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Abstract. It has been hypothesized recently that re-
gional-scale cooling caused by anthropogenic sulfate
aerosols may be partially obscuring a warming signal
associated with changes in greenhouse gas concentra-
tions. Here we use results from model experiments in
which sulfate and carbon dioxide have been varied in-
dividually and in combination in order to test this hy-
pothesis. We use centered [R (t)] and uncentered [C(t)]
pattern similarity statistics to compare observed time-
evolving surface temperature change patterns with the
model-predicted equilibrium signal patterns. We show
that in most cases, the C (t) statistic reduces to a meas-
ure of observed global-mean temperature changes, and
is of limited use in attributing observed climate
changes to a specific causal mechanism. We therefore
focus on R (t), which is a more useful statistic for dis-
criminating between forcing mechanisms with different
pattern signatures but similar rates of global mean
change. Our results indicate that over the last 50 years,
the summer (JJA) and fall (SON) observed patterns of
near-surface temperature change show increasing simi-
larity to the model-simulated response to combined
sulfate aerosol/CO2 forcing. At least some of this in-
creasing spatial congruence occurs in areas where the
real world has cooled. To assess the significance of the
most recent trends in R (t) and C (t), we use data from
multi-century control integrations performed with two
different coupled atmosphere-ocean models, which
provide information on the statistical behavior of ‘un-
forced’ trends in the pattern correlation statistics. For
the combined sulfate aerosol/CO2 experiment, the 50-
year R (t) trends for the JJA and SON signals are high-
ly significant. Results are robust in that they do not de-
pend on the choice of control run used to estimate nat-
ural variability noise properties. The R (t) trends for
the CO2-only signal are not significant in any season.
C(t) trends for signals from both the CO2-only and
combined forcing experiments are highly significant in

all seasons and for all trend lengths (except for trends
over the last 10 years), indicating large global-mean
changes relative to the two natural variability estimates
used here. The caveats regarding the signals and natu-
ral variability noise which form the basis of this study
are numerous. Nevertheless, we have provided first
evidence that both the largest-scale (global-mean) and
smaller-scale (spatial anomalies about the global
mean) components of a combined CO2/anthropogenic
sulfate aerosol signal are identifiable in the observed
near-surface air temperature data. If the coupled-mod-
el noise estimates used here are realistic, we can be
highly confident that the anthropogenic signal that we
have identified is distinctly different from internally
generated natural variability noise. The fact that we
have been able to detect the detailed spatial signature
in response to combined CO2 and sulfate aerosol forc-
ing, but not in response to CO2 forcing alone, suggests
that some of the regional-scale background noise
(against which we were trying to detect a CO2-only sig-
nal) is in fact part of the signal of a sulfate aerosol ef-
fect on climate. The large effect of sulfate aerosols
found in this study demonstrates the importance of
their inclusion in experiments designed to simulate
past and future climate change.

1 Introduction

Most previous greenhouse-gas (GHG) detection stud-
ies employing the “fingerprint” strategy introduced by
Madden and Ramanathan (1980; see also MacCracken
and Moses 1982) have used some form of pattern cor-
respondence statistic to compare the pattern of a mod-
el-predicted GHG signal with the time history of ob-
served patterns of near-surface temperature changes
(e.g., Barnett 1986; Barnett and Schlesinger 1987; Sant-
er et al. 1993). The signal pattern in such studies is
usually taken from an equilibrium CO2-doubling ex-
periment, or towards the end of an experiment with a
time-dependent CO2 increase.
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The strategy in this method is to search for a long-
term, positive trend in the pattern correspondence sta-
tistic, which would indicate an increasing expression of
the CO2 signal in the observations. Previous finger-
print studies have employed either uncentered statis-
tics, in which the searched-for signal consists of both a
pattern and the global-mean change (e.g., Barnett and
Schlesinger 1987; Hegerl et al. 1994), and/or centered
statistics, in which the global-mean change is removed
and the signal is simply a spatial anomaly pattern
(Santer et al. 1993). A recent investigation making use
of an uncentered statistic reached the conclusion that a
model-predicted CO2 signal was identifiable with a
high level of confidence in the observed data (Hegerl
et al. 1994). This and previous studies have shown that
the global-mean change is an important component of
a CO2 signal. A large body of earlier work has also
shown that observed changes in global-mean annually
averaged near-surface air temperature are significant
relative to various statistical- and model-based esti-
mates of natural variability noise (e.g., Wigley et al.
1989; Wigley and Raper 1990, 1991a, b; Bloomfield and
Nychka 1992; Karl et al. 1991; Stouffer et al. 1994).

Such studies have not directly addressed the issue of
establishing an unambiguous link between changes in
some external forcing factor and changes in observed
climate. This is the attribution issue. It is possible that
different external forcing mechanisms (or combina-
tions of external forcings and natural variability) can
give rise to similar changes in the global-mean state.
Since changes in the value of an uncentered statistic
largely reflect a change in the global mean, such ana-
lyses provide little help in discriminating between dif-
ferent mechanisms that could have produced such a
change. (Unless the change in the global mean is so
large that it cannot be explained by non-anthropogenic
forcing mechanisms and/or natural variability.) The
studies cited above suggest that we might attach high
confidence to the statement that the observed changes
in global-mean temperature over the past century are
significant relative to current ‘best estimates’ of the
magnitude of natural variability noise. However, the
same investigations do not allow one to attach high
confidence to the statement that the observed changes
are solely attributable to an enhanced greenhouse ef-
fect.

Our level of confidence in attributing observed
changes to anthropogenic influences would be in-
creased if we could demonstrate that even sub-global-
scale spatial features of a model-predicted anthropog-
enic signal showed a correspondence with observed
changes. This is where centered statistics are useful,
since they focus on anomalies about the global mean.
The only previous study that employed a centered sta-
tistic to search observed records of near-surface air
temperature for model-predicted CO2 signals failed to
show any meaningful multi-decadal positive trends in
the measure of pattern correspondence (Santer et al.
1993). This negative result has a number of possible ex-
planations, such as errors in the predicted CO2 signal
pattern, or masking of sub-global-scale features of the

CO2 signal by low-frequency natural variability and/or
other forcing factors (anthropogenic sulfate aerosols,
volcanic aerosols, solar variability, etc.).

Model experiments recently performed by Taylor
and Penner (1994; henceforth TP) may help to clarify
whether the detection and attribution of an anthropo-
genic effect on climate can be facilitated by incorporat-
ing the climatic effects of anthropogenic sulfate aero-
sols. Sulfate aerosols arise mainly from the SO2 emit-
ted by fossil fuel combustion. Such aerosols are likely
to have caused some degree of regional-scale cooling
(Wigley 1989), both directly through clear-sky radia-
tive forcing (reflection of incident solar radiation) and
indirectly due to changes in cloud brightness (Wigley
1989, 1991; Charlson et al. 1991, 1992; Kiehl and Brie-
gleb 1993; Taylor and Penner 1994; Charlson and Wi-
gley 1994).

The TP integrations used an atmospheric general
circulation model (AGCM) coupled to a mixed-layer
ocean and a tropospheric chemistry model to investi-
gate the climate response to the individual and com-
bined forcing by anthropogenic sulfate aerosols and
CO2. The results from these experiments indicate that
the combination of sulfate and CO2 forcing yields a sig-
nal pattern substantially different from the greenhouse
warming pattern typically produced by AGCMs cou-
pled to mixed-layer oceans (e.g., Manabe and Stouffer
1980; Hansen et al. 1984; Schlesinger and Mitchell
1987; Washington and Meehl 1989) or fully-coupled at-
mosphere-ocean GCMs (CGCMs; Stouffer et al. 1989;
Cubasch et al. 1992; Meehl et al. 1993).

The TP integrations represent a first attempt to si-
mulate the three-dimensional climate response to an-
thropogenic sulfate aerosol forcing with an AGCM
coupled to a model of tropospheric sulfate chemistry.
The only comparable studies at present are those by
Roeckner et al. (1995) and Mitchell et al. (1995a, b).
These investigations also considered the temperature
response to a combination of CO2 and anthropogenic
sulfate aerosol forcing, but the direct radiative effect of
the aerosol was parameterized by changing the surface
albedo. Neither study allowed changes in climate to in-
fluence the aerosol distribution, whereas in the TP
study two-way interaction is possible between climate
and aerosols.

To date, only two previous attempts have been
made to search observed records of near-surface tem-
perature changes for a GCM-predicted, two-dimen-
sional temperature-change pattern due to sulfate aero-
sols or some combination of sulfate aerosol and CO2

forcing (Santer et al. 1995a; Mitchell et al. 1995b). Re-
lated investigations of the possible impact of sulfate
aerosols on observed temperature data have thus far
been restricted to analysis of observed changes in areas
where sulfate aerosol emissions and/or forcing are like-
ly to have been large (Wigley et al. 1992; Engardt and
Rodhe 1993; Hunter et al. 1993; Karl et al. 1995) or to
a visual comparison of observed temperature change
patterns and patterns of vertically-integrated aerosol
concentration predicted by a chemical-transport model
(Engardt and Rodhe 1993).
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In the present study we extend the pattern correla-
tion analysis of Santer et al. (1993) and investigate
whether the near-surface temperature signals in the TP
sulfate-only, CO2-only and combined forcing experi-
ments are increasingly evident in the observed data.

The structure of this paper is as follows. Section 2
provides a brief description of the TP numerical ex-
periments. In Sect. 3 we compare the surface tempera-
ture responses in the three TP perturbation experi-
ments using maps of the geographical distribution of
temperature change, pattern correlations, and univar-
iate t-tests. In Sect. 4, we define centered and uncen-
tered pattern similarity statistics and briefly consider
their relative merits in the context of detection and at-
tribution of observed climate change. Section 5 then
employs these statistics to search the observed record
of near-surface temperature changes for the seasonal
and annual signals from the three TP perturbation ex-
periments. The question of whether the trends in our
pattern similarity measures are significant is addressed
in Sect. 6. A short summary and conclusions are given
in Sect. 7.

2 Experiments

The experiments discussed here have been described
in detail by TP. The integrations were performed with
the GRANTOUR tropospheric chemistry model de-
veloped at Lawrence Livermore National Laboratory
(Walton et al. 1988), coupled to the Livermore version
of the National Center for Atmospheric Research
Community Climate Model (NCAR CCM1; Taylor
and Ghan 1992). The CCM1 AGCM in turn was cou-
pled to a 50-meter mixed-layer ocean model with pre-
scribed meridional heat flux. CCM1 has 12 layers in
the vertical, and was run with a horizontal resolution of
ca. 4.57 latitude!7.57 longitude. The GRANTOUR
tropospheric chemistry model is a Lagrangian trace
species model, which simulates the transport, transfor-
mation and removal of various sulfur species (Penner
et al. 1994a). Only the direct effects of sulfate aerosols
are considered. For further details of the GRAN-
TOUR/CCM1 experimental configuration, refer to
TP.

