
1228 VOLUME 16J O U R N A L O F C L I M A T E

q 2003 American Meteorological Society

A Bivariate Time Series Approach to Anthropogenic Trend Detection in
Hemispheric Mean Temperatures

RICHARD L. SMITH

Department of Statistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina

TOM M. L. WIGLEY

National Center for Atmospheric Research, Boulder, Colorado

BENJAMIN D. SANTER

PCMDI, Lawrence Livermore National Laboratory, Livermore, California

(Manuscript received 10 July 2000, in final form 27 June 2002)

ABSTRACT

A bivariate time series regression approach is used to model observed variations in hemispheric mean tem-
perature over the period 1900–96. The regression equations include deterministic predictor variables and lagged
values of the two predictands, and two different forms of this basic structure are employed. The deterministic
predictors considered are simple linear trends, various climate model–generated time series based on different
combinations of greenhouse gas, sulfate aerosol, and solar forcing, and the Southern Oscillation index (SOI).
With linear trends as the only predictors, the best model is a fourth-order bivariate autoregressive model including
lagged Southern Hemisphere (SH) to Northern Hemisphere (NH) dependence, as in previous work by Kaufmann
and Stern. The estimated NH and SH trends are both 10.678C century21, and both are highly statistically
significant. If SOI is included as an additional predictor, however, a first-order time series model, with no SH
to NH dependence, is an adequate fit to the data. This shows that SOI may be an important covariate in this
kind of analysis. Further analysis uses climate model–generated forcing terms representing greenhouses gases,
sulfate aerosols, and solar effects, as well as SOI. The statistical analysis makes extensive use of Bayes factors
as a device for discriminating among a wide spectrum of possible models. The best fits to the data are obtained
when all three forcing terms are included. Total sulfate aerosol forcing of 21.1 W m22 (with a corresponding
climate sensitivity of DT23 5 4.28C) is preferred to 20.7 W m22 (with sensitivity of 2.38C), but the Bayes
factor discrimination between these cases is weak.

1. Introduction

A major theme of current climatological research is
to examine how well observed changes in climate are
represented by the output of climate models under var-
ious assumptions about the influences of different forc-
ing factors. Until recently, most studies of this nature
involved analyses of spatial patterns (e.g., Barnett and
Schlesinger 1987; Santer et al. 1995, 1996; Hegerl et
al. 1996a,b; Allen and Tett 1999; Tett et al. 1999; Stott
et al. 2000). Recently, however, it has been suggested
that considerable evidence to discriminate between an-
thropogenic signals and natural forcing factors is avail-
able in just the hemispheric mean temperatures (Kauf-
mann and Stern 1997).
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Wigley et al. (1998) examined lagged autocorrela-
tions and cross correlations in Northern Hemisphere
(NH) and Southern Hemisphere (SH) mean tempera-
tures, both in the raw data and in the residuals after
removal of an ENSO signal, and compared them with
corresponding autocorrelations and cross correlations
computed from unforced (control run) simulations of
two ocean–atmosphere general circulation models
(OAGCMs). The discrepancies between the observed
data and the control run data were considerable, with
the observed data showing much larger autocorrelations
over time lags of up to 20 yr. This effect, however,
largely disappeared when the observed data were ‘‘cor-
rected’’ by subtracting trends, not necessarily linear,
based on a number of hypotheses about forcing factors.
The hypotheses were (a) forcing due to anthropogenic
influences [greenhouse gases (GHGs) and sulfate aero-
sols], (b) forcing due to solar effects, and (c) forcing
due to both kinds of effects. In addition, comparisons
were made for a number of values of DT23, the climate
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sensitivity under doubled CO2. The best agreement be-
tween the autocorrelations of the detrended observed
temperatures and those of the OAGCM control runs was
achieved when both natural and anthropogenic forcings
were considered. Based on this, Wigley et al. (1998)
claimed to have identified strong evidence for a com-
bined anthropogenic and solar effect.

In this paper, we take these conclusions further by
analyzing the hemispheric mean data as a bivariate au-
toregressive (hereafter, BVAR) time series. Specifically,
we represent the observed series as a sum of determin-
istic trend plus random error components, where the
random errors are BVAR. There are two reasons for
pursuing such an approach as an alternative to that of
Wigley et al. (1998). The first is that we can now use
analytical methods of statistics, such as maximum like-
lihood estimation and Bayes factors, to characterize the
quality of fit for different assumptions regarding the
mixture of climate forcings. A second reason is that our
judgement of the quality of fit is freed from comparisons
with those of an OAGCM run, which may itself be
problematic if the variability in the model run does not
correspond well with that of the observational data. We
also reconsider some analyses of Kaufmann and Stern
(1997), who also examined hemispheric mean temper-
ature data with a view to detecting anthropogenic ef-
fects, agreeing with some aspects of the Kaufmann–
Stern analysis but differing from them in a number of
other respects.

2. Bivariate autoregressive models

Kaufmann and Stern (1997) considered models of the
form

k p q1 1

N 5 a 1 b x 1 g N 1 d S 1 e ,O O Ot 1 1j t j 1j t2j 1j t2j 1t
j51 j51 j51

k p q2 2

S 5 a 1 b y 1 g N 1 d S 1 e ,O O Ot 2 2 j t j 2 j t2j 2 j t2j 2t
j51 j51 j51

(1)

in which Nt and St denote the observed NH and SH
temperature averages in year t, and {xtj, ytj, 1 # j # k}
denote k covariates, identifiable as the deterministic
components of their model. These covariates may either
be time t, in which case the deterministic components
would be simple linear trends, or they may reflect more
complex temporal changes, due to forcing factors such
as greenhouse gases, etc. The simplest form of their
analysis is the linear trend case k 5 1, xt1 5 yt1 5 t.
The g ij and dij coefficients represent various lagged
terms in the model that represent serial correlation both
within and between the two hemispheres. The e1t and
e2t terms represent error terms that are assumed normally
distributed with mean 0, independent from one value of
t to another and with variances , , say. The analysis2 2s s1 2

of Kaufmann and Stern implicitly assumed that e1t and

e2t were also independent of each other, though we shall
consider the more general form in which Corr(e1t, e2t)
5 r, where r may be any number between 21 and 1.

