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The dynamics of the tip of a falling chain is analyzed. The results of laboratory experiments are
presented and compared with the results of numerical simulations. The time dependence of the
velocity and the acceleration of the chain tip for several initial conformations of the chain are
determined. A simple analytical model of the system is also considered. © 2006 American Association of
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I. INTRODUCTION

The problem of bodies falling in a gravitational field is so
old that it is difficult to imagine anything new being added to
it. However, the development of simulation methods has led
to the analysis of a few interesting cases that are difficult to
analyze analytically. The dynamics of a falling chain is
among them.

A detailed and critical review of the history of falling
chain problems, in particular of some erroneous approaches
to them, has been given recently by Wong and Yasui.' An
interesting case is a chain initially gathered in a compact
heap located on a table and close to its edge. The motion
starts when one of the chain ends is brought over the edge. If
we assume that the chain leaves the heap without friction, the
model becomes tractable analytically. The surprise is that the
acceleration of the chain tip is not, as might be expected, g,
but g/2.2 Wong and Yasui' have confirmed the result and
review the history of the long lasting erroneous conviction
that the acceleration should equal g/3. They locate the
source of the error and propose a fool-proof Lagrangian ap-
proach to falling chain problems concluding that “Lagrange’s
method gives definitive answers with unmatched ease, clarity
and elegance.” They also indicate that the method of Sousa
and Rodrigues2 is not reliable because it gives an erroneous
solution for the falling folded chain.

In the variation of the falling chain problem considered
here, the chain is initially attached at both ends to a horizon-
tal support. Then, as one of the ends is released, the chain
begins to fall. The case in which the horizontal separation Ax
between the ends of the chain is zero, that is, the chain is
tightly folded, has an analytical solution. According to Wong
and Yalsui,1 the solution was first given by Hamel” and then
repeated by Calkin and March.* The analytical result was
confirmed both in experiments4 and numerical simulations.>®
We note that Calkin and March also considered a variation of
the falling chain problem in which the chain was hanging
initially over a smooth horizontal peg and then allowed to
slip down one side.” This case in not considered here.

In this paper, we describe the results of experiments analo-
gous to those performed in Ref. 4. In the initial conforma-
tion, the ends of the chain of length L are located at the same
level but their horizontal separation Ax is variable. In the
experiments performed in Ref. 4, the time was recorded for
the tension acting on the support of the fixed end of the chain
to reach its maximum value, that is, the time at which, as
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they implicitly assumed, the tip of the chain reaches its low-
est position. In their study, the largest value of Ax was
around 0.3L. In contrast, for our experiments the largest
value of Ax was 0.999L, and we were able to record the
entire shape of the consecutive conformations of the falling
chain. From the recorded conformations we are able to ex-
tract quantitative data for the time dependence of the velocity
and acceleration of the chain tip. Calkin and March* com-
pared their experimental results with the analytical solution
of the Ax=0 model. It is clear that this model is not valid for
large Ax. To overcome this difficulty, we formulated the
complete equations of motion for the chain and integrated
them numerically, arriving at a quantitative comparison be-
tween the experimental and numerical results. We shall dem-
onstrate that the case (which has not been studied before) in
which the initial distance between the ends of the chain is
very close to L, that is, when the chain is initially stretched to
its maximum length, is very interesting because the vertical
motion of the chain tip becomes identical with the motion of
a freely falling body.

II. ANALYTICAL SOLUTION OF THE FALL OF THE
TIGHTLY FOLDED CHAIN

To understand what we can expect in the experiments with
the falling chain, we first consider the case Ax=0. The com-
plete analysis of this case is in Ref. 4. Thus, we provide only
its essential assumptions and results. The basic assumption is
that the conformations explored by the falling chain consists
of two sections: The falling section of length L,, which de-
creases with time; and the almost motionless section of
length L,, which increases with time. Such a division of the
chain is possible when the initial horizontal separation of the
chain ends equals zero and the chain consists of infinitely
many short and thin segments. In this limit, the chain can be
seen as a tightly folded, perfectly flowing, and infinitely thin
continuous filament.