Four integrations were performed: a control run
(CTL) with nominal pre-industrial CO2 levels (270
ppmv; the standard IPCC value is 278 ppmv, Enting et
al. 1994) and no anthropogenic sulfur emissions; a sul-
fate-only experiment (S) with near-present-day anthro-
pogenic sulfur emissions (prescribed according to Spi-
ro et al. 1992; Benkowitz 1982) and near-pre-industrial
CO2 concentrations; a CO2-only experiment (C) with
no sulfur emissions and nominal present-day CO2 lev-
els (345 ppmv; c.f. the 1990 value of 354 ppmv given by
Enting et al. 1994); and a combined forcing experiment
with near-present-day sulfur emissions and CO2. For
the purposes of this study, each of the original TP inte-
grations was extended by at least 10 years, and temper-
ature-change signals were computed using samples
from the last 20 years of each simulation (following a
spin-up period of at least 10 years).

3 Model results

We compare the surface temperature responses in the
three perturbation experiments in various ways, using
maps of the geographical distribution of temperature
change, pattern correlations, and univariate t-tests
(e.g., Wigley and Santer 1990). For comparing pat-
terns, we computed centered spatial correlations, here
denoted by R (see Santer et al. 1993). Univariate t-tests
were used to determine whether (and where) the grid-
point means were significantly different in the control
and response experiments.

3.1 Sulfate-only experiment

Figures 1, 2, and 3 show the geographical distributions
of seasonally and annually averaged changes in near-
surface temperature in the three TP perturbation ex-
periments. In the S experiment, temperature changes
in DJF, JJA and the annual average are negative at vir-
tually all grid-points. The maximum cooling occurs
over the Norwegian Sea in DJF (ca. P7 7C) and to the
east of the Weddell Sea in JJA (P6 7C).

In both DJF and JJA, the location of the maximum
response differs from the location of the maximum
forcing: the spatial pattern correlations between radia-
tive forcing and response are only 0.02 in DJF and 0.36
in JJA (c.f. Figs. 1, 2, and Fig. 4; also Table 1 and TP).
The higher correlation in JJA reflects the fact that
there is some spatial congruence between forcing and
response where both are large over Western Europe.
In contrast, the DJF response maximum in the Norwe-
gian Sea is not congruent with a maximum in the forc-
ing. A similar displacement between forcing and re-
sponse maxima is suggested by the results of Roeckner
et al. (1995) and Mitchell et al. (1995b).

There are substantial uncertainties associated with
the forcing and response patterns simulated in such
studies, and hence with the forcing versus response
pattern correlations presented above. In both the
Roeckner et al. (1995) and TP investigations, these un-
certainties are due in part to inadequacies in the treat-
ment of sea-ice and neglect of full ocean dynamics. The
latter does not apply to the study by Mitchell et al.
(1995b), which used a full CGCM and still found the
patterns of temperature response and forcing due to
the direct effect of sulfate aerosols to be dissimilar.

The results of all three investigations illustrate the
potential importance of the atmospheric general circu-
lation in ‘modulating’ the response to regionally-local-
ized forcing. Detection studies that use as their signal
the global sulfate aerosol distribution or aerosol forc-
ing predicted by a sulfur chemistry model (e.g., Wigley
et al. 1992; Engardt and Rodhe 1993), or the global
pattern of observed changes in sulfur emissions (Karl
et al. 1995) may therefore be using sub-optimal signals.
On a regional basis, however, it is likely that there is a
close relationship between emissions, forcing and re-
sponse in areas with high sulfur emissions. This would
explain Karl et al.’s (1995) finding of a significant in-
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Fig. 1a–c. Wintertime (DJF) near-surface temperature
changes (7C) in the three Taylor and Penner (1994) re-
sponse experiments, with a forcing by anthropogenic sul-
fate aerosols; b CO2, and c a combination of anthropogenic
sulfate aerosols and CO2. The perturbations approximately
correspond to present-day sulfur emissions and atmospher-
ic CO2 levels. All changes were computed using 20-year av-
erages and are expressed relative to the 20-year DJF mean
of a control run with a nominal pre-industrial CO2 concen-
tration and no anthropogenic sulfate aerosols

Fig. 2a–c. As for Fig. 1, but for summertime (JJA) near-
surface temperature changes (7C) in the three TP response
experiments

Fig. 3a–c. As for Fig. 1, but for annually averaged near-
surface temperature changes (7C) in the three TP response
experiments
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Table 1. Global spatial pattern correlations between forcing and
response fields

Season Forcing Response

SO4 CO2 SO4cCO2

DJF
SO4

CO2

SO4cCO4

0.02
0.20
0.30

0.55
P0.51

0.15

0.27
P0.03

0.37

JJA
SO4

CO2

SO4cCO2

0.36
0.08
0.49

0.27
P0.52
P0.52

0.38
0.04
0.46

ANN
SO4

CO2

SO4cCO2

0.36
0.09
0.52

0.51
P0.56
P0.22

0.43
0.01
0.49

The forcing fields are either the seasonally or annually averaged
radiative forcing due to the individual and combined effects of
sulfate aerosols and CO2 (see Fig. 4). The response fields are the
time-averaged near-surface temperature changes in Figs. 1–3. All
temperature changes were computed with 20-year samples rela-
tive to the average over years 11–30 of the TP control integration
with no anthropogenic sulfate aerosols and pre-industrial atmos-
pheric CO2 levels. All correlations are for an area-weighted form
of R (spatial mean subtracted)

Table 2. Univariate t-test results for differences in mean state be-
tween the TP control run with no anthropogenic sulfate aerosols
and pre-industrial atmospheric CO2 and the three TP perturba-
tion experiments with individual and combined CO2 and sulfate
aerosol forcing

Season Experiment ap0.01 ap0.05

DJF
SO4

CO2

SO4cCO2

86.5
91.8
56.1

93.0
95.8
65.3

MAM
SO4

CO2

SO4cCO2

89.4
89.6
55.2

93.7
95.4
65.7

JJA
CO4

CO2

SO4cCO2

88.3
90.0
55.5

93.4
94.4
64.5

SON
SO4

CO2

SO4cCO2

87.2
95.8
54.1

92.6
98.3
65.0

ANN
SO4

CO2

SO4cCO2

98.8
100.0
65.6

99.2
100.0
71.1

All tests were two-tailed, and use 20-year samples of seasonally
and annually averaged grid-point near-surface temperature data
from the control and perturbation experiments. Results indicate
the number of local (grid-point) rejections of the null hypothesis
of no difference in means (at stipulated significance levels of
ap0.01, 0.05), expressed as a percentage of the total number of
tests performed

verse relationship between changes in sulfur emissions
and changes in surface temperature in zones of high
emissions (507N–557N) and at times of high insola-
tion.

Note that the maximum Northern Hemisphere cool-
ing occurs in DJF, even though the maximum forcing is
in JJA and the DJF forcing is relatively small (c.f. Figs.
1a, 2a, and Fig. 4). In JJA, the maximum response is in
the Southern Hemisphere, even though the forcing is
largely in the Northern Hemisphere. There are several
explanations for these results. The fact that the South-
ern Hemisphere demonstrates a substantial response
to a forcing primarily confined to the Northern Hemi-
sphere is an indication of the ability of the atmosphere
to exchange heat and momentum between hemis-
pheres in an efficient way. The generally stronger re-
sponse in the winter hemisphere is in part due to the
fact that the effect of changes in sea-ice extent on sur-
face temperature is largest at this time of year (when
surface inversions are possible).

A univariate t-test reveals that the changes in mean
state are highly significant in the sulfate-only experi-
ment (Table 2 and Fig. 5). (All t-tests were performed
using 20-year samples from the control run and the
perturbation experiments). Of the total number of
grid-point tests performed 86.5–98.8% showed signifi-
cant differences in temperatures between the experi-
ment and control (at the ap0.01 significance level). It
is clear from these results, even without resorting to
multivariate significance tests (see Preisendorfer and
Barnett 1983; Wigley and Santer 1990) that the overall
(global) differences in means between the sulfate-only
and control experiments are highly significant.

3.2 CO2-only experiment

The spatial patterns of seasonally- and annually aver-
aged near-surface temperature changes in the CO2-
only experiment are very similar to those obtained in
equilibrium CO2-doubling integrations with compara-
ble AGCM/mixed-layer ocean experimental configura-
tions (Manabe and Stouffer 1980; Hansen et al. 1984;
Schlesinger and Mitchell 1987; Washington and Meehl
1989). The warming is spatially coherent (Figs. 1b, 2b,
3b). The DJF and JJA temperature change patterns
show the standard picture of equator-to-pole amplifi-
cation in the winter hemisphere, a feature associated
with poleward retreat of the sea-ice margin. This pat-
tern similarity occurs despite the comparatively low
level of the forcing: the CO2-only experiment was per-
formed with an atmospheric CO2 concentration change
of only 75 ppmv (from 270 to 345 ppmv), in contrast to
the ca. 300–330 ppmv changes commonly used in step-
function CO2-doubling experiments.

The overall maximum temperature increases tend
to occur in locations where maximum cooling occurred
in the sulfate-only experiment, i.e., in the Norwegian
Sea in DJF (ca. 7 7C) and in the Ross and Weddell Seas
in JJA (ca. 7–8 7C). The annual average changes do not
show the same degree of hemispheric symmetry com-
monly found in equilibrium doubling experiments with
mixed-layer models (Schlesinger and Mitchell 1987).
This is due to the smaller percentage reduction in sea-
ice coverage in the Northern Hemisphere: the reduc-
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tion in ice coverage in the Southern Hemisphere is
nearly three times larger (see Table 1 of TP). The sea-
sonal and annual warming patterns have a land-sea
contrast component, with larger changes over land ar-
eas, as in recent transient experiments with CGCMs
(Cubasch et al. 1992; Santer et al. 1994).

As in the sulfate-only case, the response pattern dif-
fers markedly from the pattern of the forcing, and is
negatively correlated with the latter (RpP0.51 in
DJF, RpP0.52 in JJA; see Table 1). This inverse rela-
tionship is due to the different zonal structures of forc-
ing and response fields: while the response is a maxi-
mum at high latitudes in both hemispheres, the forcing
peaks at low latitudes (c.f. Figs. 1b, 2b, 4c, 4d).

The univariate t-test results indicate that the surface
temperature signal in the CO2-only experiment is high-
ly significant in all seasons and in the annual average
(Table 2). Changes in the CO2-only experiment show
consistently higher percentages of grid-points with sig-
nificant differences in means than in the sulfate-only
experiment, primarily due to the larger global mean
temperature change in the former experiment
(c1.45 7C versus P1.19 7C, respectively). It should be
noted that in TP, the climate sensitivity of the model
for a doubling of CO2 was given as 6.4 7C, a result that
was based on 10-year samples only. The results we
present here are now based on the final 20 years of
much longer integrations (30–50 years). The climate
cooled by several tenths of a degree in the CO2-only
integration before stabilizing towards the end of the in-
tegration. This yielded a much lower estimate of the
climate sensitivity: 4.8 7C.

