100 research outputs found

    Influence of Environmental Factors on Digestion Processes

    Get PDF

    On the Friction of Carbon Black- and Silica-Reinforced BR and S-SBR Elastomers

    Get PDF
    Friction of carbon black- and silica-reinforced elastomers is studied experimentally and theoretically, using Persson’s model. The effect of reinforcement fillers on elasticity was determined by dynamical mechanical analysis. Carbon black-filled samples have a higher Young’s modulus than the silica-filled compounds. Silica-filled rubbers have a higher tan (δ) at lower temperatures and a lower loss tangent at higher temperatures, which is a rough indication for higher wet grip and lower rolling resistance, respectively. Friction tests on a ball-on-disk test rig were performed to study the effect of the reinforcement fillers and their amount on the friction between rubber samples (disks) and relatively smooth or rough granite surfaces (balls). The results were discussed and compared with the friction model presented by Persson. It was shown theoretically and experimentally that hysteresis does not play a significant role in the friction of rubber samples in contact with smooth granite and that it plays a minor role in contact with a rough granite sphere. Therefore, the hysteresis contribution of friction can be neglected in the contact of rubbers with just smooth spheres. Moreover, a higher friction coefficient is seen in samples with a higher content of fillers. Silica-filled compounds show a slightly higher coefficient of friction compared with the carbon black-filled compounds. The effect of attached wear debris to the granite surfaces on the friction level has been studied. The results are supported by SEM and confocal microscopic images of the wear debris itself and wear debris attached to the granite spheres, respectivel

    Field Theoretic Study of Bilayer Membrane Fusion III: Membranes with Leaves of Different Composition

    Full text link
    We extend previous work on homogeneous bilayers to calculate the barriers to fusion of planar bilayers which contain two different amphiphiles, a lamellae-former and a hexagonal former, with different compositions of the twoin each leaf. Self-consistent field theory is employed, and both standard and alternative pathways are explored. We first calculate these barriers as the amount of hexagonal former is increased equally in both leaves to levels appropriate to the plasma membrane of human red blood cells. We follow these barriers as the composition of hexagonal-formers is then increased in the cis layer and decreased in the trans layer, again to an extent comparable to the biological system. We find that, while the fusion pathway exhibits two barriers in both the standard and alternative pathways, in both cases the magnitudes of these barriers are comparable to one another, and small, on the order of 13 kT. As a consequence, one expects that once the bilayers are brought sufficiently close to one another to initiate the process, fusion should occur rapidly.Comment: 9 figure

    Field Theoretic Study of Bilayer Membrane Fusion: II. Mechanism of a Stalk-Hole Complex

    Get PDF
    We use self-consistent field theory to determine structural and energetic properties of intermediates and transition states involved in bilayer membrane fusion. In particular, we extend our original calculations from those of the standard hemifusion mechanism, which was studied in detail in the first paper of this series, to consider a possible alternative to it. This mechanism involves non-axial stalk expansion, in contrast to the axially symmetric evolution postulated in the classical mechanism. Elongation of the initial stalk facilitates the nucleation of holes and leads to destabilization of the fusing membranes via the formation of a stalk-hole complex. We study properties of this complex in detail, and show how transient leakage during fusion, previously predicted and recently observed in experiment, should vary with system architecture and tension. We also show that the barrier to fusion in the alternative mechanism is lower than that of the standard mechanism by a few kBTk_BT over most of the relevant region of system parameters, so that this alternative mechanism is a viable alternative to the standard pathway

    Line tension of branching junctions of bilayer membranes

    Full text link
    Branching of bilayer membranes appear in the inverted hexagonal phase as well as in metastable states of the lamellar phase such as membrane fusion intermediates. A method for estimating the line tension of the branching junction is proposed for molecular simulations. The line tension is calculated from the pressure tensor of equiangularly branched membranes. The simulation results agree very well with the theoretical prediction of Hamm and Kozlov's tilt model. The transition between the lamellar and inverted hexagonal phases is also investigated using the tilt model.Comment: 9 pages, 9 figure

    A New Method for Measuring Edge Tensions and Stability of Lipid Bilayers: Effect of Membrane Composition

    Get PDF
    We report a new and facile method for measuring edge tensions of lipid membranes. The approach is based on electroporation of giant unilamellar vesicles and analysis of the pore closure dynamics. We applied this method to evaluate the edge tension in membranes with four different compositions: egg phosphatidylcholine (EggPC), dioleoylphosphatidylcholine (DOPC), and mixtures of the latter with cholesterol and dioleoylphosphatidylethanolamine (DOPE). Our data confirm previous results for EggPC and DOPC. The addition of 17 mol % cholesterol to the DOPC membrane causes an increase in the membrane edge tension. On the contrary, when the same fraction of DOPE is added to the membrane, a decrease in the edge tension is observed, which is an unexpected result considering the inverted-cone shape geometry of the molecule. Presumably, interlipid hydrogen bonding lies in the origin of this behavior. Furthermore, cholesterol was found to lower the lysis tension of DOPC bilayers. This behavior differs from that observed on bilayers made of stearoyloleoylphosphatidylcholine, suggesting that cholesterol influences the membrane mechanical stability in a lipid-specific manner
    corecore