Initially, both ends of the chain are attached to a point of
support O; the vertical position of which is y=0. At time
t=0, one of the ends of the chain is released and the chain
begins to fall. Figure 1 presents the geometry of the system.
We assume that the chain has a total length L and its mass M
is distributed uniformly along L. To simplify the analysis of
the results, we introduce the variable / describing the dis-
tance of the freely falling tip from its initial position. The A
axis is oriented in the direction of the gravitational field. We
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Fig. 1. Geometry of the conformation of the tightly folded chain at time
t>0. The position of the falling chain is described in terms of /. Section (a)
of the chain is falling while section (b) is motionless; ¢, and ¢, are their
centers of mass.

shall refer to & as the fall distance. By assuming that the
energy is conserved, it can be shown that the velocity v,,
acceleration a,., and time ¢. of the chain tip versus the fall
distance h are given by:

o= (15 o (n
1 L \?
a.(h) = 5[1 + (m) ]g, (2)

h L-s
t.(h) = fo 1/ gs(ZTs)ds. (3)

By analyzing Egs. (1)-(3), we conclude that both the ve-
locity and the acceleration of the chain tip diverge at a time
t.(L) when the tip reaches its lowest position, 2=L. At small
h, the velocity and acceleration are approximated by the
well-known relations describing the dynamics of free fall:

vy(h) = \2gh, (4)
a,(h) =g, 5)
ty(h) =\2hlg. (6)

As calculated in Ref. 4, the time 7.(L) at which the tip of
the falling folded chain reaches its lowest position equals

1.(L) =0.8472131,(L), (7)

where 1,(L) is the time of the free fall. As shown in Fig. 5 of
Ref. 4, the experimentally established time of the chain fall
decays with Ax in agreement with the theoretical value only
at Ax=0.05L. In Sec. VI, we shall discuss this result in more
detail.
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Fig. 2. Schematic of the experimental setup used in this study.

III. LABORATORY EXPERIMENTS

The focus of our experimental study is the dynamics of the
falling chain, with a particular interest in comparing it to the
dynamics of a freely falling weight. To compare the differ-
ences in trajectories for the two cases, we designed an ex-
perimental setup that makes it possible to record the simul-
taneous motions of the two objects.

We used a ball chain consisting of stainless-steel identical
segments that are made from rods and spheres attached to
each other (see Fig. 2). The total length of a segment is
€=(4.46+0.01) X 107> m and the diameter of the spheres is
$=(3.26+0.01) X 1073 m. In addition, the minimum radius
of curvature for which the chain can exist without loading
any elastic energy is Rpin=(4.8£0.2) X 107> m. We used a
chain of length L=1.022 m, which corresponds to n=229
segments for a total mass of M=(2.08+0.01) X 1072 kg.

The chain is tightly attached at one end to a firm support O
by means of a thin thread (see Fig. 2). At the other edge
located at point P=(xy,y,), the chain ends with a rod (we
open and remove the last sphere) to which we attach a thin

Fig. 3. Successive conformations of the falling chain versus time. The left
end of the chain remains attached to the frame, while the right end is free
to fall due to gravity. In (b), (c), and (d), white lines have been sketched
on the photographic sequence to connect the free falling end of the chain
to the freely falling sinker for the last five images before the maximum
extension of the chain. The length L=1.022 m, the time between successive
images is 1/50 s, and the initial separation between the chain ends is
(a) xo=1.019 m (b) 0.765 m (c) 0.510 m and (d) 0.255 m.
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Fig. 4. Schematic representation of the model; ¢; corresponds to the angle
of inclination, m the mass of the chain segment, and g is the gravitational
acceleration.

nylon cord (fishing line, diameter 10 m). The free-falling
weight (a lead weight used for sinking fishing lines) of mass
M=1072 kg is then attached to the other end of the nylon
cord (length about 5 cm). We then extend the nylon cord
between two nails and a thin metallic wire (nickel, diameter
10™* m) as sketched in Fig. 2.

The whole system is adjusted to ensure that the sinker and
both ends of the chain are at the same level, y=0. The setup
can be displaced horizontally to vary the initial horizontal
separation between the two ends of the chain. Because the
mass of the sinker M is about one-half of the total mass of
the chain M, the system is almost always equilibrated. (Me-
chanical equilibrium is further insured by the solid friction in
the contact regions of the nylon wire with the nails and the
metallic wire.) Thus, the initial conformation formed by the
chain after damping of all the disturbances is close to a cat-
enary curve.