3.3 Combined sulfate/CO2 experiment

Unlike the sulfate-only and CO2-only integrations, the
patterns of temperature change in the combined sul-
fate/CO2 experiment are characterized by spatially-co-
herent regions of both warming and cooling (Figs. 1c,
2c, 3c). Temperature decreases are restricted largely to

O
Fig. 4a–d. Seasonally-averaged radiative forcing due to sulfate
aerosols and CO2 in the TP sulfate-only and CO2-only experi-
ments. The difference in the top-of-the-atmosphere clear-sky out-
going SW radiation (in WmP2) between simulations with and
without anthropogenic sulfate aerosols is shown a for winter
(DJF); and b summer (JJA). Changes in the net long-wave flux at
the tropopause due to an increase in atmospheric CO2 from 270
ppmv to 345 ppmv are also given for c winter and d summer

Fig. 5a–d. Univariate t-test results for seasonally-averaged near-
surface temperature changes in the TP response experiments.
Results are for a DJF and b JJA changes in the sulfate-only ex-
periment and in the experiment with combined CO2/sulfate aero-
sol forcing (c, d). Areas shaded denote regions with experiment
minus CTL differences in grid-point time averages which are sig-
nificant at the 1%, 5% and 10% levels (two-tailed tests). Tests
were conducted with 20-year samples of data from the control
run and each response experiment. Near-surface temperature
changes in the CO2-only experiment (not shown) are highly sig-
nificant at virtually all grid-points

Table 3. Global and regional ‘between-experiment’ spatial pat-
tern correlations

Season Experi-
ment

CO2 SO4cCO2

DJF SO4

CO2

P0.64 P0.73 0.46
0.01

0.48
P0.18

MAM SO4

CO2

P0.53 P0.31 P0.26
0.79

0.49
0.29

JJA SO4

CO2

P0.59 P0.30 P0.26
0.79

0.58
0.32

SON SO4

CO2

P0.38 P0.40 0.39
0.52

0.59
0.20

ANN SO4

CO2

P0.55 P0.61 0.10
0.63

0.60
0.01

Results are for seasonally- and annually averaged near-surface
temperature signals in the three TP perturbation experiments,
with forcing due to sulfate aerosols, CO2, and a combination of
sulfate aerosols and CO2. The perturbations approximately cor-
respond to present-day atmospheric CO2 levels and anthropoge-
nic sulfur emissions. The signals are the mean changes (computed
with 20-year samples) relative to the average over years 11–30 of
the TP control integration with no anthropogenic sulfate aerosols
and pre-industrial atmospheric CO2 levels. The non-italicized
numbers are the (centered) pattern correlations obtained using
the full spatial fields, and the italicized numbers are the correla-
tions over the area defined by the observed data mask for
t0p1954 (see Fig. A2, panel b)

the Northern Hemisphere, which is where most of the
radiative forcing associated with sulfate aerosols occurs
(Fig. 4a, b). The largest decreases are over the Norwe-
gian Sea in DJF (ca. P2 7C) and over southeastern Eu-
rope in JJA (ca. P2 7C). Warming maxima are in the
Ross and Weddell Seas in JJA (ca. 4P8 7C), and over
Greenland, Labrador, the Sea of Okhotsk, and a small
area of Antarctica in DJF (ca. 2 7C).

The warming and cooling maxima in all seasons are
considerably reduced relative to the respective maxima
in the sulfate-only and CO2-only experiments. In DJF,
for example, the large temperature changes in the Nor-
wegian Sea in the S and C experiments (Fig. 1a, b) are
considerably reduced in the SC integration (Fig. 1c).
While the DJF response patterns in the SC and S inte-
grations show some spatial correspondence (Rp0.46),
the SC and C response patterns are uncorrelated
(Rp0.01; see Table 3). In JJA, however the SC re-
sponse pattern is very similar to the CO2-only temper-
ature change pattern (Rp0.79), and is negatively cor-
related with the sulfate-only response pattern
(RpP0.26). This is due to the fact that the offsetting
effects of sulfate in the regions of maximum tempera-
ture response to CO2 forcing are less in JJA than in
DJF (c.f. Figs. 1a, b, 2a, b). The pattern similarity be-
tween C and SC and S and SC clearly depends on the
relative magnitudes of the CO2 and aerosol forcing.

The univariate t-tests (Table 2) indicate that the
fractions of the globe with significant differences in
means (SC versus CTL) are consistently lower than in
either the S or C experiments. This is due to compen-
sating warming and cooling responses over large areas
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of the Northern Hemisphere in both seasons and in the
annual average, resulting in large areas with relatively
small changes in the mean state. Large, spatially-coher-
ent regions with differences in means significant at the
1% and 5% levels are generally restricted to Southern
Hemisphere oceans and low-latitude Northern Hemi-
sphere ocean areas (Fig. 5).

The weak response over large areas of the Northern
Hemisphere, as indicated by a lack of statistical signifi-
cance, is not an artefact of the length of the control and
response experiments. For the ‘present-day’ sulfate
and CO2 forcing levels stipulated in the TP SC experi-
ment, large areas of the Northern Hemisphere with lit-
tle or no change in the mean state are a fundamental
property of the simulated response pattern (at least for
the model used here).

It is interesting to note that the response patterns
for the SC integration are, in a purely qualitative sense,
more similar to observed patterns of seasonal tempera-
ture change (see Jones et al. 1991; Folland et al. 1992;
Parker et al. 1994) than the response patterns in the
individual S and C experiments. We will consider this
issue further in Sect. 5.1, which presents quantitative
measures of observed versus simulated pattern similar-
ity.

4 Pattern similarity statistics

In this section we introduce the pattern similarity sta-
tistics, R (t) and C (t), which we subsequently use for
comparing model and observed spatial patterns of tem-
perature change. The terminology is similar to that
used by Santer et al. (1993).

4.1 Definition and computation of pattern similarity
statistics

We first compute seasonal- and annual-mean tempera-
ture changes in the TP control run and response ex-
periments. In each of the three TP response experi-
ments (S, C, and SC), the temperature-change signal is
defined as

DM (x)pMEXP (x)PMCTL (x) (1)

where M denotes model data, with the subscripts EXP

and CTL identifying output from one of the TP re-
sponse experiments and the control integration, re-
spectively. The index x is a discrete variable running
over space (grid-points), with xp1, ..., n. The overbars
in MEXP (x) and MCTL (x) indicate time averages, here
computed using 20-year samples of experiment and
control data. We stress that these signal patterns have
no time-dependence other than a dependence on sea-
son, since the TP integrations are equilibrium response
experiments with no interannual changes in the forc-
ing. The rationale for the use of equilibrium signal pat-
terns (as opposed to transient signals) is discussed in
detail in Santer et al. (1995a).

The observed data, D(x, t), consist of monthly-
mean, land-based surface air temperatures and sea-sur-
face temperatures from the combined land-ocean data
set described by Jones et al. (1991), spanning the inter-
val 1854–1993. The data are in the form of anomalies
relative to the mean over 1950–79. They contain high-
frequency variability components associated with El
Niño behavior, volcanoes, etc. For the purposes of
GHG-detection studies, these components constitute
undesirable noise; data were filtered in the following
way to reduce this noise.

We first define a temporally-smoothed reference
state D1 (x) centered on the year t0 as

D1 (x)p
cq

A
xpPq

D(x, t0cx) W(x) (2)

where W(x) are the normalized symmetric weights for
a p-term Gaussian filter centered at t0 (with pp2qc1;
we use pp13 below). As an example, if t0p1954, the
reference climate is the filtered mean over the years
1948–1960. We then define the (smoothed) anomaly at
time t relative to D1 (x) by

DD(x, t)pD2 (x, t)PD1 (x) (3)

where

D2 (x, t)p
cq

A
xpPq

D(x, tcx) W(x) (4)

We use tp1910, 1911, ..., 1993, so that the filtered ano-
malies cover the 84-year period 1910–1993, while the
data used in the filtering extend from 1904–1999. Filter
weights are set to zero if data are missing. Since data
are not available for 1994–1999, we assigned a missing
value code for all post-1993 data. We then stipulate
that a filtered mean can only be computed if a critical
fraction of the sum of the Gaussian filter weights
(Wcrit) is exceeded at any grid-point over any p-year
period. Here Wcritp0.6, which allows us to calculate fil-
tered means for 1993. Further details of the filtering
procedure are given in Santer et al. (1995a).

The set of time-evolving monthly-mean anomaly
fields, DD(x, t), was then used to compute seasonal
and annual averages. In order to avoid large, spatially
non-random increases in coverage from the beginning
of the century to the present, we stipulated that the
grid-point coverage for D2 (x, t) must be a subset of the
coverage for D1 (x) (see Appendix A). For a given re-
sponse experiment and a given season, we now have a
single pattern characterizing the model temperature
signal, DM (x), and a series of time-evolving patterns
characterizing observed temperature changes,
DD(x, t).

Following Santer et al. (1993), we use two different
types of measure to compare the spatial fields DM (x)
and DD (x, t). These are defined by

R(t)p

3
n

A
xp1

(DD(x, t)PDD$(t))(DM (x)PDM$)4 / [n sD (t)sM]

(5)
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where

s2
D (t)p

n

A
xp1

[DD(x, t)PDD$(t)]2/(nP1) (6)

is the spatial variance (with sM
2 defined similarly), and

the $ in Eqs. (5) and (6) indicates a spatial average,
and

C(t)p3
n

A
xp1

DD(x, t) DM(x)43
n

A
xp1

DM(x)24
P1

(7)

R(t) is simply a spatial anomaly correlation (similar
to statistics used in measuring the ‘skill’ of numerical
weather predictions; see, for example, Anderson and
van den Dool 1994) with the statistic centered about
the spatial means of the observed and simulated fields.
C(t) is the uncentered statistic originally defined and
used by Barnett and Schlesinger (1987).

C(t) has several desirable properties. First, it is
equal to 1.0 when DD(x, t)pDM(x), so that it is a
measure of the strength of the model signal in the ob-
served data. Second, unlike R (t), it does not involve a
time-varying observed term in the denominator. Thus
a trend in C(t) with increasing time can only be due to
increasing similarity between the model and observed
mean-change fields in the numerator of Eq. (7). In
contrast, a trend in R (t) with time may be attributable
to a change in either the observed mean state and/or
the observed spatial variance. Third, C(t), unlike R (t),
is not bounded by B1.0. One consequence is that as
R(t) approaches B1.0, changes in the amplitude of the
observed pattern will not be reflected in linear trends
in R(t).

