42 research outputs found

    Moving Beyond Concentrations: The Challenge of Limiting Temperature Change

    Get PDF
    The UN Framework Convention on Climate Change shifted the attention of the policy community from stabilizing greenhouse gas emissions to stabilizing atmospheric greenhouse gas concentrations. While this represents a step forward, it does not go far enough. We find that, given the uncertainty in the climate system, focusing on atmospheric concentrations is likely to convey a false sense of precision. The causal chain between human activity and impacts is laden with uncertainty. From a benefit-cost perspective, it would be desirable to minimize the sum of mitigation costs and damages. Unfortunately, our ability to quantify and value impacts is limited. For the time being, we must rely on a surrogate. Focusing on temperature rather than on concentrations provides much more information on what constitutes an ample margin of safety. Concentrations mask too many uncertainties that are crucial for policy making.

    A Bivariate Time Series Approach to Anthropogenic Trend Detection in Hemispheric Mean Temperatures

    Get PDF
    A bivariate time series regression approach is used to model observed variations in hemispheric mean temperature over the period 1900-96. The regression equations include deterministic predictor variables and lagged values of the two predictands, and two different forms of this basic structure are employed. The deterministic predictors considered are simple linear trends, various climate model-generated time series based on different combinations of greenhouse gas, sulfate aerosol, and solar forcing, and the Southern Oscillation index (SOI). With linear trends as the only predictors, the best model is a fourth-order bivariate autoregressive model including lagged Southern Hemisphere (SH) to Northern Hemisphere (NH) dependence, as in previous work by Kaufmann and Stern. The estimated NH and SH trends are both + 0.67°C century-1, and both are highly statistically significant. If SOI is included as an additional predictor, however, a first-order time series model, with no SH to NH dependence, is an adequate fit to the data. This shows that SOI may be an important covariate in this kind of analysis. Further analysis uses climate model-generated forcing terms representing greenhouses gases, sulfate aerosols, and solar effects, as well as SOI. The statistical analysis makes extensive use of Bayes factors as a device for discriminating among a wide spectrum of possible models. The best fits to the data are obtained when all three forcing terms are included. Total sulfate aerosol forcing of 1.1 W m-2(with a corresponding climate sensitivity of ΔT2+ = 4.2cC) is preferred to -0.7 W m-2(with sensitivity of 2.3°C), but the Bayes factor discrimination between these cases is weak

    Distinct Salmonella Enteritidis lineages associated with enterocolitis in high-income settings and invasive disease in low-income settings.

    Get PDF
    An epidemiological paradox surrounds Salmonella enterica serovar Enteritidis. In high-income settings, it has been responsible for an epidemic of poultry-associated, self-limiting enterocolitis, whereas in sub-Saharan Africa it is a major cause of invasive nontyphoidal Salmonella disease, associated with high case fatality. By whole-genome sequence analysis of 675 isolates of S. Enteritidis from 45 countries, we show the existence of a global epidemic clade and two new clades of S. Enteritidis that are geographically restricted to distinct regions of Africa. The African isolates display genomic degradation, a novel prophage repertoire, and an expanded multidrug resistance plasmid. S. Enteritidis is a further example of a Salmonella serotype that displays niche plasticity, with distinct clades that enable it to become a prominent cause of gastroenteritis in association with the industrial production of eggs and of multidrug-resistant, bloodstream-invasive infection in Africa.This work was supported by the Wellcome Trust. We would like to thank the members of the Pathogen Informatics Team and the core sequencing teams at the Wellcome Trust Sanger Institute (Cambridge, UK). We are grateful to D. Harris for work in managing the sequence data

    Campylobacter jejuni transcriptome changes during loss of culturability in water

    Get PDF
    Background: Water serves as a potential reservoir for Campylobacter, the leading cause of bacterial gastroenteritis in humans. However, little is understood about the mechanisms underlying variations in survival characteristics between different strains of C. jejuni in natural environments, including water. Results: We identified three Campylobacter jejuni strains that exhibited variability in their ability to retain culturability after suspension in tap water at two different temperatures (4°C and 25°C). Of the three strains C. jejuni M1 exhibited the most rapid loss of culturability whilst retaining viability. Using RNAseq transcriptomics, we characterised C. jejuni M1 gene expression in response to suspension in water by analyzing bacterial suspensions recovered immediately after introduction into water (Time 0), and from two sampling time/temperature combinations where considerable loss of culturability was evident, namely (i) after 24 h at 25°C, and (ii) after 72 h at 4°C. Transcript data were compared with a culture-grown control. Some gene expression characteristics were shared amongst the three populations recovered from water, with more genes being up-regulated than down. Many of the up-regulated genes were identified in the Time 0 sample, whereas the majority of down-regulated genes occurred in the 25°C (24 h) sample. Conclusions: Variations in expression were found amongst genes associated with oxygen tolerance, starvation and osmotic stress. However, we also found upregulation of flagellar assembly genes, accompanied by down-regulation of genes involved in chemotaxis. Our data also suggested a switch from secretion via the sec system to via the tat system, and that the quorum sensing gene luxS may be implicated in the survival of strain M1 in water. Variations in gene expression also occurred in accessory genome regions. Our data suggest that despite the loss of culturability, C. jejuni M1 remains viable and adapts via specific changes in gene expression

    Time Profile of Climate Change Stabilization Policy

    No full text

    A Meaningful U.S. Cap-and-Trade System to Address Climate Change

    Full text link
    corecore