An alternative form of the model is

k

N 5 a 1 b x 1 W ,Ot 1 1j t j t
j51

k

S 5 a 1 b y 1 Z ,Ot 2 2 j t j t
j51

p q1 1

W 5 g W 1 d Z 1 e ,O Ot 1j t2j 1j t2j 1t
j51 j51

p q2 2

Z 5 g W 1 d Z 1 e . (2)O Ot 2 j t2j 2 j t2j 2t
j51 j51

Whereas Eq. (1) contains autoregressive terms directly
in the variables of interest, Nt and St, Eq. (2) first forms
detrended series Wt and Zt by subtracting the determin-
istic trend terms from Nt and St, respectively, and then
models (Wt, Zt) as a stationary bivariate autoregressive
series. Although either form of the model, (1) or (2), is
plausible for the kind of data we deal with here, in the
discussion to follow we shall argue that (2) is preferable.

A number of earlier authors have used models of the
form of (1) or (2), or their obvious analogs for univariate
time series, in testing for trends in climatological time
series. Bloomfield and Nychka (1992) and Woodward
and Gray (1993, 1995) used univariate versions of mod-
el (2), with the trend term external to the autoregressive
equation. On the other hand, Tol (1994) used an equation
similar to (1), with the trend terms internal to the au-
toregressive equation.

Our principal method of model fitting is maximum
likelihood estimation (MLE). For given model order and
values of the parameters a1, a2, {b1j, 1 # j # k},
{b2j, 1 # j # k}, {g1j, 1 # j # p1}, {d1j, 1 # j # q1},
{g 2j, 1 # j # p2}, {d2j, 1 # j # q2}, s1, s2, and r,
we extract the values of {e1t} and {e2t} using (1) or (2)
and calculate their joint density—this is the likelihood
function for a given set of parameters. In the time series
literature (see, e.g., Brockwell and Davis 1991), this is
known as a conditional likelihood approach. The cal-
culation requires some lagged values (before time 1) of
the NH and SH series, but this will not be a problem
because, for every analysis we do, we have values avail-
able from years prior to the beginning of our analysis
period. The likelihood is maximized with respect to all
the unknown parameters to obtain the MLEs. In practice,
this is usually carried out by numerical minimization
applied to the negative of the log likelihood function,
which we shall henceforth refer to as NLLH. Ignoring
an irrelevant constant of proportionality, the NLLH is
derived from the e1t, e2t, values by the formula
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N
2NLLH 5 N logs 1 N logs 1 log(1 2 r )1 2 2

N 2 21 e 2re e e1t 1t 2t 2t1 2 1 ,O2 2 21 22(1 2 r ) s s s st51 1 1 2 2

in which N denotes the total number of years used for
the calculation, ignoring the initial lagged values. Note
that if r 5 0, the central part of the calculation reduces
to selecting the regression coefficients to minimize the
residual sums of squares S and S , which appears2 2e e1t 2t

to have been what Kaufmann and Stern (1997) did.
The matrix of second-order derivatives of NLLH,

evaluated at the MLE, is known as the observed infor-
mation matrix and its inverse is widely used as an es-
timator of the covariance matrix of the MLEs (Cox and
Hinkley 1974). The square roots of the diagonal entries
of the inverse observed information matrix are estimated
standard errors.

For comparison among models, two widely used
methods are the Akaike information criterion (AIC) and
the Bayesian information criterion (BIC), defined by

AIC 5 2NLLH 1 2p,

BIC 5 2NLLH 1 p logN, (3)

where p is the total number of estimated parameters and
N the length of the series. In either case we seek the
model that minimizes the value of (3). Both criteria use
the NLLH but impose a penalty term to prevent p from
getting too large—BIC imposes the larger penalty and
therefore tends to select a model with fewer parameters.
BIC is sometimes preferred on the grounds that this
leads to consistent model selection (i.e., for choosing
among a finite collection of models, one of which is
correct, the probability that the correct model is chosen,
using BIC, tends to 1 as N → `, where N is the sample
size) but not all statisticians regard this property as the
only one that matters, and both AIC and BIC, among
several other criteria, are used in practice.

As an alternative to AIC and BIC, when two models
are nested (one being derived from the other by fixing
some of the parameters of the larger model) it is possible
to compare the models via a formal hypothesis test in
which we define the null hypothesis H0 that the smaller
model is correct, against the alternative H1 that the larger
model is correct. The likelihood ratio statistic (LRS) is
defined as

LRS 5 2(NLLH 2 NLLH ),0 1 (4)

where NLLH0 and NLLH1 represent the values of NLLH
under the smaller and larger models, respectively. As-
suming the model satisfies various regularity conditions,
when the null hypothesis is true, the distribution of the
LRS should be approximately , where n is the dif-2xn

ference in the number of parameters between the two
models (Cox and Hinkley 1974).

Models (1) and (2) are fitted here to an updated ver-

sion of the temperature dataset employed by the Inter-
governmental Panel on Climate Change (IPCC; Nicholls
et al. 1996) covering the years 1900–96. For the re-
mainder of this section we discuss a number of specific
issues that seem to be important in selecting a suitable
form of model.

a. Initial selection of covariates

The suitability of the model obviously depends on
the selection of predictor variables or regressors {xtj}
and {ytj}. The simplest thing is just to specify xt1 5 yt1

5 t to represent a linear trend. In sections 3 and 4, we
shall also include terms based on forcing factors due to
different influences. In the present section, however, we
concentrate on two terms: linear trends and the El Niño–
Southern Oscillation (ENSO) influence, as characterized
by the Southern Oscillation index (SOI).

The possible influence of ENSO terms has been noted
by a number of previous authors, including Kaufmann
and Stern (1997) and Wigley et al. (1998). The SOI
(Können et al. 1998) is a widely used numerical measure
of ENSO activity, and a logical way to incorporate its
effect is to include it as a covariate in the model. In the
present study, we use 6-month lagged values (i.e., the
value used for a particular year is the average of the
last six months of the previous year and the first six
months of the current year) as this has been found in
previous studies (Jones 1989; Wigley 2000) to give the
best correlation with observed temperature; we return
to the question of optimum lag in section 4.

b. Order of autoregressive components

The first analyses considered assume that the model
orders p1, p2, q1, and q2 are all the same. Figure 1 plots
AIC and BIC values for model orders from 1 to 10,
both with and without the linear trend and SOI terms.
AIC is minimized by either a first-order or a fourth-
order model with both linear and SOI terms. The more
conservative BIC criterion identifies a first-order model
and marginally prefers one without a linear trend, but
including SOI, over the model containing both regres-
sors.