The choice of which type of statistic to use is not
clear cut. C(t) has the apparent advantage that it in-
cludes information about the mean change field,
DD(t), which is an important part of the signal in most
situations, while R (t) focuses on the pattern of change.
We have shown previously (Santer et al. 1993, 1995a)
that C (t) can be decomposed into R (t) and DD$(t) com-
ponents. In situations where the model-predicted
change in global-mean temperature is large relative to
the observed changes, the R (t) component of C (t) is
much smaller than the DD$(t) component, so time se-
ries of C (t) look very similar to those of DD$(t) (see
e.g., Santer et al. 1993, Fig. 7). In such cases, C(t) can-
not be used to address the attribution issue: i.e., if dif-
ferent external forcing mechanisms give rise to similar
rates of global mean change, C(t) cannot be used to
determine which of the forcings caused the observed
change. It is in this situation that R (t), which focuses
on the pattern of spatial anomalies about the mean
state, may provide the information required to discrim-
inate between forcing mechanisms with different pat-
tern signatures.

In the following, our emphasis is on attribution;
hence we prefer to use R (t). We also compute C (t),
since this enables us to determine the significance of
global-mean changes and to compare our results with
other investigations that have used uncentered statis-
tics (e.g., Hegerl et al. 1994).

5 Comparison of model and observed temperature
change patterns

In this section, we use both C (t) and R(t) to compare
model and observed temperature change patterns. For
each of the three TP experiments and for each season,
a single pattern characterizing the model signal is com-
pared with 84 observed temperature change patterns
consisting of filtered data for the years 1910, 1911, ...,
1993. The resulting C (t) and R (t) time series show
whether this fixed pattern is increasingly evident in the
observed data. Pattern correlations are calculated after
excluding grid-points with missing observed data, and
with a reference period centered on t0p1954. Sensitivi-
ty to the choice of reference period is minimal, as
shown in Appendix A.

5.1 Pattern similarity results

5.1.1 CO2-only experiment. Consider first the results
for temperature signals from the TP experiment with
present-day CO2 forcing and no anthropogenic sulfate
aerosols (Fig. 6). If CO2 forcing were the dominant in-
fluence on climate, i.e., if other external forcings and
natural internal variability were relatively small on ti-
mescales appropriate to a slowly-evolving greenhouse
warming signal, the R (t) and C (t) time series should
show strong multi-decadal positive trends as the signal
became progressively more pronounced in the ob-
served data.

C(t) shows no evidence of large, positive trends that
are sustained for 40 to 50 years or longer (Fig. 6). This
is in accord with results obtained by Santer et al.
(1993) for the surface temperature signals from CO2

doubling experiments performed with five different
AGCMs. The largest and most sustained C (t) trends
occur at the beginning of the record (between ca.
1910–1940), not at the time of most-rapidly increasing
forcing (see Wigley and Raper 1992). Changes in C (t)
parallel those in global-mean temperature over the en-
tire observed record (Jones et al. 1991; Jones and Brif-
fa 1992). Note also that in all seasons except DJF, C (t)
time series show the effects of the Pinatubo eruption in
June 1991 and the volcanic aerosol-induced reduction
in global mean temperature (Hansen et al. 1993; Jones
1994).

These similarities in the behavior of global mean
temperature and C (t) are in agreement with the theor-
etical and empirical results of Santer et al. (1993,
1995a). As shown in Table 4, C (t) changes for all three
perturbation experiments correlate strongly with
DD$(t), although the correlations are smallest for the
combined forcing case. This points to a dominant in-
fluence of DD$(t) on the behavior of C(t), as discussed
further in Santer et al. (1995a).

R(t) behaves quite differently from C (t) (see Fig. 6
and Table 4). In all seasons, R (t) increases during the
same 1910–40 period over which C (t) rises, but then
decreases and shows high-frequency oscillations about
some mean state, with no evidence of a large, positive
linear trend component over the last 40–50 years. The
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Fig. 6. Centered R(t) and uncentered C(t) pattern correlations
between model and observed near-surface temperature changes.
Model changes in seasonally and annually averaged temperature
are taken from the the TP CO2-only experiment. For each sea-
son, one time-independent spatial pattern characterizes the re-
sponse to forcing by present-day atmospheric CO2 concentra-
tions. Observed changes were filtered to remove high-frequency
noise, and were expressed as a time series of 84 anomaly patterns
(from 1910–1993) relative to a filtered reference period extending
from 1948–1960. All pattern correlations were calculated after ex-
cluding grid-points with missing data

Fig. 7. As for Fig. 6, but for near-surface temperature changes
from the TP sulfate-only experiment

Fig. 8. As for Fig. 6, but for near-surface temperature changes
from the TP experiment with combined CO2 and sulfate aerosol
forcing

Fig. 9. Behavior of pattern correlation statistics in the absence of
external forcing. RN (t) and CN (t) time series were computed us-
ing (filtered) time-dependent patterns of near-surface tempera-
ture change from a 600-year control integration (HAMCTL) with
a CGCM and fixed seasonal- and annual temperature-change
patterns from the TP experiment with combined CO2/sulfate
aerosol forcing
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Table 4. Correlations between C(t) and R(t) and DD$(t), the
changes in observed area-averaged near-surface temperature

Season Experiment R(t) vs. DD$(t) C(t) vs. DD$(t)

DJF
SO4

CO2

SO4cCO2

P0.29
0.15

P0.38

P0.98
0.99
0.93

MAM
SO4

CO2

SO4cCO2

P0.26
0.20

P0.19

P0.99
1.00
0.96

JJA
SO4

CO2

SO4cCO2

P0.11
0.39
0.06

P0.95
0.99
0.63

SON
SO4

CO2

SO4cCO2

P0.05
P0.05

0.01

P0.91
0.98
0.82

ANN
SO4

CO2

SO4cCO2

P0.06
0.13

P0.01

P0.99
1.00
0.91

Seasonal and annual C (t) and R(t) time series are for the three
TP perturbation experiments (see Figs. 6–8). Values of DD$(t)
were computed using the observed data mask for t0p1954 (see
Fig. A2, panel b). For C(t), the changes for all three perturbation
experiments correlate strongly with DD$(t), which points to a
dominant influence of DD$(t) in the behavior of C(t)

initial increase in R(t) is in accord with the results of
Wigley and Jones (1981) and Kelly et al. (1982), who
found that the pattern of observed warming in the
1930s showed some evidence of the high-latitude am-
plification characteristic of the temperature response
in CO2 doubling experiments.

5.1.2 Sulfate-only experiment. The C (t) time series for
the sulfate-only temperature signals are virtually the
inverse of the C (t) time series for the TP CO2-only ex-
periment (c.f. Figs. 6 and 7). This is not surprising,
since we have replaced a spatially-coherent warming
pattern by a spatially-coherent cooling pattern in com-
puting the pattern similarity statistic, and because
(apart from the sign) C (t) is expected to parallel DD$(t)
in both cases.

For R (t), however, the time series are not simply
the inverse of the results for the CO2-only signals. In
JJA and SON, R (t) has a large positive linear trend
over 1940–1970, a period over which the CO2-only C (t)
and R (t) trends are small.

5.1.3 Combined forcing experiment. The R(t) time se-
ries for the comparison of observed temperature
changes and signals from the TP combined forcing ex-
periment are quite different from the corresponding
time series for the CO2-only experiment (c.f. Figs. 6
and 8). This is most pronounced in JJA and SON: R (t)
now shows a large positive trend that is sustained over
the last 40–60 years of the observed record. The posi-
tive trends in JJA and SON are similar to those for the
sulfate-only case (Fig. 7). This implies that some of the
time-increasing congruence between the combined
forcing signal pattern and observations is coming from

areas where cooling occurs, at least over 1940–1970,
possibly related to sulfate aerosol effects.

These results suggest that the inclusion of forcing by
both CO2 and anthropogenic sulfate aerosols enables
one to obtain a better fit between observed variations
in near-surface temperature and a model-predicted
temperature response pattern. This is particularly so
over the 1940–1970 period, when R (t) shows little
trend for the CO2-only signal (Fig. 6).

Some insights into the regions that contribute most
to the trends in R(t) are obtained by comparing the
linear trends in observed near-surface temperature
(e.g., over 1946–86; see Karl et al. 1995) with the TP
signal patterns from the combined forcing experiment.
For JJA, such a comparison shows that the observed
cooling over south-eastern Europe, the east coast of
the U.S., and the Tibetan/Mongolian Plateau is con-
gruent with the TP temperature change pattern (c.f.
our Fig. 2c with Fig. 2f in Karl et al. 1995). This must
contribute towards the large 50-year trends in R (t).

6 Significance of R (t) and C (t) trends

In the previous section we showed that for certain sea-
sons, the R (t) and C (t) time series for surface temper-
ature signals from the TP experiment with combined
CO2 and sulfate aerosol forcing show large, positive
linear trends over the last 40–60 years. But are these
trends statistically significant? This is a difficult ques-
tion to answer. In order to make meaningful state-
ments about trend significance, we need information
about the characteristics of ‘unforced’ R(t) and C (t)
trends: i.e., trends due solely to the effects of natural
variability on decadal- to century-time scales. We can-
not obtain this information easily from the observed
data in view of the difficulties involved in separating
the observed variability of surface temperatures into a
component associated with a time-evolving response to
anthropogenic influences and a component associated
with natural variability.

In the model world, however, we can examine out-
put from experiments with no external forcing in order
to estimate the magnitude and spatial properties of in-
ternally-generated natural variability noise. In this
study we therefore employ model-generated noise data
to assess trend significance. We stress that the model
noise is due only to internal variability of the coupled
atmosphere-ocean system, and does not incorporate
variability related to changes in natural external forc-
ings (e.g., in solar output or the volcanic dust loading
of the atmosphere).

The 20-year TP control integration is clearly too
short for estimating natural variability noise character-
istics on time scales appropriate to a slowly-evolving
anthropogenic signal. We therefore used surface tem-
perature results from two recent multi-centennial con-
trol integrations performed with fully-coupled atmo-
sphere-ocean GCMs to determine the statistical behav-
ior of R (t) and C (t) trends in the absence of external
forcing. Near-surface temperature data were taken
from a 600-year control integration with the Hamburg
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CGCM (Hegerl et al. 1994) (the ECHAM-1 T21 reso-
lution AGCM coupled to the large-scale geostrophic
OGCM), and a 1000-year integration of the GFDL
coupled model (Delworth et al. 1993; Stouffer et al.
1994) (the GFDL R15 AGCM coupled to the modular
ocean model). These experiments are referred to be-
low as HAMCTL and GFDLCTL, respectively.

A detailed comparison of the near-surface tempera-
ture variability in HAMCTL and GFDLCTL is beyond
the scope of this study. However, since data from these
integrations are used in the significance testing analy-
sis, we provide an overview of model variability differ-
ences in Appendix B.