Injecting a large electric current (about 1 A) through the
metallic wire results in cutting suddenly the nylon wire at the
point where they make contact. The sinker and the end of the
chain then simultaneously start to fall freely under the action
of gravity. Note that they both fall with a small piece of
nylon cord attached to them. However, as the force that
pushes the cord against the nails vanishes, the friction force
vanishes as soon as the cord is cut. In addition, during the
free fall, the sections of cord have no effect on the dynamics
because the mass of nylon is negligible in comparison to the
mass of the sinker or chain.

The falling chain and weight are imaged with a standard
charge coupled device video camera and the images are re-
corded on a video cassette recorder. The shutter speed
(174000 s) is adequate for obtaining clear images of both the
chain and sinker (Fig. 3). The filmed sequences of events are
digitized by means of a computer equipped with a frame
grabber board (Data Translation DT2255). Further analysis
with image-processing software (NIH Image) makes it pos-
sible to recover 50 images per second from the videos, which
are initially made from 25 interlaced images per second. The
interlacing allows us to double the time resolution but results
in a loss in the spatial resolution, which is typically of about
4 mm per pixel.

The positions of the falling chain tip and the sinker at
consecutive times t;, i=0,1,2,..., are determined from the
digitized images. To simplify our discussion of the results,
the experimentally determined positions of the falling objects
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are given as the vertical distance / and horizontal distance w,
which are defined by the deviations of their x(z) and y(z)
coordinates from their initial values (xg,y):

w(r) =xo— x(2), (8a)

h(t) = yo = y(1). (8b)

We shall refer to 4 and w as the vertical and horizontal fall
distances, respectively. According to their definitions, both
falling distances are positive in the initial stages of fall. In all
experiments, y,=0, and x, was varied in four steps from
about 1 m to 0.25 m. Note that because the motionless end
of the chain is attached to the point (0, 0), the initial hori-
zontal separation of the chain ends is Ax=x,, and we denote
the initial separation by x,. The experimental results are
compared to the numerical predictions in Sec. VI.

IV. MODEL OF THE FALLING CHAIN AND ITS
EQUATIONS OF MOTION

We can define several discrete models of the chain; in the
following, we present one of them. Its equations of motion
will be formulated for the case in which one of the chain
ends is attached to the fixed support while the other one is
free. Similar models have been considered by other
workers. 1

The free end of the chain moves under the action of the
gravitational field. To simplify the model, we first assume
that the chain is constrained to move only in the vertical
plane denoted by (x,y). The chain has mass M, length L, and
consists of n thin cylindrical rods (segments) with masses
m;=m=M/n, i=1...n, and lengths €;=¢=L/n. All segments
are considered to be rigid and cannot be deformed. Consecu-
tive segments are connected by joints with friction. Figure 4
shows the geometric representation of our model.

To formulate the equations of motion, generalized coordi-
nates must be specified. Following Ref. 9, we describe the
system using angular coordinates indicating the inclination
of the consecutive segments with respect to the horizontal x
axis.

The position of the first element is determined by the
angle ¢;. Similarly, the position of the second element is
described by the angle ¢,... . The global conformation of the
chain in the plane is uniquely expressed by the angles ¢;,
i=1...n.

The Cartesian coordinates of the ith mass center (x;,y;)
can be written as:

i-1

1
X;= E € cos @+ Ef cos ¢;, (9a)
j=1
i1 |
y;= > €sin @+ 56 sin ;. (9b)
j=1

We use the generalized coordinates ¢; to derive the
Lagrange equations of motion. The motion of the chain is
considered as a combination of translational and rotational
motions of its segments. Each segment has a moment of
inertia 1,=1/12 m€? calculated about the axis perpendicular
to the (x,y) plane and passing through the center of mass of
the segment. If we take into consideration the relations given
in Eq. (9), the kinetic energy of the chain is given by:

Tomaszewski, Pieranski, and Geminard 778



l n
T= 52 [m(i2 +y?) + 1,¢7], (10)
i=1

where the dot represents the derivative with respect to the
time 7. The potential energy of the ith segment is given by
mgy;, where g is the acceleration due to the gravitational
field. Thus, the potential energy of the chain may be ex-
pressed as

n

U=, mgy,. (11)

i=1

To make our model more general, we introduce damping
through the Rayleigh dissipation function:"!