In trying to pin down some of these choices more
precisely, it is useful also to consider the results of hy-
pothesis tests. Concerning the choice between model
orders 1 and 4, for the model with both linear trend and
SOI term, we find NLLH 5 2352.3 (13 parameters)
for model order 1, and NLLH 5 2363.3 (25 parameters)
for model order 4. Thus we have LRS 5 2(363.3 2
352.3) 5 22.0 with 12 degrees of freedom, which cor-
responds to a p value of 0.038 when assessed according
to the distribution. Thus, at significance level 5%,2x 12

we reject the null hypothesis p1 5 p2 5 q1 5 q2 5 1
in favor of the alternative p1 5 p2 5 q1 5 q2 5 4.
Kaufmann and Stern (1997) also preferred a fourth-or-
der model. Similar LRS tests have been conducted for
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FIG. 1. (a) AIC vs common model order p1 5 q1 5 p2 5 q2 for model (2), including SOI and a linear
trend (solid line), SOI with no linear trend (long dashes), linear trend with no SOI (short dashes), and
no trend or SOI component (dotted). (b) Same plot with but BIC instead of AIC.

the linear and SOI terms, and also for the correlation
coefficient r—in our analyses, all of these terms are
statistically significant and are therefore included in sub-
sequent analyses.

c. Model (1) or model (2)?

All of the analyses discussed so far could equally
well be performed using either (1) or (2) as the basic
form of the model [though the actual results reported
above have all been for model (2)]. We can use the
NLLH as a means of comparing the results under both
forms of model, assuming that the other choices (which
covariates to include, the orders of the autoregressive
terms, and the inclusion of r) are all the same. For the
model with linear trend only, the NLLH values for mod-
els (1) and (2) are virtually identical. For the model with
both linear trend and SOI terms, model (2) has a sig-
nificantly lower value of NLLH (2363.3 against
2356.9). This implies that model (2) is preferable if
SOI is included.

For the model with linear trend only, p1 5 p2 5 q1

5 q2 5 4, and including r, the estimated trend coef-
ficients in (2) are 11 5 0.0067 (standard error 0.0013),b̂

21 5 0.0067 (standard error 0.0009), in units of 8Cb̂
yr21. These values differ slightly from those obtained
by direct linear regression without any autoregressive
terms (0.0058 and 0.0064, respectively), which shows
that the omission of autoregressive terms can bias the
estimates of trends. In model (1), however, the estimates
are completely different: 1 5 0.0011 (standard errorb̂
0.0010) and 2 5 0.0026 (standard error 0.0008), whichb̂

do not have any direct interpretation as a global warming
trend. It can, in fact, be shown that these two sets of
estimates are consistent—if model (2) is rewritten in the
form of model (1) with all error terms omitted, and all
the parameters replaced by their numerical estimates,
we indeed get the values of b1 and b2 just stated—but
the lack of direct intepretation of these parameters as
trends in model (1) is a practical reason for preferring
model (2). In models with additional regression terms
such as SOI, it appears that model (2) fits better than
model (1).

d. Inclusion of cross-correlation terms

A considerable part of the paper by Kaufmann and
Stern (1997) is concerned with the significance of the
cross-correlation terms {g 2j} and {d1j}, which represent,
respectively, a north to south directional dependence,
and a south to north dependence. In their analysis of
model (1) with simple linear trend, they claimed that
the north to south dependence is not statistically sig-
nificant, but the south to north dependence is.

Within the models of form (2) with linear trends and
model order 4, but without including SOI, we can con-
sider four different model types, with associated neg-
ative log likelihood values:

(a) p1 5 q2 5 p2 5 q2 5 4 (dependence in both di-
rections), NLLH 5 2344.6;

(b) p1 5 p2 5 q2 5 4, q1 5 0 (north to south dependence
only), NLLH 5 2339.6;

(c) p1 5 q1 5 q2 5 4, p2 5 0 (south to north dependence
only), NLLH 5 2342.1;
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(d) p1 5 q2 5 4, q1 5 p2 5 0 (no interhemispheric
dependence), NLLH 5 2337.3.

From the NLLH values, we can see that the ranking
order of the models is (d) → (b) → (c) → (a), with
model (a) (the one with both directions of dependence)
fitting best. To determine the statistical significance of
these differences, we perform a series of tests using the
x 2 test described earlier. This test shows, for example,
that model (c) is significantly superior to model (d) at
the 5% level (the actual p value is 0.045). Similarly, (a)
is superior to (b) (p value 0.038). In other words, the
south to north dependence is significant whether or not
the north to south dependence is also included in the
model. However, (a) is not significantly superior to (c)
(p value 0.29) and (b) is not significantly superior to
(d) (p value 0.33), or in other words, the north to south
dependence is not significant. These results agree qual-
itatively with those of Kaufmann and Stern.

If the same tests are repeated for the models including
SOI, however, the results are a little different: the p
value for (c) versus (d) is now 0.071, and that for (a)
versus (b) is 0.085. Although we would not wish to
overstate the importance of these slight changes in p
values, it is noticeable that the changes are in the di-
rection of larger p values (i.e., less significant results),
and indeed, that the interhemispheric terms are no longer
significant at 5% level. It should be noted in passing
that Kaufmann and Stern (1997) also discussed whether
ENSO could be an explanatory factor but they did not
perform a direct test as we have done here.

e. Further remarks and summary

With the interhemispheric dependence terms omitted,
we can repeat the order-determination analysis given
earlier, including the linear trend and SOI terms. Once
again the main choice is between model orders 1 and
4 with AIC preferring model order 4 and BIC preferring
model order 1. A hypothesis test between the two mod-
els, using a likelihood ratio statistic, results in a p value
of 0.055, indicating that model order 1 is just accepted
at the 5% level of significant (since 0.055 . 0.050).
Since at this stage of the analysis it is not clear which
is the better model order, we retain both model orders
in subsequent analyses.

In summary, for the models including just linear trend
and SOI as covariates, we find that both terms are sig-
nificant, and the optimal model order is either 1 or 4.
We find r to be statistically significant and, in comparing
models (1) and (2), our preference is for model (2) both
because of ease of interpretation of the parameters and
because, in the model with SOI, it provides a better fit
to the data as determined by NLLH. In considering the
influence of cross correlations, we find that cross cor-
relations are not significant in either direction, provided
SOI is included in the model. We also found that the
underlying linear trends (0.678C in each hemisphere)

are somewhat higher than a naı¨ve analysis, ignoring the
autoregressive structure of the data, would imply.