6.1 Determination of trend significance

In order to determine the significance of the R (t) and
C(t) trends, we need first to establish the sampling dis-
tributions of ‘unforced’ trends in these statistics. The
method we use is similar to that employed by Santer et
al. (1995b).

We treat HAMCTL and GFDLCTL in the same
way as the observed near-surface temperature data,
and first define anomalies relative to some reference
state of the control run

DN (x, t)pN2 (x, t)PN1 (x) (8)

where N denotes noise data from either HAMCTL or
GFDLCTL and the reference state N1 (x) is the time-
average over the entire control run. As in Eq. (4), data
in N2 (x, t) were smoothed with a 13-term Gaussian fil-
ter, and the index t denotes the center year of an inter-
val of length p (p13). The HAMCTL and GFDLCTL
anomalies were then interpolated to the observed data
grid, and model data points outside of the observed re-
gion for t0p1954 (see Fig. A2) were excluded from the
analysis. Unlike the situation when dealing with ob-
served data (see Appendix A), there are no coverage
changes as a function of time: once the (filtered) ob-
served data mask for t0p1954 has been used to exclude
model data points from the analysis, this mask does not
change with time. We then substituted DN(x, t), DN$,
etc. for the corresponding observed terms in Eqs. (5–
7), and computed pattern correlation time series in the
absence of external forcing. These are referred to sub-
sequently as RN (t) and CN (t), where the subscript N
indicates that the statistics were derived using either
HAMCTL or GFDLCTL noise data, and not observed
data.

For each pattern correlation statistic, therefore,
there is one time series for each season and the annual
average, for each of the three TP response experi-
ments, and for each of the two natural variability inte-
grations. This gives a total of 30 RN (t) time series and
30 CN (t) time series. Time series utilizing the
HAMCTL (GFDLCTL) data are of length 588 (988).
As an example, we show the RN (t) and CN (t) time se-
ries for the TP combined forcing experiment and the
HAMCTL natural variability noise (Fig. 9). Both sets
of time series have considerable variability on 10- to

20-year time scales. For C (t), the observed changes
over the last 40- to 50 years (;0.3–0.4 in the case of
the CO2-only signal; see Fig. 6) are noticeably larger
than CN (t) changes (;0.2). For R (t), however, it is
more difficult to evaluate whether the observed
changes are unusual by visual inspection alone.

We next select an array of trend lengths, Lipi!10
(ip1, ..., 5), appropriate to the length of signal trends
we wish to evaluate (10–50 years). We then fit linear
trends for different Li to non-overlapping sections of
the RN (t) and CN (t) time series. The HAMCTL
(GFDLCTL) sample sizes therefore range from 58 (98)
for 10-year trends to 11 (19) for 50-year trends. This
yields a distribution of slope parameters, bN (i), ip1,
..., 5, for each statistic, season, response experiment,
and natural variability noise integration. These distri-
butions are the yardsticks against which we judge the
significance of signal trends, bS (i).

The signal trends are simply the least-squares linear
trends for the final 10–50 years of the R (t) and C (t)
time series in Figs. 6–8 – i.e., the trends over 1984–93,
1974–93, etc. The R (t) time series for the SON signal
from the TP combined forcing experiment illustrates
this (see Fig. 10). While the signal trends over the final
10–20 years of this time series are negative, trends over
longer intervals are positive and become increasingly
larger.

To compute the significance level (p-value) for a se-
lected experiment and trend length Li, we compare
bS (i) with the sampling distribution of bN (i), and de-
termine ki, the number of times bN (i)6bS (i). Note
that this is a one-tailed test, since we have directional
information about the signal: the linear trends in R (t)
and C (t) should be positive. The probability of obtain-
ing the signal trend by chance based on the natural var-
iability manifested in HAMCTL or GFDLCTL is then
simply

pipki /mi (9)

where mi is the sample size for bN (i). Note that the
number of independent linear trend samples in
HAMCTL and GFDLCTL may differ from mi due to
the long decorrelation time of near-surface tempera-
ture, both in models and in the observations (see He-
gerl et al. 1994). The most satisfactory way of increas-
ing the number of independent samples would be by
extending the two control runs used here for thousands
of (simulated!) years. Such lengthy CGCM integrations
may become feasible in the next few years, but were
not available for the purposes of this investigation.

For the case we are dealing with here, a relatively
short natural variability time series and relatively long
trend lengths Li, the use of non-overlapping chunks
provides a noisy estimate of the sampling distribution
of ‘unforced’ 10- to 50-year linear trends. A much
smoother picture is obtained if overlapping chunks are
used (as in Wigley and Raper 1990; Santer et al.
1995b), although this does not lead to a proportionate
increase in the number of independent samples in the
distribution. We computed p-values using both non-
overlapping chunks and chunks that had the maximum



Santer et al.: Towards the detection and attribution of an anthropogenic effect on climate 89

Fig. 10. Linear trends for the fi-
nal 10–50 years of the R(t)
time series for the SON near-
surface temperature signal from
the TP experiment with com-
bined CO2/sulfate aerosol forc-
ing. These are the signal trends
bS (i), whose significance we
wish to determine

Table 5. Significance levels (p-values) for seasonal and annual near-surface temperature signals from the TP experiment with present-
day CO2 forcing

Trend length (years)

Season 10 20 30 40 50

R(t)
R(t)
R(t)
R(t)
R(t)

DJF
MAM
JJA
SON
ANN

0.34
0.58
0.82
0.54
0.28

0.43
0.55
0.79
0.56
0.33

0.38
0.78
0.38
0.49
0.33

0.46
0.75
0.33
0.48
0.36

0.09
0.33
0.47
0.36
0.06

0.18
0.37
0.39
0.34
0.09

0.68
0.35
0.56
0.44
0.28

0.67
0.35
0.52
0.38
0.20

0.74
0.25
0.22
0.89
0.42

0.77
0.23
0.09
0.85
0.34

C(t)
C(t)
C(t)
C(t)
C(t)

DJF
MAM
JJA
SON
ANN

0.01
0.00
0.24
0.60
0.03

0.05
0.01
0.35
0.57
0.10

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

Sample size (m) 579 979 569 969 559 959 549 949 539 939

The signals are the linear trends, bS, for the most recent 10, 20, ...,
50 years of the R(t) and C(t) time series shown in Fig. 6 (i.e., the
trends over years 1984–93, 1974–93, ..., 1944–93). To determine
the significance of bS, we require information on the behavior of
the centered and uncentered pattern correlation statistics in the
absence of external forcing. This information was obtained by
correlating the seasonal and annual temperature-change signals
from the TP CO2-only experiment with temperature anomalies
from the 600-year HAMCTL and 1000-year GFDLCTL integra-
tions, each of which was performed with a CGCM. The resulting
RN (t) and CN (t) time series for each coupled model control run

were then used to generate sampling distributions of ‘unforced’
linear trends, bN, for different seasons and trend lengths. The p-
values were then computed by comparing bS with the sampling
distribution bN for the appropriate season, trend length, statistic
type, and coupled model control run (see Sect. 6.1). Non-itali-
cized numbers are the p-values based on bN estimates from
HAMCTL; results for GFDLCTL are shown in italics. Signal
trends significant at the 5% level or better are in bold type. The
p-values were computed using overlapping 10- to 50-year chunks
of the RN (t) and CN (t) time series. The different sample sizes for
the two coupled models are given in the final row

overlap (i.e., by all but one year). The p-values were
generally similar in both cases. More importantly, the
decisions on the significance of R (t) and C (t) trends
did not depend on whether sampling distributions of
bN (i) were computed with non-overlapping or overlap-
ping chunks. In the following section, therefore, our
discussion is restricted to results obtained using sam-
pling distributions with overlapping chunks.

6.2 Trend significance results

CO2-only signal. The p-values for the near-surface
temperature signal from the TP CO2-only experiment

are given in Table 5 as a function of trend length, sea-
son, statistic, and natural variability noise experiment.
Based on noise levels from either of the natural varia-
bility experiments, linear signal trends for C (t) are sig-
nificant at the 5% level or better for all seasons and all
trend lengths 620 years. Since we have shown that
C(t) basically provides information on observed
changes in global-mean temperature for the CO2-only
signal (Table 4), our results imply that the most recent
20- to 50-year trends in observed global-mean temper-
ature are large relative to the variability of ‘unforced’
linear trends in HAMCTL and GFDLCTL.

Numerous other studies have demonstrated that the
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Table 6. As for Table 5, but for seasonal and annual near-surface temperature signals from the TP experiment with combined sulfate
aerosol/CO2 forcing

Trend length (years)

Season 10 20 30 40 50

R(t)
R(t)
R(t)
R(t)
R(t)

DJF
MAM
JJA
SON
ANN

0.96
0.90
0.76
0.81
0.95

0.92
0.85
0.68
0.73
0.91

0.88
0.74
0.64
0.61
0.79

0.82
0.68
0.58
0.51
0.72

0.95
0.62
0.52
0.50
0.72

0.87
0.56
0.46
0.41
0.64

0.75
0.84
0.26
0.27
0.40

0.65
0.78
0.28
0.25
0.34

0.66
0.19
0.03
0.01
0.08

0.56
0.20
0.03
0.01
0.04

C(t)
C(t)
C(t)
C(t)
C(t)

DJF
MAM
JJA
SON
ANN

0.52
0.12
0.38
0.76
0.48

0.51
0.18
0.43
0.69
0.50

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

Sample size (m) 579 979 569 969 559 959 549 949 539 939

observed long-term (greater than ;100 years) changes
in global-mean, annually averaged temperature are
significant. Such studies have used either statistical
models of natural variability (Wigley et al. 1989; Karl
et al. 1991; Bloomfield and Nychka 1992; Allen and
Smith 1994; but see also Woodward and Gray 1993), or
have derived natural variability noise estimates from
one-dimensional upwelling-diffusion models (Wigley
and Raper 1990, 1991a, b) or CGCMs (Stouffer et al.
1994). Our investigation differs from such previous
work in its focus on shorter period (10- to 50-year) sig-
nal trends, seasonal decomposition of the signal, and
the use of noise information from two different
CGCMs.

The only previous study that has considered recent
short-term trends in global-mean annually averaged
temperature is that by Allen et al. (1994), which inves-
tigated the significance of the linear trend in global-
mean low- to mid-tropospheric temperature (sampled
by the satellite-based microwave sounding unit, MSU)
from 1979–1994. Allen et al. (1994) used detrended in-
strumental sea-surface temperature (SST) data to esti-
mate the magnitude of natural variability on time
scales appropriate to the length of their signal, and
concluded that the 15-year trend in low-to mid-tropo-
spheric temperature was not significant.