Lo,
R=§r2(¢’i_@i—1)2, (12)
i=1

where r is the dissipation coefficient. We assume that the
joint that connects the first element of the chain to the sup-
port is free of dissipation, which is equivalent to assuming
that g’p?o:qbl. A similar definition of dissipation has been
used.”™

The motion of the falling chain is governed by the system
of Lagrange equations of the second kind:

02 : . ; ;
. 0.
t [s]

position [m]

I
o
‘

0.0+

02 . ; ‘ ;
0.0 0.1 02 03 0.4 0.5
t [s]

d(aﬁ) oL IR ,
— (i=1...n), (13)

— -—+—=0,
dt ﬁ(Pl &(Pl &QD,
where £L=T-"U is the Lagrangian of the system. By applying

Eqgs. (10)—(13), we find the set of n equations describing the
motion of a chain:

n n
.. .2 ro . . .
> m; ¢ j@j=— > m; ;S; j¢; + 7(%_1 —2¢i+ @ip1)
j=1 j=1 m
8
- zaici, (14)
where  ¢;=cos(g,), Ci,j=COS((Pi_€Dj), Si,j=Sin((Pi_€Dj),

ai=n—i+%, and
(i=)),
n—max(i,j) + 3, (i #J)).

.o
n—i+s,
m

(15)

i.j

V. NUMERICAL EXPERIMENTS

The equations of motion in Eq. (14) can be integrated
numerically, thus allowing us to simulate the motion of the
falling chain. In the presence of dissipation, the resulting
system of equations becomes stiff and requires specific nu-
merical methods. We selected the RADAUS algorithm by

(b) s

position [m]

m]

0.4

position

0.2

0.0 -p-o—0

-0.2 : : ; ;
0.0 0.1 0.2 0.3 0.4 0.5
t [s]

Fig. 5. Comparison of the vertical 4 and horizontal w fall distances of the falling chain tip found experimentally (circles) and numerically (solid lines). The
parabola of the free fall is also shown (dotted lines). The initial separation between the chain ends is the same as in Fig. 3. Numerical data were obtained for
r=2.163X 107> Nms. The deviations between the numerical and experimental results are given in the middle column of Table I.

779 Am. J. Phys., Vol. 74, No. 9, September 2006

Tomaszewski, Pieranski, and Geminard 779



Table I. Deviation between the experimental and numerical results &, for
three values of the dissipation parameter r=0, 2.163X107, and

r=10"* Nmss.
Experiment & (m) & 163%10-5 (M) 819+ (m)
a 0.008 406 0.007 672 0.010 38
b 0.006 851 0.006 654 0.006 59
c 0.006 191 0.005912 0.006 69
d 0.008 397 0.004 552 0.009 91

Hairer and Wanner.'? It is based on the implicit Runge-Kutta
scheme of order five with the error estimator of order four."

As the initial configuration of the chain, we used the
discrete catenary curve shown in Fig. 2 with four separations
between the ends of the chain: (a) xy=1.019 m,
(b) x9=0.765 m, (c) xo=0.510 m, and (d) x,=0.255 m, the
same values as the separations in the experiments. The simu-
lations were done for a chain with n=229, L=1.02 m,
M=0.0208 kg, g=9.81 m/s?, and time te[0,0.5]s. The
only remaining free parameter was the dissipation parameter
r. We chose a value for r that led to the best agreement of the
numerical results with the laboratory experiments.