3. Comparison of different forcing hypotheses

We now consider possible alternative models in which
the linear trend hypothesis of the previous section is
replaced by the hemispheric-mean temperature respons-
es to a range of forcing factors for different values of
the climate sensitivity DT23. Kaufmann and Stern
(1997) also included in their statistical models a variety
of anthropogenically influenced terms, such as the ra-
diative forcings of carbon dioxide, methane, chlorofluo-
rocarbons (CFCs) and tropospheric sulfate aerosols, and
also solar activity. Our approach differs from theirs by
using temperature responses based on physical models
incorporating different combinations of anthropogenic
forcing factors, rather than using anthropogenic forcings
directly as covariates. We believe that this is a more
reasonable approach because the response to anthro-
pogenic forcing is typically nonlinear and therefore may
not be captured accurately by a linear statistical model
using forcings as predictor variables.

We refer to each of the forcing cases as a specific
‘‘model,’’ although we note that each response time se-
ries was generated by a single (physical) model based
on Wigley and Raper (1992), as modified in Raper et
al. (1996). The central idea of our analysis is to use the
goodness of fit of the time series models under various
trend terms generated by different forcing hypotheses
as a measure of the plausibility of those hypotheses in
explaining climatic data. We consider six forcing models
A–F and four different values (for each forcing model)
of DT23, as described in Table 1.

All anthropogenic forcing factors thought to be im-
portant are considered, but only solar forcing is con-
sidered as a possible natural forcing factor. The anthro-
pogenic forcings used are the best-estimate values em-
ployed in the IPCC Second Assessment Report (Kat-
tenberg et al. 1996), and an additional case with lower
sulfate aerosol forcing. For solar forcing, we initially
examined results based on the irradiance reconstructions
of Hoyt and Schatten (1993, corrected and updated) and
Lean et al. (1995), but used only the former for our
more detailed analyses. Table 1 summarizes the different
forcing cases.

Table 1 also gives, for each case, the best-fit climate
sensitivity and root-mean-square error (rmse) deter-
mined by minimizing, over 1899–1998, the rmse be-
tween the climate model output for different sensitivities
and raw observed global-mean temperatures [as de-
scribed in Wigley et al. (1997)]. These results by them-
selves are of some interest: they show that the inclusion
of solar forcing improves the fit (cf. Wigley et al. 1997;
Stott et al. 2000); and that the higher sulfate aerosol
cases give a better fit—issues that will arise again later.
They also show that the fits obtained using the Hoyt
and Schatten irradiance data are better than those ob-
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TABLE 1. Summary of models used to define deterministic trend terms.

Forcing casea

GHGs and
biomass
aerosolsb

Sulfate
aerosols Solara

Optimumc

DT23 (8C)
Rmsed

(8C)

A: GHGs
B: Anthropogenicg

C: Low SO4

Yes
Yes
Yes

No
Beste

Lowf

No
No
No

1.36
11.90
3.19

0.143
0.129
0.135

D: Anthropogenicg 1 Hoyt
Anthropogenicg 1 Lean

Yes
Yes

Beste

Beste

Yes
Yes

4.16
3.99

0.114
0.124

E: Low SO4 1 Hoyt
Low SO4 1 Lean

Yes
Yes

Lowf

Lowf

Yes
Yes

2.31
2.10

0.119
0.129

F: Hoyt alone
Lean alone

No
No

No
No

Yes
Yes

15.41
9.09

0.124
0.162

a Hoyt refers to the irradiance reconstruction of Hoyt and Schatten (1993); Lean refers to the construction by Lean et al. (1995).
b Forcing values as used by IPCC (Kattenberg et al. 1996).
c Based on the period 1899–1998. Note that the optimum climate sensitivities quoted in Wigley et al. (1997) were based on a different time

period.
d Root-mean-square error of the difference between modeled and observed global-mean temperatures for the optimum sensitivity.
e The 1990 direct forcing 20.3 W m22, indirect forcing 20.8 W m22 (Kattenberg et al. 1996).
f The 1990 direct forcing 20.3 W m22, indirect forcing 20.4 W m22.
g Includes GHGs and sulfate aerosols.

FIG. 2. Comparisons of NLLH under 24 combinations of forcing
model (A–F, see Table 1) and climate sensitivity (1–4), and under
three assumptions about the trend coefficients b11 and b21. Solid lines:
b11 5 b21 5 1. Dotted lines: estimated coefficients assuming b11 5
b21. Dashed lines: estimated coefficients allowing b11 and b21 to be
different. Model fits are for model (2) with SOI signal and p1 5 q2

5 1, p2 5 q1 5 0. The four model sensitivities are 1.58 [model (1)],
2.58 [model (2)], 4.58C [model (3)], and optimized sensitivity [model
(4)]. Lower (more negative) values indicate a better fit.

tained with the Lean et al. data. This, however, should
not be taken as an endorsement of one irradiance re-
construction over the other, an issue that is more prop-
erly judged on the basis of the reconstruction methods
used. Which reconstruction we employ in our analysis
is somewhat arbitrary, since both would serve ade-
quately to illustrate the statistical methods that are the
primary focus of this paper. We use the Hoyt and Schat-
ten data, since these provide a clearer separation of the
different statistical models that we compare.

Beyond solar forcing, the next most important factor
in the natural forcing category is likely to be volcanic
forcing (Robock 2000; Stott et al. 2000), which we will
investigate further in a later paper. When volcanic forc-
ing is considered in the physical model used to define
the deterministic trend terms, the goodness of fit (at the

global-mean level) is degraded, possibly reflecting un-
certainties in volcanic forcing estimates and/or defi-
ciencies in the physical model. Given this problem, a
comprehensive consideration of volcanic forcing effects
is not possible in the present paper. The four values of
DT23 used for each model were 1.58C (labeled 1), 2.58C
(labeled 2), 4.58C (labeled 3) and the abovementioned
optimal values (labeled 4; see Table 1).

For each combination of forcing model and DT23, we
use the climate model’s hemispheric-mean temperature
output to define regressors xt1 and yt1, and then fit these
to the observed data using model (2). We do this for each
of three submodels using different assumptions about the
regression coefficients b11 and b21: (i) b11 5 b21 5 1,
(ii) b11 and b21 estimated assuming b11 5 b21, and (iii)
b11 and b21 estimated with no constraints. In many ways,
the most interesting comparison is (i), since this corre-
sponds to the hypothesis that the time series model iden-
tifies the trend with no need for any scaling adjustment
to the climate model output. Assumption (ii) implies that
the climate model is off by a constant scaling factor that
is the same for the two hemispheres. Assumption (iii) is
the worst because it requires separate adjustment for each
hemisphere. Our ideal conclusion would be if assumption
(i) held without any need for adjustment. In addition, for
each of the models, we assume SOI terms are included
as xt2 and yt2, as in section 2.