Hegerl et al. (1994) used an uncentered pattern sim-
ilarity statistic to compare observed and model-pre-
dicted patterns of temperature trends. As in the pres-
ent investigation, Hegerl et al. (1994) found that their
(non-optimized) detection statistic was largely a meas-
ure of observed global-mean annually averaged tem-
perature change for a CO2-only signal. The most re-
cent 20- and 30-year trends in the Hegerl et al. (1994)
detection statistic were highly significant relative to the
variance of linear trends in the first 385 years of
HAMCTL, which agrees with our findings for 20- to
30-year trends in C (t). Hegerl et al. (1994) improved
upon their non-optimized results by rotating their fin-
gerprint pattern in a direction in which the CO2 signal
could be well-represented and the natural variability
noise was small (see Hasselmann 1979, 1993 for details
of the optimization technique).

In contrast to the C (t) results, none of our R(t) re-
sults for the TP CO2-only signal achieve significance at
the 5% level (Table 5). There is little evidence, there-
fore, that the CO2-only spatial pattern of temperature
change (minus the global mean) is steadily evolving in
the observed data.

Combined CO2 /sulfate aerosol signal. The trends in
C(t) from the SC experiment are significant in all sea-
sons for trend lengths from 20 to 50 years (Table 6).
This result is similar to that obtained in the previous
section for the CO2-only signal, and arises largely
through the strong correlation between C (t) and
DD$(t). It is clear that trends in R (t) also contribute to
the C (t) results, at least in JJA and SON (see Santer et
al. 1995a).

A far more important result is that the R (t) trends
for the SC signal are significant for trend lengths of 50
years in JJA and SON. This result does not depend on
the model (GFDLCTL or HAMCTL) used to define
the natural variability noise. It indicates that, in these
seasons, there is an evolving expression of the SC sig-
nal pattern in the observed data, independent of any
trend in global-mean temperature. The 50-year R (t)
trend for the annually averaged SC signal is marginally
significant for the GFDLCTL noise (pp0.04) but is
not significant relative to the HAMCTL noise
(pp0.08). In all seasons, and for both noise integra-
tions, p-values for 50-year R(t) trends are smaller than
the p-values for 10- to 40-year trend lengths (see Table
6).

For each of the TP response experiments, we have
performed 50 individual significance tests of the ob-
served R (t) trends, i.e., one test for each season (plus
the annual average), trend length, and natural variabil-
ity experiment. A certain fraction of these tests would
be expected to yield significant R(t) trends due to
chance alone (see Wigley and Santer 1990). For the SC
signal, five R (t) results were significant at the 5% level
or better. The probability of obtaining this result due
to chance alone is ca. 10% (this was estimated with the
binomial distribution). Taken together with the result
that none of the R (t) trends for the CO2-only signal
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Table 7. As for Table 5, but for seasonal and annual near-surface temperature signals from the TP experiment with present-day sulfate
aerosol forcing

Trend length (years)

Season 10 20 30 40 50

R(t)
R(t)
R(t)
R(t)
R(t)

DJF
MAM
JJA
SON
ANN

0.78
0.96
0.52
0.63
0.95

0.72
0.92
0.55
0.63
0.91

0.91
0.64
0.71
0.54
0.78

0.83
0.61
0.71
0.51
0.80

0.98
0.85
0.69
0.60
0.99

0.96
0.83
0.72
0.55
0.97

0.72
0.99
0.54
0.37
0.80

0.63
0.96
0.60
0.38
0.78

0.55
0.49
0.19
0.00
0.18

0.41
0.39
0.24
0.01
0.15

C(t)
C(t)
C(t)
C(t)
C(t)

DJF
MAM
JJA
SON
ANN

0.99
1.00
0.79
0.50
0.98

0.97
1.00
0.66
0.48
0.93

1.00
1.00
1.00
0.99
1.00

1.00
1.00
1.00
0.99
1.00

1.00
1.00
1.00
1.00
1.00

1.00
1.00
1.00
0.98
1.00

1.00
1.00
1.00
0.98
1.00

1.00
1.00
1.00
0.91
1.00

1.00
1.00
1.00
0.59
1.00

1.00
1.00
0.98
0.55
1.00

Sample size (m) 581 979 571 969 561 959 551 949 541 939

were significant (and with the consistently larger p-val-
ues in C than in SC for 50-year R (t) trends; see Tables
5 and 6), it is highly unlikely that the R (t) results in the
SC and C experiments are due to chance alone.

Sulfate-only signal. For the linear trends in R(t) from
the TP sulfate-only experiment, only one result
achieves significance at the 5% level or better: the
most recent 50-year trend in SON (see Table 7). Recall
that the 50-year R (t) trend in SON also achieves signif-
icance for the signal from the combined forcing experi-
ment (Table 6). As noted previously, this suggests that
some portion of the multi-decadal R (t) trend in the lat-
ter case is due to increasing congruence between areas
of predicted and observed cooling.

The C (t) results for the S experiment are generally
the opposite of those for the C experiment (c.f. Tables
5 and 7), i.e., C (t) trends are significantly negative for
most trend lengths and seasons. (Note that differences
in the C versus S significance results for C (t) are pre-
dominantly due to differences in DM$, since
C(t);DD$(t)/DM$.)

7 Summary and conclusions

Over the past decade, a substantial modelling effort
has been directed towards predicting the climate
changes likely to result from past and future increases
in CO2 concentrations. An important question is
whether the predictions by such models are consistent
with the observed surface temperature record over the
last century.

The answer to this question depends on how the
searched-for GHG signal is defined. Studies that have
defined a GHG signal in terms of a pattern that incor-
porates the global-mean change have showed that this
signal is identifiable with a high level of confidence in
the observed data (Hegerl et al. 1994). Such investiga-
tions have also shown that the global-mean change is
the dominant component of the signal, and that it is
this component that makes the largest contribution to
the overall significance of the results. This complicates

the attribution of observed changes to the specific
cause of GHG forcing, since different combinations of
external forcings and/or internal variability may yield
similar global-mean changes.

Other investigations have attempted to address the
attribution issue by defining a CO2 signal in terms of
spatial anomalies about the global-mean change. The
rationale here is that it is probably difficult to obtain a
high level of correspondence between the sub-global-
scale features of observed- and model-predicted
changes by mechanisms other than those used in the
model forcing experiment. To date, studies that have
searched for model-predicted greenhouse warming
patterns in observed data after removal of global-mean
changes have yielded negative or inconclusive results
(Santer et al. 1993). One plausible explanation for this
result may be the neglect of other, non-greenhouse ex-
ternal forcings in defining the searched-for signal (e.g.,
changes in anthropogenic sulfate aerosols, volcanic
aerosols, and solar output).

Model integrations recently carried out by Taylor
and Penner (1994) represent a first attempt to simulate
explicitly the temperature response to a combination
of CO2 and sulfate aerosol forcing, and formed the ba-
sis of the current study. The seasonally and annually
averaged patterns of near-surface temperature change
were very different in the three response experiments:
a ‘sulfate-only’ experiment with near-present-day sul-
fur emissions (S), a ‘CO2-only’ experiment with near-
current atmospheric CO2 concentrations (C), and a
combined forcing experiment with near-present-day
sulfur emissions and CO2 levels (SC). While the inte-
grations with individual forcing showed either global-
scale, spatially-coherent cooling (S) or warming (C),
the experiment with combined sulfate/CO2 forcing
yielded more complex patterns of temperature change,
characterized by both cooling and warming, with most
of the cooling restricted to the Northern Hemisphere
(see Figs. 1–3).

To determine whether the signal patterns in the S, C
and SC experiments were increasingly evident in the
observed temperature data, we used an observed data



92 Santer et al.: Towards the detection and attribution of an anthropogenic effect on climate

set comprising monthly-mean, land-based surface air
temperatures and sea-surface temperatures (Jones et
al. 1991). For each experiment and season, a single pat-
tern characterizing the model signal was compared
with a sequence of observed temperature change pat-
terns for the years 1910–1993. Two different forms of
pattern similarity statistic were computed: R (t), in
which the spatial means of the observed and simulated
fields are subtracted, and C (t), which retains these spa-
tial means. The two statistics provide different infor-
mation in the detection context (see Sect. 4).

The time series of R (t) and C (t) indicate whether
the model equilibrium signal is becoming increasingly
evident in the observed data. For the CO2-only signal,
none of the R (t) time series show evidence of a posi-
tive trend sustained over at least 4–5 decades. In con-
trast, the R (t) time series for the SC signal showed
large, multi-decadal positive trends in JJA and SON.
This indicates that in these seasons there is an evolving
expression of the SC signal pattern in the observed
data, independent of any trend in global-mean temper-
ature. For the sulfate-only experiment, R (t) has a large
increase over 1940–70 in JJA, SON, and ANN, sug-
gesting that at least some portion of the long-term
trends in R (t) in JJA and SON for the SC signal is at-
tributable to areas where cooling occurs. In virtually all
cases, the behavior of C (t) closely parallels changes in
observed global-mean temperature.

To assess the significance of the most recent R (t)
and C (t) trends, we used data from multi-century con-
trol integrations performed with the Hamburg and
GFDL CGCMs (HAMCTL and GFDLCTL, respec-
tively). The two control runs provide internally-consis-
tent (but model-specific) estimates of the magnitude
and patterns of surface temperature variability on long
time scales.

For the temperature-change signal from the TP
combined forcing experiment, our results indicated
that the most recent 50-year R (t) trends are significant
in JJA and SON. This result did not depend on wheth-
er HAMCTL or GFDLCTL was used to estimate the
internally generated natural variability. For the signal
from the TP sulfate-only experiment, the 50-year R (t)
trend in SON is the only result that achieves signifi-
cance at the 5% level or better. None of the R (t)
trends for the CO2-only signal was significant.

This analysis supports but does not prove the hypo-
thesis that we have detected an anthropogenic climate
change signal in observed records of near-surface air
temperature change. We stress that we are relying on
model noise and model signals in our assessment of
trend significance. Both have attendant uncertainties.

Some of the noise uncertainties were illustrated by a
preliminary comparison of the low-frequency variabili-
ty of surface temperature in HAMCTL and
GFDLCTL (Appendix B). This variability shows im-
portant differences in the two integrations, in terms of
both global means and patterns. Some of these discre-
pancies are due to the different levels of climate drift
in the two integrations (see Fig. B1). The primary con-
clusions of our study – the significance of the 50-year

R(t) trends in JJA and SON for the temperature signal
from the SC experiment, and the failure to find signifi-
cant R (t) trends for the C experiment – are not af-
fected by these inter-model differences in variability.
However, this does not guarantee that our results will
remain robust when we use estimates of internally-gen-
erated natural variability from other CGCMs, as these
become available.

Furthermore, although we have tried to look at the
model-dependence of natural variability noise by con-
sidering results from both HAMCTL and GFDLCTL,
we have little or no information about the sensitivity of
the variability in any one model to changes in resolu-
tion, physics, parameterizations, or flux correction
scheme. Both control integrations considered here em-
ployed large flux corrections to compensate for syste-
matic errors in their atmospheric and oceanic compo-
nents (Gates et al. 1993). It is not inconceivable that
such flux adjustment procedures can have an impact on
the simulated multi-decadal- to century time scale var-
iability. Clearly, we urgently require studies that at-
tempt to validate this variability in CGCM control runs
(Barnett et al. 1995). This is a difficult task (Santer et
al. 1995b), but without such work substantial uncer-
tainties will remain regarding the reliability of the sig-
nificance levels obtained here.