To compare the numerical results to the experimental data,
we monitored the distance between the positions of the chain
tip found in consecutive frames of the video recordings and

the positions found in the simulations at the same times. The
deviation between the laboratory and numerical data ob-
tained in a single experiment is defined as:

N
1 A
6= NZ (Wi_wi)z"' (hi_hi)z» (16)
i=1

where N denotes the number of analyzed frames. The points

(w;,h;) and (#;,h;) for i=1...N are the horizontal and verti-
cal deviation from the initial position of the chain tip found
in consecutive frames of the laboratory and numerical ex-
periments, respectively. To find the optimal value of r for all
four experiments, we determined the total distance

A=+ 5P 4 59 4 5§D

We investigated the values of A for R from r;=0 to
r,=10"* Nm s. The optimal value of r found using a least-
squares algorithm based on the SVDFIT procedure1 was
found to be r=2.163X 107> Nms; A reaches its minimum
value A(r)=0.02479 m. At the ends of the analyzed range of
r, we found A(r;)=0.029845 m and A(r,)=0.03357 m.
Table I summarizes how well the data for each of the four
experimental cases is fit by the optimal value of r.

Figure 5 provides a further comparison between the simu-
lations and the experimental results. We see excellent agree-
ment between the simulated and experimental data.

(17)

. 0.00

0.00 ©)

025 | 0.25 i
E 0501 1 Elosof 1
> | IV~ J >

075 LAV ON T T s -0.75 4 / -

-1.00 ; : ‘ -1.00 \ \ ;

-0.255  0.000  0.255 0.510 0.765 1.020 -0.255  0.000 0.255 0.510 0.765 1.020
z [m] x [m]
0.00 ‘ ‘ 0.00 )
(©) (d)

-0.25 4~ L -0.25 1 L
E 050 | | E 050 L
> >

A

0.75 { et L -0.75 1 L

-1.00 ‘ : ; -1.00 ; | ; ;

-0.255 0.000 0255 0510 0.765  1.020 -0.255 0,000 0255 0510 0.765  1.020
z [m] z [m]

Fig. 6. Successive conformations of the falling chain versus time found in the simulations. The latter were performed with n=229, L=1.02 m,
M=0.0208 kg, and r=2.163 X 10> Nm s, for which the numerical solutions of the equations of motion show the best fit to the experimental results. The initial

conformations of the chain were discrete catenary curves with the same as in Fig.

3. The positions of the freely falling body are shown on the right-hand sides

of the figures; dotted lines connect them with the respective positions of the tip of the falling chain.
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Fig. 7. Evolution of the numerically determined moduli of the velocity and
the acceleration of the falling chain tip. The initial separation of the chain
ends are given in Fig. 3 and r=2.163X 107> Nms.

The consecutive conformations of the falling chain found
in the simulations are presented in Fig. 6. These conforma-
tions correspond to the same times as the laboratory experi-
ments. The positions of the freely falling body are also
shown. By comparing Figs. 3 and 6, we see that the shapes
of the experimental and numerical conformations are nearly
identical.

VI. QUANTITATIVE ANALYSIS

Because of the excellent agreement between the experi-
mental data and the simulations, we use the data from the
numerical simulations to analyze the details of the falling
chain dynamics.

We first analyze the relation between the time dependence
of the vertical fall distances of the chain tip and the falling
sinker (Fig. 5). Note that in case (a), where the initial con-
formation of the chain is straight and horizontal, the vertical
fall of the chain tip and the falling sinker are identical up to
the time at which, having reached its maximum vertical fall
distance, the tip starts moving up. This observation becomes
clear when we notice that during the fall the chain end re-
mains horizontal—its vertical motion must thus be identical
with the falling sinker. The chain end remains horizontal
because the chain displays no elasticity and no energy is
stored in the bent regions. This phenomenon, found both in
the laboratory experiments and confirmed by the simulations,
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Fig. 8. Moduli of the (a) velocity and (b) the acceleration of the chain tip
versus the initial horizontal separation of the chain ends. v,,,, and a,,,, are,
respectively, the maximum velocity and acceleration reached by the chain
tip during its fall. v, and @, are the velocity and acceleration of the
chain tip observed at the time at which the tip reaches its lowest position.
Figure 8(b) is plotted with a logarithmic scale. The gravitational acceleration
g is marked with a dashed line. The plots were obtained numerically for
r=2.163X 107 Nmss.

suggests the existence of an approximate analytical treatment
of the problem. However, we have thus far not been able to
formulate an analytical solution.

In cases (b), (c), and (d) the vertical fall distance of the
chain tip, up to the time 7,  at which the vertical fall dis-
tance of the chain tip reaches its maximum value h,,,,, is
seen to always be ahead of the vertical fall distance of the
sinker. This observation is sometimes summarized by the
general statement that the chain falls faster than a body.

