s spring were extremely stiff. The plot shows <(σ)max

√
B/g

with respect to FnB
. The two lines agree very well.

Figure 11 - Figure 13 show the effectiveness of the flexible support in mitigating unstable oscillations.
However, as can be noted from the sharp rise in the real part of eigenvalues at high Froude numbers, it is not
a globally stabilizing solution. Inadequate damping in the flexible supports can worsen the stability of the
seaplane compared with the conventional rigidly supported ones as seen in Figure 11a or in Figure 11b. This
suggests that the damper should be designed carefully in such a way that no divergent oscillation modes
occur in the planing speeds of the aircraft. Figure 12 shows that if only one of either front or back support
is made flexible, it is the back support that is effective in mitigating instabilities. Similarly, if damping is
applied to either the front or the back support (that are both flexible), it is the damping of the back support
that is more effective (Figure 13). These results show some similarity with the flutter stability phenomena
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in Aeroelasticity, in which the elastic axis location of the wing affects the divergence speed.
Figure 14 shows a contour plot of <(σ)max

√
B/g with respect to lcg and vcg along with sampled points by

SOMBAS in two-design-variable case. SOMBAS was set to search feasible designs requiring <(σ)max < 0.
The sampled points that satisfies that condition are shown along with the final location of the training
samples for Self-Organizing Map (SOM). The distribution of the training samples indicates the finite sample
representation of the feasible region around which further sampling in the subsequent iterations are expected
produce further space filling effect of the feasible design space, i.e. further stable designs. In this trivial
case (because we already have the contour plot), we see that SOMBAS sampled diverse combinations of
lcg and vcg filling out the stable domain. This feasible region search capability is useful when the design
space is in higher dimensions (many design variables) and full-factorial design (or grid sampling) becomes
too expensive.

Figure 15a shows the scatter plot matrix of the seven design variable case. Nf is the number of designs
(experiments) computed by SOMBAS andNs is the number designs that satisfy the condition, i.e., <(σ)max <
0. The lower triangular cells show the absolute values of correlation coefficients. Again, it clearly shows
the unstable “band” for lcg at the top row of the scatter plot matrix. Other parameter does not show clear
unfeasible regions. Further restriction was applied by setting <(σ)max < −0.3 and the results are shown in
Figure 15b. It shows some new trends. For example, vcg tends to lower value as the eigenvalue becomes
more negative. On the other hand the beam length B tends to larger value as the eigenvalue becomes more
negative. The lcg concentrates between 0.6 and 1.1, and vcg tends to low values as lcg becomes longer.

Figure 5: Schematic of a float plane with the flexible support

Figure 6: Coordinate system for the Small Perturbation Method
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Figure 7: Porpoising mitigation by moving the CG aft.
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Figure 9: Stability with respect to lcg and vcg. <(σ)max

√
B/g < 0 are stable designs.
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Figure 11: Comparison of longitudinal stability between rigidly supported case and flexibly supported case.
Fixed spring constant kf,b = 2117[N/m] with various damping coefficients.
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Figure 12: Comparison of longitudinal stability between the rigidly supported case and the flexibly supported
case. Spring applied only to the front kf or to the back kb, with no damping applied
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(b) Applying damping only to the back support

Figure 13: Comparison of longitudinal stability between the rigidly supported case and the flexibly supported
case. Fixed spring constant kf,b = 2117[N/m], with damping of 80 [N s/m] applied to either the front or
the back support
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Figure 14: SOMBAS sampling stable combinations of lcg and vcg at FnB
= 4.28

IV. Discussions

It is desirable to conduct further experiments to improve the quality of the model by calibration and
further numerical model refinement. The hull geometry and the flexible-support model employed in this
research were very simple. Inclusion of the afterbody of the float (the portion after the step) may create
another planing surface at larger pitch angles, and this may create another instability. Further sophistication
in the flexible-support model, including their control may render further insights and new opportunities.

In the current study, the CG location (lcg and vcg) and the pitching moment of inertia (I55,IA,B) were
treated independently. However, in reality, they are not. If you change the CG location, so do the moments
of inertia. Thus, care must be taken to interpret the results in this paper where both variables are treated
independently.

In this study the aerodynamic effects are not considered. However, seaplanes receive substantial lift force
at planing speeds and the elevator provides a means to control the pitch angle. Thus the aerodynamics
may have a substantial effect on the planing characteristics of a seaplane. The inclusion of the aerodynamic
effects will be the next step in the development of the numerical simulation of the planing seaplanes.
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Figure 15: Scatter Matrix showing distribution of feasible designs at FnB
= 4.28

V. Conclusion

The numerical analysis of the Linear-Time-Invariant model revealed useful information to the questions
posed. The computation shows that whether one should move the center of gravity backward or forward
will depend on the position of center of gravity with respect to the step of the planing hull. If a flexible
support is employed one may postpone the inception of porpoising to a much higher Froude number. The
simulation results indicate that damping coefficients in the flexible supports play an important role and the
range of planing speed will determine their values. The damping in the hind support was more effective than
the damping in the front support. These numerical results can be used to conduct more dedicated physical
experiments to quantitatively assess the numerical models and confirm physical phenomena. Furthermore,
aerodynamic effects must be taken into account. These will constitute the future work of this study along
with the parametric optimization of the system.
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