Similar uncertainties affect the signal patterns used
in this study. As has been noted by Taylor and Penner
(1994), the predicted pattern of temperature change in
the SC experiment is clearly a function of the relative
magnitudes of the positive forcing by greenhouse gases
and the negative forcing due to anthropogenic sulfate
aerosols. While the present-day CO2 forcing is relative-
ly well-known, the current direct sulfate aerosol forc-
ing is uncertain by a factor of at least two (Wigley and
Raper 1992; Penner et al. 1994b). Furthermore, rela-
tive to other studies (Charlson et al. 1991; Kiehl and
Briegleb 1993), the aerosol forcing in TP is quite large,
and is at the upper end of the range used by Wigley
and Raper (1992). Clearly, these forcing uncertainties
translate into considerable uncertainty regarding the
spatial pattern of the temperature response in the SC
experiment, and in the relative contributions to this re-
sponse from CO2 and aerosols. Further signal uncer-
tainties arise from the lack of a dynamic ocean, the neg-
lect of the indirect effects of sulfate aerosols, the om-
ission of the radiative effects of trace gases other than
CO2, and failure to include the effects of carbonaceous
aerosols generated by biomass burning, fossil fuel com-
bustion, and industrial processes (Penner et al. 1992,
1994b). The optical properties of sulfate aerosols are
very different from those of carbonaceous aerosols.
The optical properties of carbonaceous aerosols are
very different from those of sulfate aerosols.

A further important signal uncertainty is our use of
a model-predicted equilibrium pattern of temperature
change. The use of an equilibrium signal pattern is a
reasonable strategy in ‘CO2-only’ detection studies,
since there is evidence that the equilibrium and tran-
sient temperature responses to CO2 forcing may have
strong pattern similarities (see Santer et al. 1994,
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1995a). This similarity is partly due to the relative sta-
bility of the pattern of CO2-induced radiative forcing
as a function of time. For sulfate aerosols, however,
there have been distinct regional changes in the time-
evolving pattern of forcing (e.g., changes related to de-
clining sulfur emissions in the USA and Western Eu-
rope over the past 20 years and increasing emissions in
China and India; see Karl et al. 1995). Our detection
strategy does not take these changes into account. It is
likely that a more complete explanation of observed
changes may be achieved in detection studies based on
CGCM transient experiments driven by our best esti-
mates of observed spatio-temporal changes in GHG
and sulfur emissions.

In summary, there are numerous caveats regarding
the signals and natural variability noise that form the
basis of this study. Nevertheless, we have provided first
evidence that both the largest-scale (global-mean) and
smaller-scale (spatial anomalies about the global
mean) components of a combined CO2/anthropogenic
sulfate aerosol signal are identifiable in the observed
near-surface air temperature data. If the coupled-mod-
el noise estimates used here are realistic, an assump-
tion which thus far has not been rigorously tested on
the crucial decadal- to century time scales, we can be
confident that the anthropogenic signal which we have
identified is distinctly different from natural variability
noise. The fact that we have been able to detect the
detailed spatial signature in response to combined CO2

and sulfate aerosol forcing, but not in response to CO2

forcing alone, suggests that some of the regional-scale
background noise (against which we were trying to de-
tect a CO2-only signal) is in fact part of the signal of a
sulfate aerosol effect on climate.

While our confidence in the identification of an an-
thropogenic effect on climate is high, we have not

shown conclusively that the signal identified can be at-
tributed to the unique cause of anthropogenic sulfate
aerosols and CO2. We have taken a first step in the
direction of attribution by showing that agreement be-
tween modelled and observed changes exists at rela-
tively small spatial scales. Enhancing our confidence in
the attribution of observed climate changes to anthro-
pogenic causes will require the elimination of other
forcing mechanisms (such as solar variability and vol-
canoes) as possible explanations for the observed
changes. This should provide strong motivation for fu-
ture modelling studies.
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Appendix A: sensitivity to choice of reference period

It is useful to consider how the choice of t0, the central
year of the p-year period used for computing the refer-
ence state D1 (x), influences the R (t) and C (t) results
for the near-surface temperature signals from the three
TP response experiments. Sensitivity of trends in R (t)

Fig. A1. Observed changes in coverage of gridded, annually aver-
aged near-surface temperature data as a function of time. The
curve “available data” shows the change in coverage for the fil-
tered Jones et al. (1991) data if the data are used “as is” (i.e., as
anomalies relative to 1950–79). The curves “t0p1906” and
“t0p1954” show the coverage changes which are obtained by re-
quiring that the data coverage in D2 (x, t) is a subset of the cover-
age in D1 (x) (see Appendix A). For the earlier reference period,
the coverage fluctuates around ca. 925 grid-points from ca. 1910–

1988, with minima of ca. 700 and 750 grid-points in the war years
due to a reduction in oceanic data availability. The coverage is
less stable with time for t0p1954, since hundreds of grid-points
that had data in the reference period 1948–60 did not have data
in the first few decades of the century. Note, however, that the
average coverage from ca. 1950–90 (roughly 1550 grid-points) is
much higher than for t0p1906. In all three curves, recent reduc-
tions in coverage reflect the degradation of the station observing
network over land
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Fig. A2. Spatial coverage of annual mean near-surface tempera-
ture data for two different reference periods (t0p1906 and
t0p1954)

Fig. A3. Centered pattern correlation, R(t), between observed
seasonally and annually averaged near-surface temperature
changes and changes in the TP response experiment with com-
bined sulfate aerosol/CO2 forcing. Results are for two different
choices of reference year: t0p1906 and t0p1954. Changes in R(t)
with time are relatively insensitive to the choice of reference
year.

Fig. A4. As for Fig. A3, but for the uncentered pattern correla-
tion C (t), without subtraction of model and observed spatial
means

and C (t) to the choice of reference state would make
interpretation of the results more difficult.

In the ideal situation, in which there are no missing
values in the observed data set, it can be shown analy-
tically that the changes in C (t) as a function of time are
independent of the choice of t0. The same holds true
for R (t) if the observed spatial variance, sD

2 (t), is
roughly constant with time (as it is for temperature
data; see Santer et al. 1993).

However, the observed data do not comply with this
ideal scenario, and show large, spatially non-random
changes in coverage as a function of time. This is illus-
trated in Figs. A1 and A2. Since the maximum spatial
coverage of observed data is determined by the cover-
age over the reference period (this is because the sub-
set of data in D2 (x, t) that is actually used must be
equal to or a subset of the coverage of the reference
state D1 (x) in order to calculate changes relative to
D1 (x)), changes in coverage with time will mean that
the data employed in calculating C(t) and R (t) will de-
pend on the choice of t0, so results may be sensitive to
t0.

Furthermore, it may be difficult to determine
whether a positive trend in C (t) or R (t) reflects a true
time-increasing pattern similarity between the model
and observed fields or the effect of coverage changes.
In choosing t0, it is therefore desirable to minimize
coverage changes with time, and yet still maintain ade-
quate coverage.

The effect of different choices of t0 and attendant
differences in coverage is illustrated in Figs. A3 and A4
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for R (t) and C (t), respectively. We consider the ex-
treme cases t0p1906 and t0p1954. Results are for the
near-surface temperature signals in the TP experiment
with combined CO2/sulfate aerosol forcing. For both
statistics, it is clear that their changes in time (i.e., iR/it
and iC/it) are, to first order, independent of t0.

These results have several important implications.
First, it is apparent that linear trends in the pattern
correlation time series are relatively insensitive to dif-
ferences in observed data coverage for the two choices
of t0. Second, we note that the absolute values of both
statistics are somewhat arbitrary, and can be raised or
lowered by selection of a different reference state. This
is not a problem here, since our interest is in trends
rather than absolute values.

Since our focus is on trends over the last 10- to 50
years of the pattern correlation time series, we use
t0p1954. This guarantees that we have relatively stable
observed data coverage over 1944–1993, and consider-
ably higher coverage than for t0p1906 (see Figs. A1
and A2). The choice of a later t0 would improve cover-
age still further, but have the undesirable effect of
yielding large coverage changes in the 1950s (due to
the introduction of data from Antarctica).

Appendix B: comparison of variability in HAMCTL
and GFDLCTL

Features of the variability of near-surface air tempera-
ture in the first 100–385 years of HAMCTL have been
described by Cubasch et al. (1992, 1994), Santer et al.
(1994, 1995b) and Hegerl et al. (1994). HAMCTL exhi-
bits substantial variability on decadal-to-century time
scales (see Fig. B1a). However, part of this variability,
particularly over the first 200 years of the integration,
may be a model artifact and attributable to a form of
climate drift.

The variability in GFDLCTL (Fig. B1b) has been

analyzed by Delworth et al. (1993) for the thermohal-
ine circulation and by Stouffer et al. (1994), Mehta and
Delworth (1995), and Manabe and Stouffer (1995) for
near-surface air temperature and SST. These investiga-
tions have attempted to validate the interannual- to in-
terdecadal time scale variability simulated by the
GFDL CGCM. The study by Stouffer et al. (1994)
showed qualitative agreement between observed and
model-simulated patterns of interannual near-surface
temperature variability (with the exception of the trop-
ical Pacific, where both GFDLCTL and HAMCTL un-
derestimate the variability associated with ENSO phe-
nomena). It also indicated that modeled and observed
relationships between global-mean changes and re-
gional temperature changes show a broadly similar
structure. Mehta and Delworth (1995) found consider-
able similarity between simulated and observed pat-
terns characterizing decadal time scale variability of
SST patterns in the tropical Atlantic. Such studies help
to build confidence in the reliability of the model var-
iability on interannual to decadal time scales. Valida-
tion of model variability on longer time scales is more
problematical.