To further understand this behavior, we analyzed the time
dependence of the velocity v. and the acceleration a. of the
chain tip. To do so, we performed a series of simulations
with x, in the range [0.1,...,1.02] m. All other parameters
of the simulation were the same as defined in Sec. V. The
smallest value of the initial separation x, was equal to 0.1 m
because smaller initial separations produced very complex
chain-fall dynamics. This behavior was seen in both the
simulations and laboratory experiments. Note that by veloc-
ity and acceleration we mean here the moduli of the velocity
and acceleration vectors.

Figure 7 plots the velocity and the acceleration versus time
for four initial spacings x,. Two characteristic features in
these plots are the peak heights and the times at which these
maxima occur. In Fig. 8(a), the dependence of v,,,, on x, and
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Fig. 9. (a) Characteristic times, . and 1, Loy Versus the initial separation x.
thma is the time at which the chain tlp reaches its lowest position; 7, - is the
time at which it reaches its maximum velocity v,,,,. The dashed line repre-
sents the time 7,(L) = 0.386722 at which the velocity diverges in the analyti-
cal model considered in Sec. II. (b) Characteristic distances h,,,, and h,
versus the initial separation xg. K, is the largest vertical fall distance
reached by the chain tip; hvmX is the vertical fall distance of the chain tip at
which it reaches its maximum velocity. The plots were obtained numerically
with r=2.163 X 10> Nmss.

B (that is, the velocity of the chain tip at its lowest posi-
tion Ay,,,) on x, is displayed. At small x;, there exists a short
interval within which v ,,, slightly increases reaching its glo-
bal maximum at x,=0.1314 m. Then, over a broad interval,
Unax decreases and reaches its global minimum value at
X0=~0.9040 m. Up to this value of x,, the velocity U is
smaller than the maximum velocity v ,,,. For xo> 0.9040 m,
when the maximum extension of the chain is approached, the
two velocities become practically equal.

As Fig. 9(a) shows, the time #, at which the velocity of
the chain tip reaches its maximum value precedes in general
the time Iy, at which the chain tip reaches its lowest posi-
tion A, The lowest position of the chain tip is reached
fastest for xo=0.5500 m, that is, when the initial horizontal
distance between the chain ends is approximately one-half of
its total length, and 7, is a maximum when the chain is
initially straight. Flgure 9(a) also compares the time 7,  of
the maximum velocity and the time 7.(L) of the velocuy
divergence found in the solvable model discussed in Sec. II.
As seen in Fig. 9(a), the two times are close to each other at
the values of x, at which v,, reaches its global maximum
and minimum. In the range of x; located between the two
values, 1, is less than t.(L).

782 Am. J. Phys., Vol. 74, No. 9, September 2006

Figure 9(b) gives the relation between the maximum fall
distance of the chain tip h,,, and the fall distance hvmax at
which the tip reaches its maximum velocity as a function of
the initial separation of the chain ends. We can clearly see
that, in general, the maximum velocity is reached before the
chain tip reaches its maximum fall distance. We note that for
all the values of x studied, the maximum fall distance never
reaches the theoretically possible value L, although as the
plot of A, versus x, suggests, it tends to L as x,— 0.

The last question we have addressed concerning the veloc-
ity data is the correlation between the value of the peak ve-
locity v, and the time #,  at which it is reached. As we
have demonstrated, the peak ‘of the velocity is a maximum at
a small initial separation of the chain ends, but we should not
conclude that the peak is reached in the shortest time. As
seen in Fig. 9(a), the initial separation of the chain ends at
which the velocity peak is reached most quickly occurs at

X~0.7000 m.