In Fig. 2, the NLLH values are plotted for each of
the 24 combinations of forcing model and climate sen-
sitivity, for each of the submodels (i)–(iii). Within each
of the three submodels, the 24 NLLH values are based
on the same number of estimated parameters and are
therefore directly comparable. These plots are based on
p1 5 q2 5 1, p2 5 q1 5 0, since the earlier discussion
showed that a first-order autoregressive model appears
adequate to fit the data when SOI is included. Similar
results were, however, obtained for a fourth-order mod-
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el, and in later discussion (Fig. 3) we shall directly
compare results based on first-order and fourth-order
autoregressive time series models.

From the plots, it appears that models D3 and D4 are
the best fitting, and also that for those two models,
though not for many of the others, submodel (i) is as
good as (ii) or (iii). For D4, under submodel (ii), the
estimated common value of b11 and b21 is 0.95, with a
standard error of 0.08. Under submodel (iii), which al-
lows b11 and b21 to be different, b11 is estimated as 0.91
with a standard error 0.10, and b21 is estimated as 0.99
with standard error 0.10 (Table 2, row 4). None of these
three parameter estimates is significantly different from
1. These results indicate that the hemispheric differential
in the D4 climate model–based predictors is consistent
with the observations.

In general, the numerical values of the regression (i.e.,
trend) coefficients are consistent with our a priori ex-
pectations for the different forcing models, A–F. This
is especially so for sensitivity case 4 [i.e., where the xt1

and yt1 predictor variables in Eq. (2) are defined using
sensitivities optimized using global means; see Table 1].
To demonstrate this consistency, we use submodel (iii),
in which the external-forcing regression coefficients (b11

and b21) are unconstrained. These results are shown in
Table 2.

For the external-forcing regression coefficients, the
average of the two hemispheric values is close to 1 in
all cases. This is as expected because the predictors, xt1

and yt1, have already been optimized in a global-mean
sense. The average values are generally less than 1 for
two reasons: because some of the overall warming trend
is captured by the ENSO terms in the regression, and
because the global-mean temperature is not the arith-
metic mean of the hemispheric values but the area-
weighted mean. Since coverage is greater in the NH,
the average regression coefficient must be ‘‘biased’’ to-
ward the NH values, which are lower, relative to what
would be obtained from a global-mean analysis.

The individual SH and NH regression coefficients,
however, differ markedly from 1 in all cases except
model D, with the SH coefficient always greater than
the NH coefficient (i.e., b21/b11 . 1; see Table 2). The
ratio b21/b11 . 1 implies that the NH predictor variable
(xt1) values used were too large compared with the SH
predictor values (yt1).

To try to explain this, note that in each forcing model
the NH and SH predictor series are different. The ob-
served hemispheric-mean temperature time series also
differ; and the regression coefficients reflect differences
between the observed and predictor variable NH to SH
differentials. Predictor variable differences arise from
both radiative forcing and climate response differences.
In general, the forcing differs in each hemisphere (ex-
cept for model F) because of differences in sulfate aero-
sol forcing (more negative in the NH) and tropospheric
ozone forcing (more positive in the NH); see Kattenberg
et al. (1996) and Raper et al. (1996). The corresponding
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responses are further affected by hemispheric differ-
ences in both the climate sensitivity and in lag effects
due to oceanic thermal inertia. In the NH, the climate
sensitivity is slightly larger than in the SH (because of
a greater land area and greater sensitivity over land than
ocean) and the response is more rapid (also a result of
greater land area). The net effect on the temperature
predictor variables may be characterized by their rela-
tive SH/NH temperature changes (e.g., as evidenced by
the linear trends) over 1900–96. The ratios are A, 0.62;
B, 0.87; C, 0.76; D, 0.89; E, 0.80; and F, 0.76. Note
that the NH change exceeds the SH change in all cases,
even for the higher sulfate aerosol cases. Models B and
D (with highest sulfate forcing) have the highest SH/
NH ratios.

It can be seen now that the smallest values of the SH/
NH predictor variable change ratios (A, C, E, and F)
correspond to the largest values of the SH/NH regression
coefficient ratios (Table 2). In these cases, the NH pre-
dictor changes are too large relative to the observed
temperature changes. The two other cases (B and D)
where the SH/NH predictor variable change ratio is larg-
er (around 0.9) are the two cases where the regression
coefficient ratio (b21/b11) is closest to unity, the value
expected if the hemispheric predictor time series were
correct. Comparing B and D, it can be seen that the
inclusion of solar forcing (case D) improves the re-
gression coefficient ratio. Additionally, as both of these
cases have relatively large sulfate aerosol forcing, these
results imply that sulfate aerosol forcing is necessary
in order to explain the observed temperature changes at
the hemispheric level, and that the larger aerosol forcing
case is preferred to the smaller aerosol forcing case.
Santer et al. (1996) and Wigley et al. (1997) came to
similar conclusions.

For the SOI predictor, the negative coefficient (Table
2) indicates that negative values of the SOI (warm
events in the eastern equatorial Pacific) are associated
with globally anomalous warmth (cf. Jones 1989). The
SOI ‘‘sensitivity’’ is virtually independent of the as-
sumed external forcing, largely because it is determined
by higher-frequency variability than is captured by any
of the other predictors, and the sensitivity is almost the
same in each hemisphere. The values are all highly sta-
tistically significant. Slightly lower, but still highly sig-
nificant, values arise in the fourth-order models, because
the higher-order autoregressive terms are able to ‘‘ex-
plain’’ part of the ENSO-related variability.

The final results shown in Table 2 are those for the
standard deviations of the residuals, s1 and s2. It is
clear from the table that cases with both solar and an-
thropogenic forcing included have smaller residual stan-
dard deviations, implying that solar forcing helps in
explaining observed variations in hemispheric-mean
temperature. Also, the residual standard deviations are
substantially smaller in the SH. These residuals should
represent the effects of internally generated variability
in the observations if all external forcing factors were

correctly included in the model. We know that this is
not the case, since volcanic effects have not been con-
sidered. Nevertheless, the residuals are similar to the
internally generated variability produced by unforced
control runs with coupled ocean–atmosphere general
circulation models, most of which have NH variability
greater than SH variability. For example, the Geophys-
ical Fluid Dynamics Laboratory (GFDL) model (Man-
abe and Stouffer 1994) has NH and SH standard de-
viations of 0.138 and 0.108C, respectively. These are
values for complete hemispheric coverage, and slightly
different values would be obtained if the observed cov-
erage mask were applied. Since there are quite large
differences between models, knowledge of the back-
ground level of natural variability is subject to consid-
erable uncertainty. Nevertheless, the general similarity
between our residuals and coupled model results pro-
vides a reassuring consistency check for the regression
model.