The behavior of global-mean, annually averaged
near-surface temperature is non-stationary in both
HAMCTL and GFDLCTL, despite the application of
flux adjustment schemes. The linear trend in
GFDLCTL (0.023 7C/century) is relatively monotonic,
while the much larger trend in HAMCTL (0.102 7C/
century), is primarily due to a large negative excursion
of temperature over the first two hundred years of the
integration. The standard deviations of temperature
for the detrended data differ by only 0.02 7C (0.10 7C
for GFDLCTL versus 0.12 7C for HAMCTL). For the
observations over the period 1861–1993, the corre-
sponding figure is 0.21 7C if no overall trend is re-
moved. If an EBM is used to remove a combined
GHG/sulfate aerosol effect from the observed data in
an optimal way (c.f. Wigley and Raper 1991b), the

Fig. B1a, b. Time series of global-mean, annually averaged near-
surface temperature changes a in the 600-year HAMCTL and b
1000-year GFDLCTL integrations. Both control runs were per-
formed with CGCMS. Anomalies were defined relative to the
mean state over the entire integration. The unfiltered and low-

pass filtered time series are shown, together with the overall
least-squares linear trends. Both time series are non-stationary:
the linear trend per century is roughly four times larger in
HAMCTL than in GFDLCTL (0.102 7C versus 0.023 7C, respec-
tively)
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Fig. B2. Power spectra of global-mean, annually averaged near-
surface temperature changes in the 600-year HAMCTL and
1000-year GFDLCTL integrations, and in a 5000-year integration
performed with an upwelling-diffusion EBM (Wigley and Raper
1991b). Spectra were computed by taking the Fourier transform
of the autocorrelation function, with the maximum number of
lags equal to 1

4 the length of the time series (see Jenkins and
Watts 1968). Spectra were smoothed using a Tukey window, with
window widths of 60, 100, and 200 lags (for HAMCTL,
GFDLCTL, and the EBM, respectively). The number of frequen-
cies computed is twice the window width (for HAMCTL and

GFDLCTL) and four times the window width for the EBM. The
thin lines are the 95% confidence intervals for the coupled model
spectral estimates. HAMCTL has higher power than GFDLCTL
for periods longer than roughly 60 year; the reverse is true for
periods shorter than 60 year. The EBM was run with random
forcing and a climate sensitivity of 3.0 7C for a doubling of CO2.
The bar on the upper left corner of the figure gives the EBM
spectral densities for climate sensitivities of 1.5 7C and 4.5 7C at a
period of 400 year. The coupled model spectra were computed
after removal of overall linear trends in the data

standard deviation of the residuals is 0.10 7C, a result
that is robust to uncertainties in the assumed anthro-
pogenic forcing history.

Power spectra of the detrended global-mean, an-
nually averaged near-surface temperature changes for
HAMCTL and GFDLCTL indicate that GFDLCTL
has more power than HAMCTL on time scales of
roughly 2–60 years, and less power than HAMCTL for
periods greater than ;60 years (see Fig. B2). These
results are relatively insensitive to the choice of win-
dow width for smoothing. Part of the explanation for
the difference in power at the low-frequency end of the
coupled model spectra is the large negative tempera-
ture excursion over the first 200 years of HAMCTL.
Removal of the overall linear trend reduces, but does
not remove the effect of this initial drift on the esti-
mated spectrum. The areas defined by the upper and
lower 95% confidence limits for each of the coupled
model spectra overlap at all frequencies, with mini-
mum overlap at the high- and low-frequency ends of
the spectra.

Figure B2 also shows the spectrum from a 5000-year
integration of an upwelling-diffusion energy-balance
model (EBM; Wigley and Raper 1990; 1991b) with

random forcing and a climate sensitivity, DT2xCO2
, of

3.0 7C for a doubling of atmospheric CO2. As noted by
Hasselmann (1976) and Wigley and Raper (1990), the
low frequency spectrum depends on DT2xCO2

. The
GFDL AGCM (coupled with a mixed-layer ocean) has
a sensitivity of 3.5 7C (Stouffer, personal communica-
tion), while the corresponding figure is 2.6 7C for the
ECHAM AGCM (see Table B1 in Gates et al. 1992).
The EBM value was chosen to fall roughly between
the Hamburg and GFDL sensitivities. At high frequen-
cies, the EBM was tuned to agree with the observed
data after factoring out the effect of ENSO (which ac-
counts for about 30% of the variance on time scales
less than 10 years). Note that in the lower frequency
range, HAMCTL has higher power than GFDLCTL
despite having a lower value of DT2xCO2

, a result oppo-
site to that expected on theoretical grounds, as the
EBM result on the left-hand side of Fig. B2 indicates.
This is at least partially due to the above-mentioned
climate drift in the first 200 years of HAMCTL.

In contrast to the HAMCTL and EBM results, the
spectrum for GFDLCTL flattens out at periods greater
than 100 years. The EBM also shows a flattening
of the spectrum, but at frequencies substantially
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Fig. B3. Signal-to-noise ratios, SNi, for observed trends in the un-
centered pattern correlation statistic C(t). The signals, bS (i), are
the observed trends in C(t) for the last 10- to 50 year. The noise,

N (i), is the standard error of the sampling distribution of bN (i)
(see Sect. 6.1 and Appendix B for further details). Standard er-
rors were computed using data from both GFDLCTL and
HAMCTL. Results are for annually averaged near-surface tem-
perature data. For temperature-change signals from the Taylor
and Penner sulfate-only and CO2-only experiments, SNi is consis-
tently lower for the GFDLCTL noise estimates. The GFDLCTL
versus HAMCTL differences in SNi can be interpreted in terms

of the coupled-model differences in the spectral density of global-
mean, annually averaged temperature on time scales of 10- to 50
years (see Fig. B2). The thin solid line gives the 5% significance
threshold for an assumed Gaussian distribution of trends

Fig. B4. As for Fig. B3, but for observed trends in the centered
pattern correlation statistic R(t) and for seasonally-averaged data
(JJA). SNi ratios are very similar for the two noise estimates.
This result implies some similarity in the HAMCTL and
GFDLCTL patterns of near-surface temperature variability over
the observed data window on 10- to 50-year time scales

lower than in the GFDL model simulation (and
beyond the lowest frequency shown in Figure B2). The
ubiquity of substantial power at century time scales in
paleoclimate spectra (see, e.g., Crowley and North
1991; Stocker and Mysak 1992) suggests that either the
paleodata have some low-frequency forcing that the
model is lacking (e.g., solar variability, volcanoes) or
that the model is underestimating the magnitude of
century-time scale variability associated with internal
oscillations of the coupled atmosphere-ocean system
(see Barnett et al. 1995). A further possibility is that
the paleodata may contain spurious low-frequency var-
iability.

Since C (t) closely parallels the ratio between model
and observed global-mean temperature changes, and
since the standard error for a linear trend of length Li

is related to the spectral power at frequency 1/Li, one
might expect the significance of C (t) values in Tables
5–7 to differ noticeably depending on whether
HAMCTL or GFDLCTL was used to estimate the
noise. This is difficult to determine on the basis of p-
values, since these are generally highly significant for
observed C (t) trends (Tables 5–7). We therefore com-
puted signal-to-noise ratios for C (t) trends of different
length. As in Santer et al. (1995b), we define the sig-
nal-to-noise ratio SNi for trend length i!10 as 

SNipbS (i)/ N (i) (10)

where bS (i) is the observed trend in C (t) and N (i) is
the standard error of the sampling distribution of
bN (i), computed using either the GFDLCTL or
HAMCTL data (see Sect. 6.1 for full details). The
standard error is simply

N (i)p3(miP1)P1
mi

A
cp1

bN (i, c)24
1/2

(11)

where mi is the sample size (the number of linear
trends of length i!10 in the CN (t) natural variability
time series).

Figure B3 shows SNi for 10- to 50-year linear trends
in C (t). Results are for annually averaged signal and
noise data. For temperature-change signals from the
sulfate-only and CO2-only experiments, the higher
GFDLCTL variance on 10- to 50-year time scales (Fig.
B2) yields consistently lower signal-to-noise ratios than
for HAMCTL. For trends 620 years, SNi is much
larger than the 5% significance threshold (for an as-
sumed Gaussian distribution), so that GFDLCTL ver-
sus HAMCTL variance differences do not influence
decisions on the significance of observed C (t) trends.
As discussed previously, in the specific case of the SC
experiment C (t) provides a mix of pattern- and global-
mean change information. In this instance, therefore,
differences in SNi cannot be interpreted solely in terms
of the different behavior of GFDLCTL and HAMCTL
global-mean temperature spectra in Fig. B2.
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Fig. B5a–d. Empirical orthogonal functions (EOFs) 1 and 2 of the
GFDLCTL and HAMCTL annually averaged near-surface tem-
perature anomaly data. EOFs were computed using data from
the first 400 year of GFDLCTL and the last 400 year of
HAMCTL (in order to exclude the large negative temperature
excursion during the first 200 year of HAMCTL; see Fig. B1a).
Anomalies were computed relative to the 400-year means of each
control run, and were filtered as described in Sect. 4. To facilitate
comparison with the observed R(t) results, model data were in-

terpolated to the observed grid, and grid-points outside the ob-
served data mask for t0p1954 (see Fig. A2) were not used for
computing EOFs. GFDLCTL (HAMCTL) EOFs 1 and 2 explain
13.2% and 8.9% (11.0% and 9.9%) of the total space-time var-
iance, respectively. There are some large-scale similarities in the
EOF patterns: both coupled models have large loadings of the
same sign over high-latitude land areas of North America and
Eurasia

Signal-to-noise ratios for 10- to 50-year linear trends
in R(t) are surprisingly similar, at least for JJA (Fig.
B4). Note that the p-values for R (t) trends (Tables 5–
7) are also similar for GFDLCTL and HAMCTL noise
estimates. This suggests that the patterns of near-sur-
face temperature variability on 10- to 50-year time
scales must show some degree of correspondence in
GFDLCTL and HAMCTL. To compare the dominant
patterns of variability, we computed empirical ortho-
gonal functions (EOFs) of the HAMCTL and
GFDLCTL annually averaged near-surface tempera-
ture data (using the first 400 years of GFDLCTL and
the last 400 years of HAMCTL). Model anomaly data
were filtered as described in Sect. 4, and grid-points
outside the observed data mask for t0p1954 were ex-
cluded (see Fig. A2). This procedure allows us to com-
pare model variability modes over the same data win-
dow used for computing observed R (t) trends.

The partitioning of total space-time variance is simi-
lar in both control integrations. EOFs 1 and 2 of

GFDLCTL explain 13.2% and 8.9% of the variance
(c.f. 11.0% and 9.9% for HAMCTL). The total number
of EOFs required to explain 695% of the variance is
69 for GFDLCTL and 63 for HAMCTL. The EOF pat-
terns show some large-scale spatial similarity: both
coupled models have large loadings of the same sign
over high-latitude land areas of North America and
Eurasia. There are also pronounced differences. EOF
1 of GFDLCTL has the same sign at virtually all grid-
points, while such global-scale coherence is absent in
the HAMCTL EOFs. The marked dipole structure
over North America in the first pair of HAMCTL
EOFs has no analogue in the dominant GFDLCTL
modes.

A very different result is obtained if the full global
fields are used for computing EOFs. In this case, differ-
ences in the behavior of sea-ice in the two integrations
yield a much flatter eigenvalue spectrum for
GFDLCTL than for HAMCTL. Further work is re-
quired to identify common patterns of variability in the
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two integrations and their characteristic time scales,
and to determine why the GFDLCTL and HAMCTL
signal-to-noise ratios (and p-values) are similar for
trends in R (t).
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