Plots of the acceleration of the chain tip versus the time
for a few values of the initial separation x, are given in
Fig. 7(b). As for the velocity plots, we observe distinct
peaks. Figure 8(b) demonstrates that the highest peak in the
acceleration is observed at the smallest initial separation of
the chain ends. Its value for the experimentally studied case
of xo=0.255 m is 7352 m/s?, which is about 40 times larger
than the value observed at xy=0.765 m, where it equals
186.3 m/s%. That such large values of the acceleration are
realistic was demonstrated by Krehl er al.”® who studied the
dynamics of a cracking whip. What is the relatlon between
the dynamics of the falling chain and the Wh1p‘7 " The two
systems seem to be completely different because, in the
cracking whip problem, the gravitational forces are usually
neglected. However, the end of the folded whip attached to
the whip handle is subject to a strong acceleration. If we
change the laboratory reference frame to the noninertial
frame moving with the end of the handle, then strong inertial
forces equivalent to the gravitational forces are introduced
into the system. Thus, our conclusions about the falling chain
are also applicable to an accelerated whip. In particular, there
exists a special conformation to which the whip should be
brought before its handle starts accelerating, such that the
whip tip will eventually reach the maximum velocity, ex-
ceeding the speed of sound velocity, thus allowing one to
produce the crack sound.

Results of the laboratory experiments and simulations also
show that, in contrast to what is observed in the simplified
model of the tightly folded chain, the acceleration ay_ that
the chain tip reaches at its lowest position h,, is not the
maximum acceleration a,,,, as shown in Fig. 8(b).

VII. SUMMARY AND DISCUSSION

The experimental and numerical work reveals new and
interesting facts concerning the dynamics of the falling
chain.

1. The time dependence of the velocity and acceleration dis-
plays distinct peaks whose heights depend on the initial
separation of the chain ends. The highest peaks are ob-
served for small initial separations. There is an approxi-
mate analytical theory of tightly folded chain dynamics
that explains the origin of the rapid increase of the veloc-
ity and acceleration. However, the theory predicts that
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both the velocity and the acceleration diverge and is un-
able to predict the finite height of the peaks.

2. For our system, the velocity peak 1is highest at
x0=0.1288L, and its amplitude is smallest for
Xo=0.8863L.

3. For the case in which the initial separation of the chain
ends is largest, the dynamics of the vertical fall of the
chain tip is identical with the dynamics of free fall. This
coincidence corresponds with the fact that the end section
of the chain remains horizontal during the fall. This ob-
servation suggests the existence of an approximate ana-
lytical treatment.

4. The time at which the chain tip reaches its maximum
velocity generally comes before the time at which it
reaches its lowest vertical position except if the initial
separation of the chain ends is larger than 0.8863L.

5. The ratio of the amplitudes of the highest and smallest
acceleration peaks is about 166.5, which is unexpectedly
large. The appearance of the high acceleration peaks may
have some practical implications, because at the time
when the acceleration reaches its highest value, the force
acting on the chain tip also becomes very large and may
lead to damage of the chain.

Our experiments indicate that when the initial conforma-
tion of the chain is tightly folded, the vertical acceleration of
the falling chain tip is always higher than g. The explanation
is given by energy conservation. The falling chain is divided
into two parts: The almost motionless part attached to the
support and the moving part. The falling chain lowers its
potential energy on the account of the kinetic energy of the
continuously shorter, moving part of the chain. Because the
mass of the latter decreases, its velocity grows faster than
does the velocity of a compact falling body whose mass is
constant in time. A falling rope exhibits even more interest-
ing behavior, because dissipation plays a much more impor-
tant role and elasticity becomes a crucial factor.
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for this reality.

COSMIC REALITY VS. MICROSCOPIC REALITY

Imagine yourself out some evening with a particularly close friend. You stare upward at the
vast open spaces of the evening sky and gaze at the myriad twinkling stars that spread themselves
across the void. ‘‘Ah,”” you say, ‘‘just look at those stars; isn’t space enthralling!’’ It may very
well be, but space isn’t what you are looking at. You are, in fact, looking at time! None of the stars
that have you so enraptured are even there, where you now see them. Every twinkling dot is light
that was sent out by that star millions and billions of years ago. What is up there tonight, or should
I say what your brain projects upward as being ‘‘up there,”’ is a vast illusion, a collage of space
and time, made up of light from objects that are nowhere near where they appear to be. Illusions
such as this require vast distances and times in order to come into being. They belong to cosmic
reality. Such illusions do not exist in microscopic reality, but others equally interesting do. It is
just one example of how we can be fooled when we intrude on another reality with a mind made

Morton Tavel, Contemporary Physics and the Limits of Knowledge (Rutgers, 2002), pp. 25-26.
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