The above results support our a priori selection of
model D as the ‘‘best’’ model among those considered.
In terms of interhemispheric temperature differences, it
appears that sulfate aerosol forcing similar to that used
as ‘‘best guess’’ by IPCC (Kattenberg et al. 1996) is
required (cases B and D). The standard deviations of
the residuals are lower for case D than for the other
models, but it is difficult to interpret this as a quanti-
tative measure of the extent to which model D fits better
than the others. In the next section, we extend this anal-
ysis using a Bayes factor approach, to try to quantify
to what extent the NLLH results in Fig. 2 can really be
considered evidence either for or against the different
climate forcing models.

4. Model selection using Bayes factors

In this section, we suggest an alternative interpreta-
tion of the model-fitting results in terms of Bayes factors
(Kass and Raftery 1995). Suppose we have M different
models to choose from. Suppose that the mth model
(1 # m # M) defines a probability density function
f m(y; um) for observed data y in terms of model param-
eter um. Suppose that the prior probability that model
m is correct is P(m), and that conditional on model m
being correct, the prior density of um is pm(um). Then
the posterior probability that model m is correct, given
the data y, is

P(m) f (y; u )p (u ) duE m m m m m

P(m | y) 5 . (6)

P(m9) f (y; u )p (u ) duO E m9 m9 m9 m9 m9
m9

The denominator of (6) is the sum over all alternative
models m9; this ensures that (6) defines a proper prob-
ability distribution over all M models (proper in the
sense that the probabilities sum to 1). The prior prob-
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TABLE 3. Jeffreys’s table of interpretation of Bayes factors,
adapted from Kass and Raftery (1995).

Value of
B(m; m9)

Value of
log10 B(m; m9)

Strength of evidence
against model m9

1–3.2
3.2–10
10–100
.100

0–0.5
0.5–1

1–2
.2

Barely worth a mention
Substantial
Strong
Decisive

FIG. 3. Approximate log10 Bayes factors computed for 24 combi-
nations of climate model and climate sensitivity (same as in Fig. 2),
all computed relative to model D4 (for which the log10 Bayes factor
is fixed at 0). All fits are for model (2) including SOI, with p2 5 q1

5 0 and b11 5 b21 5 1. Dashed lines: p1 5 q2 5 4. Solid lines: p1

5 q2 5 1. The horizontal dashed lines represent Bayes factor 10
(above which there is strong evidence against the alternative model,
compared with D4, according to the Jeffreys interpretation) and Bayes
factor 100 (the lower bound for decisive evidence against).

abilities for the different models, P(m), must be spec-
ified, and implicit in the whole formulation is the as-
sumption that one of the M models is correct. The latter
assumption is questionable in the present context, since
it is obvious that many other models besides those in
Table 1 could have been considered.

An alternative formulation, however, is to rewrite (6)
in the form

f (y; u )p (u ) duE m m m m m

P(m | y) P(m)
5 3 (7)

P(m9 | y) P(m9)
f (y; u )p (u ) duE m9 m9 m9 m9 m9

for the comparison of two given models m and m9. The
advantage of this approach is that (7) separates out the
influence of the prior probabilities of the models (the
P factors on the right-hand side) from the likelihood
components (the ratio of integrals). If we ignore the P
components in (7), the ratio of integrals, which we shall
denote by B(m; m9), is called the Bayes factor of model
m relative to model m9 and represents the relative
‘‘weight of evidence’’ of the two models. This therefore
represents a direct means of comparing two models
without any prior assumption that one of them must be
correct.

Bayes factors were first popularized in the classic
treatise of Jeffreys (1961), who gave the interpretation
in Table 3, as slightly modified by Kass and Raftery
(1995).

In practice, we have assumed the prior densities
pm(um) to be constant and have evaluated the integrals
in (7) using Laplace’s integral approximation (Kass and
Raftery 1995),

p /2 1/2mf (y; u )p (u ) du ø (2p) |V | f (y; û ), (8)mE m m m m m m m

where m is the MLE under model m, pm is the dimensionû
of the model, and Vm is the inverse observed information
matrix under model m.

Taking model D4 as a reference model, since this is
the best fitting according to NLLH, the Bayes factor for
model D4 relative to each of the other models is plotted
in Fig. 3. This is for b11 5 b21 5 1, and we have shown
both the case with p1 5 q2 5 1 (the version of the model
used to compute Fig. 2) and the alternative form of
model with p1 5 q2 5 4.

Consider first the results using the first-order model
(p1 5 q2 5 1), represented by solid lines in Fig. 3.
According to the Jeffreys interpretation of Bayes fac-
tors, if we take D4 as our reference model, there is
‘‘strong’’ evidence against any model with a Bayes fac-
tor bigger than 10, and ‘‘decisive’’ evidence against any
model with a Bayes factor bigger than 100. The hori-
zontal lines on Fig. 3 delineate these two boundaries.
Under this criterion, only four models, besides D4 itself,
fail to be decisively worse than model D4. These are
D3, E2, E4, and F4 (and F4 is borderline).

To give this result a climatological interpretation, we
see that the best models are those (D and E) that include
all three forcing components, that is, greenhouse gases,
sulfate aerosols, and solar, with model D (high aerosol
forcing) superior to model E (low forcing), though this
comparison is not decisive. Moreover, both models per-
form best at near their optimum climate sensitivity val-
ues. In contrast, model F4 is also (just) competitive in
terms of fit to the data, but using a highly unrealistic
value of DT23, whereas a solar-only model with a more
realistic DT23 (such as model F3) is very much inferior.
Thus, we reject the ‘‘solar forcing only’’ model because
it is either a much inferior fit to the data (model F3) or
uses a physically meaningless value of DT23 (model
F4). However, when combined with the anthropogenic
and sulfate aerosol components, solar forcing is impor-
tant, because either of models D and E is a vastly su-
perior fit to the data than A, B, or C.

Thus, our overall conclusion is that a model that in-
corporates all three forms of forcing factors—green-
house gases, aerosols, and solar terms—fits the observed
data much better than any of the alternatives that do not
include all those three factors.

The conclusions based on a fourth-order model (p1

5 q2 5 4) are shown as dashed lines in Fig. 3. For
these calculations, the Bayes factor calculation relative
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to model D4 has been repeated with the fourth-order
time series model. Note that the comparisons here are
among different combinations of the climate forcing,
made separately for each of the two forms of time series
model; we are not using Bayes factors to compare first-
order time series models with fourth-order time series
models, since formula (8) is problematic for comparing
models of different dimensions.

In general, Bayes factors computed using the fourth-
order models are smaller than those using the first-order
models. This is to be expected: if we incorporate higher-
order terms into the time series models, then the time
series models on their own contain more degrees of
freedom to explain the external forcing; consequently,
the discrimination among different forms of external
forcing, as explained by the Bayes factors, will be weak-
er if we adopt a fourth-order time series model than if
we adopt a first-order model. The qualitative conclu-
sions, however, are unchanged. The Bayes factors for
models E4, F4, and F3, each computed with respect to
D4, are 6.8, 46, and 5492. Thus, model E4 could still
be entertained as an alternative to D4, model F4 is clear-
ly inferior to D4 but still a possibly acceptable fit to the
data, while the more physically realistic model F3 is
decisively worse. All the Bayes factors derived from
models A, B, and C are again decisively worse than
those derived from models D and E. The climatological
conclusions are the same as under the first-order model.

Overall, our conclusions strengthen those of Wigley
et al. (1998), reinforcing the message that within a re-
alistic range of DT23, the models involving a combi-
nation of anthropogenic and solar effects clearly out-
perform those based on either anthropogenic or solar
effects on their own.

Fig. 4 shows a number of ‘‘diagnostic’’ plots, aimed
at visually assessing the fit of the regression equation,
where we have used model D4 for the anthropogenic
model. Panels (a) and (b) show that the anthropogenic
model traces the irregularities of the observed data con-
siderably better than the straight line model, though it
is clear that there are still some periods in the data,
notably the 1940s and 1950s, where it is capable of
improvement. The remaining panels of Fig. 4 show
some standard statistical diagnostics based on residuals
from the anthropogenic model fit. Panels (c) and (d)
show residuals plotted against fitted values; (e) and (f )
show residuals plotted against time; (g) and (h) show
quantile–quantile (QQ) plots for the residuals against a
normal distribution; the fact that these plots stay very
close to the straight line of unit slope through the origin
indicates a close fit to the normal distribution. The only
concern in any of these plots is that in (d) [and to a
lesser extent in (f )] the last few values of the residuals
seem to show a downward trend, corresponding to sev-
eral successive values in (b) where the observed value
is below the fitted trend value. Given that these residuals
lie well within the range of residuals established else-

where in the plot, we do not believe these indicate any-
thing wrong with the model.

Referees have raised some other questions of a di-
agnostic nature, concerning (a) heteroscedasticity and
(b) multicollinearity. Heteroscedasticity refers to the re-
siduals having nonconstant variance, of which there is
absolutely no visual evidence in Fig. 4c–f, but as an
additional check, we performed the Godfrey–Koenker
test given by Wetherill (1986, p. 203), which produced
test statistics of 0.26 for the NH data, 0.01 for the SH
data, each nominally under the null hypothesis of2x 1

constant variance. Since both the test statistics are much
smaller than 1 (mean of the distribution), we con-2x 1

clude that there is no evidence at all for heteroscedas-
ticity. Multicollinearity concerns the possibility of mis-
leading regression coefficients because of correlations
among the regressors. One of the most widely used tests
is based on the singular value decomposition of the
matrix of regressors (Belsley et al. 1980). In the present
setting of a time series model in which some of the
parameters enter nonlinearly, the Belsley–Kuh–Welsch
procedure is not directly applicable, but we have adopt-
ed the following procedure that should be equivalent to
it: after the maximum likelihood fit is completed and
with H (the Hessian matrix of the negative log likeli-
hood, which estimates the covariances of the maximum
likelihood estimators), compute the eigenvalues of H,
say l1 $ · · · $ lp where p is the number of parameters,
and let the kth condition number be nk 5 . InÏl /lk p

the case of a linear regression, the matrix H is equivalent
to (XTX)21 and this would be an equivalent definition
to that of Belsley et al. For the anthropogenic model
with AR(1) residuals, the largest condition index ac-
cording to this definition is 16.6. Belsley et al. (1980,
p. 105) suggest that a condition index of 5–10 is as-
sociated with weak dependencies and that ‘‘moderate to
strong relations are associated with condition indices of
30 to 100.’’ On the basis of this, we conclude that there
is no problem with multicollinearity in this analysis.

Finally, in this section we return to one of the ques-
tions considered at the beginning: what is the optimum
lag of the SOI signal? This question can also be con-
sidered within our overall modeling framework, by fit-
ting different covariates corresponding to different lags
and choosing the best model on the basis of NLLH. In
Fig. 5, we show the results of this, for our final preferred
model (model D4 including SOI, p1 5 q2 5 1, p2 5 q1

5 0). The results show a sharp improvement in the fit
of the model over lags 0–4 months, and a sharp decline
in lags of greater than 7 months, with lags between 4
and 7 months virtually equivalent. This justifies our ear-
lier decision to base the SOI analysis on a 6-month lag.

5. Conclusions

Section 2 revisited the question of bivariate time se-
ries models for hemispheric data, re-examining several
of the issues considered by Kaufmann and Stern (1997).
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FIG. 4. Diagnostic plots. (a),(b) Raw data with best fitting straight-line and model-based trends. (c),(d) Residuals
(from regression on anthropogenic 1 solar model) vs fitted values. (e),(f ) Residuals vs time. (g),(h) QQ plots of
residuals.

Like Kaufmann and Stern, we found evidence for a
south to north dependency in the hemispheric mean tem-
peratures, but the evidence for this is weaker if SOI
terms are included in the model. We also established
that in this case, it appears that the time series depen-

dence can be adequately represented by a first-order
model, provided SOI is included. This contrasts both
with the results of Kaufmann and Stern and with our
own models when SOI is omitted, both of which pointed
toward a fourth-order model. We also find a preference
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FIG. 5. NLLH values for model with various lags of SOI vs the
lag in months. Results are for model (2) with p1 5 q2 5 1, p2 5 q1

5 0, based on model D4 for the forcing component.

for models of form (2) over those of form (1), and for
including a cross correlation between e1t and e2t.

The results regarding SOI are seemingly at variance
not only with those in Kaufmann and Stern (1997), but
also with Wigley et al. (1998). However, neither of the
earlier two papers tested for the SOI component directly
by including it as an additional term in the statistical
model. The contrast with the earlier results arises be-
cause of the use of a more sensitive statistical test, which
allows us to reassess this component of the model fit.
We include SOI in our subsequent comparisons of cli-
mate models.

The south to north dependency was shown to be sig-
nificant by Kaufmann and Stern (1997), and our results
agree with theirs in the case of a model without SOI.
With SOI, however, the south to north dependence is
no longer significant at the 5% level. This result in itself
may not be too important—for example, it is quite plau-
sible that with a few more years’ data, the south to north
dependence would reappear as a significant compo-
nent—but it is relevant to the physical interpretation of
the result that the observed south to north dependence
is partly explained by the SOI. In this respect, our con-
clusions differ from Kaufmann and Stern (1997). While
there may be an anthropogenic influence on low-fre-
quency variations in ENSO (Trenberth and Hoar 1997;
Timmerman et al. 1999), we judge that any anthropo-
genic component would be sufficiently small that the
primary ENSO variations that we see are due to natural

fluctuations. The claim that the south–north dependency
is solely a result of anthropogenic climatic influence is
not supported by our analysis.

In sections 3 and 4, we have extended the analysis
of section 2 to include different forms of forcing terms
generated by climate models. Various combinations of
greenhouse gas, sulfate aerosol, and solar terms were
considered, and also different values of the climate sen-
sitivity DT23. The main conclusion here is that a model
that includes all three forms of forcing term is clearly
better than any other model. The solar forcing model
alone is apparently competitive, but only with a com-
pletely unrealistic climate sensitivity parameter (158C).
Climate sensitivities within the normally accepted range
(1.58–4.58C) do not produce an adequate fit under this
model. All of these conclusions are based on an ap-
proximate Bayes factor method of comparison, and es-
sentially the same results are obtained using fourth-order
time series models as under first-order time series mod-
els.

For further work along these lines, we anticipate that
alternative forms of Bayesian model comparison might
be considered. Kass and Raftery (1995) reviewed a
number of alternative approaches to Bayes factors; Has-
selmann (1998), Levine and Berliner (1999), and Ber-
liner et al. (2000) have also considered the application
of Bayesian statistical methods to climatological data.
Finally, we would consider it of great interest to extend
the methodology to spatiotemporal data; as such, it
would provide a powerful alternative to the pattern cor-
relation and fingerprint detection methods that have
been developed by Hegerl et al. (1996a,b), Santer et al.
(1995, 1996), and Allen and Tett (1999), among others.
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Können, G. P., P. D. Jones, M. H. Kaltofen, and R. J. Allan, 1998:
Pre-1866 extensions of the Southern Oscillation index using ear-
ly Indonesian and Tahitian meteorological readings. J. Climate,
11, 2325–2339.

Lean, J., J. Beer, and R. Bradley, 1995: Reconstructions of solar
irradiance since 1610: Implications for climate change. Geophys.
Res. Lett., 22, 3195–3198.

Levine, R. A., and M. Berliner, 1999: Statistical principles for climate
change studies. J. Climate, 12, 564–574.

Manabe, S., and R. J. Stouffer, 1994: Multiple century response of
a coupled ocean–atmosphere model to an increase of atmospheric
carbon dioxide. J. Climate, 7, 5–23.

Nicholls, N., G. V. Gruza, J. Jouzel, T. R. Karl, L. A. Ogallo, and
D. E. Parker, 1996: Observed climate variability and change.

Climate Change 1995: The Science of Climate Change, J.
Houghton, et al., Eds., Cambridge University Press, 133–192.

Raper, S. C. B., T. M. L. Wigley, and R. A. Warrick, 1996: Global
sea level rise: Past and future. Sea-Level Rise and Coastal Sub-
sidence: Causes, Consequences and Strategies, J. D. Milliman
and B. U. Haq, Eds., Kluwer Academic, 11–45.

Robock, A., 2000: Volcanic eruptions and climate. Rev. Geophys.,
38, 191–219.

Santer, B. D., K. E. Taylor, T. M. L. Wigley, J. E. Penner, P. D. Jones,
and U. Cubasch, 1995: Towards the detection and attribution of
an anthropogenic effect on climate. Climate Dyn., 12, 77–100.

——, and Coauthors, 1996: A search for human influences on the
thermal structure of the atmosphere. Nature, 382, 39–46.

Stott, P. A., S. F. B. Tett, G. S. Jones, M. R. Allen, W. J. Ingram, and
J. F. B. Mitchell, 2000: Attribution of twentieth century tem-
perature change to natural and anthropogenic causes. Climate
Dyn., 17, 1–21.

Tett, S. F. B., P. A. Stott, M. R. Allen, W. J. Ingram, and J. F. B.
Mitchell, 1999: Causes of twentieth-century temperature change
near the Earth’s surface. Nature, 399, 569–572.

Timmermann, A., J. M. Oberhuber, A. Bacher, M. Esch, M. Latif,
and E. Roeckner, 1999: Increased El Niño frequency in a climate
model forced by future greenhouse warming. Nature, 398, 694–
696.

Tol, R. S. J., 1994: Greenhouse statistics—Time series analysis: Part
II. Theor. Appl. Climatol., 49, 91–102.

Trenberth, K. E., and T. J. Hoar, 1997: El Niño and climate change.
Geophys. Res. Lett., 24, 3057–3060.

Wetherill, G. B., 1986: Regression Analysis with Applications. Chap-
man and Hall, 311 pp.

Wigley, T. M. L., 2000: ENSO, volcanoes and record-breaking tem-
peratures. Geophys. Res. Lett., 27, 4101–4104.

——, and S. C. B. Raper, 1992: Implications for climate and sea
level of revised IPCC emissions scenarios. Nature, 357, 293–
300.

——, P. D. Jones, and S. C. B. Raper, 1997: The observed global
warming record: What does it tell us? Proc. Natl. Acad. Sci.,
94, 8314–8320.

——, R. L. Smith, and B. D. Santer, 1998: Anthropogenic influence
on the autocorrelation function of hemispheric-mean tempera-
tures. Science, 282, 1676–1679.

Woodward, W. A., and H. L. Gray, 1993: Global warming and the
problem of testing for a trend in time series analysis. J. Climate,
6, 953–962.

——, and ——, 1995: Selecting a model for detecting the presence
of a trend. J. Climate, 8, 1929–1937.


