660 research outputs found

    An effort to make sense of antisense transcription in bacteria

    Get PDF
    Analysis of bacterial transcriptomes have shown the existence of a genome-wide process of overlapping transcription due to the presence of antisense RNAs, as well as mRNAs that overlapped in their entire length or in some portion of the 5â€Č- and 3â€Č-UTR regions. The biological advantages of such overlapping transcription are unclear but may play important regulatory roles at the level of transcription, RNA stability and translation. In a recent report, the human pathogen Staphylococcus aureus is observed to generate genome-wide overlapping transcription in the same bacterial cells leading to a collection of short RNA fragments generated by the endoribonuclease III, RNase III. This processing appears most prominently in Gram-positive bacteria. The implications of both the use of pervasive overlapping transcription and the processing of these double stranded templates into short RNAs are explored and the consequences discussed. © 2012 Landes Bioscience.This research was supported by grants ERA-NET Pathogenomics (PIM2010EPA-00606), BIO2008-05284-C02, BIO2011- 30503-C02 and BFU2011-23222 from Spanish Ministry of Economy and Competitiveness.A.T.-A. is recipient of “Ramon y Cajal” contracts from the Spanish Ministry of Science and Innovation. This research was supported by grants ERA-NET Pathogenomics (PIM2010EPA-00606), BIO2008-05284-C02, BIO2011-30503-C02 and BFU2011-23222 from Spanish Ministry of Economy and CompetitivenessPeer Reviewe

    An effort to make sense of antisense transcription in bacteria

    Get PDF
    Analysis of bacterial transcriptomes have shown the existence of a genome-wide process of overlapping transcription due to the presence of antisense RNAs, as well as mRNAs that overlapped in their entire length or in some portion of the 5'- and 3'-UTR regions. The biological advantages of such overlapping transcription are unclear but may play important regulatory roles at the level of transcription, RNA stability and translation. In a recent report, the human pathogen Staphylococcus aureus is observed to generate genome-wide overlapping transcription in the same bacterial cells leading to a collection of short RNA fragments generated by the endoribonuclease III, RNase III. This processing appears most prominently in Gram-positive bacteria. The implications of both the use of pervasive overlapping transcription and the processing of these double stranded templates into short RNAs are explored and the consequences discussed

    An updated synopsis of Hypolepis Bernh. (Dennstaedtiaceae) from Argentina

    Get PDF
    An updated synopsis of the genus Hypolepis (Dennstaedtiaceae) from Argentina is presented, including the first report of H. stolonifera var. stolonifera for the country and the description of a new variety: Hypolepis stolonifera var. delasotae, named in honour of pteridologist Elías Ramón de la Sota. Four taxa are recognised in Argentina: Hypolepis poeppigii, H. rugosula subsp. poeppigiana, and Hypolepis stolonifera with var. delasotae and var. stolonifera; Hypolepis repens is excluded from the Argentinian flora.Fil: Toledo Arana, Javier Marcelo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Yañez, Agustina. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Schwartsburd, Pedro B.. Universidade Federal de Viçosa; Brasi

    Bacterial biofilm functionalization through Bap amyloid engineering

    Get PDF
    Biofilm engineering has emerged as a controllable way to fabricate living structures with programmable functionalities. The amyloidogenic proteins comprising the biofilms can be engineered to create self-assembling extracellular functionalized surfaces. In this regard, facultative amyloids, which play a dual role in biofilm formation by acting as adhesins in their native conformation and as matrix scaffolds when they polymerize into amyloid-like fibrillar structures, are interesting candidates. Here, we report the use of the facultative amyloid-like Bap protein of Staphylococcus aureus as a tool to decorate the extracellular biofilm matrix or the bacterial cell surface with a battery of functional domains or proteins. We demonstrate that the localization of the functional tags can be change by simply modulating the pH of the medium. Using Bap features, we build a tool for trapping and covalent immobilizing molecules at bacterial cell surface or at the biofilm matrix based on the SpyTag/SpyCatcher system. Finally, we show that the cell wall of several Gram-positive bacteria could be functionalized through the external addition of the recombinant engineered Bap-amyloid domain. Overall, this work shows a simple and modulable system for biofilm functionalization based on the facultative protein Bap. © 2022, The Author(s).This research was supported by grants from the Spanish Ministry of Science and Technology RTI2018-096011-B-I00 to J.V. and PID2020-113494RB-I00 to IL. L.M.-C. was supported by the predoctoral program of the Universidad PĂșblica de Navarra

    One-Step Synthesis of CaO-ZnO Efficient Catalyst for Biodiesel Production

    Get PDF
    Biodiesel is the best candidate for fuel oil replacement, and to obtain it, heterogeneous catalysts offer large advantages: they can be separated from the product and reused. This work reviews a novel one-step synthesis of CaO-ZnO catalytic particles suitable for biodiesel production. The catalyst is synthesized using an original simple method that involves mixing of ZnO with CaCO3 and subsequent calcination. The CaO-ZnO microparticles obtained present an average size of 2 Όm. This material shows the characteristic crystallographic cubic structure of CaO and the hexagonal phase of ZnO. The temperature-programmed reduction experiment evidences an interaction between CaO and ZnO. Moreover, the infrared spectroscopy shows typical bands of these compounds. The catalyst shows high biodiesel yield, up to 73% in the first cycle and 64% in the second one. In this work, the synthesis of an efficient CaO-ZnO catalyst with a huge potential is revealed, which could be an economic alternative to produce biodiesel.Fil: Toledo Arana, Javier Marcelo. Universidad Nacional de RĂ­o Cuarto. Facultad de Ciencias Exactas FisicoquĂ­micas y Naturales. Instituto de Investigaciones en TecnologĂ­as EnergĂ©ticas y Materiales Avanzados. - Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto de Investigaciones en TecnologĂ­as EnergĂ©ticas y Materiales Avanzados; ArgentinaFil: Torres, Juan Jose. Universidad Nacional de RĂ­o Cuarto. Facultad de Ciencias Exactas FisicoquĂ­micas y Naturales. Instituto de Investigaciones en TecnologĂ­as EnergĂ©ticas y Materiales Avanzados. - Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto de Investigaciones en TecnologĂ­as EnergĂ©ticas y Materiales Avanzados; ArgentinaFil: Acevedo, Diego Fernando. Universidad Nacional de RĂ­o Cuarto. Facultad de Ciencias Exactas FisicoquĂ­micas y Naturales. Instituto de Investigaciones en TecnologĂ­as EnergĂ©ticas y Materiales Avanzados. - Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto de Investigaciones en TecnologĂ­as EnergĂ©ticas y Materiales Avanzados; ArgentinaFil: Illanes, Cristian Omar. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - San Luis. Instituto de FĂ­sica Aplicada "Dr. Jorge AndrĂ©s Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias FĂ­sico MatemĂĄticas y Naturales. Instituto de FĂ­sica Aplicada "Dr. Jorge AndrĂ©s Zgrablich"; ArgentinaFil: Ochoa, Nelio Ariel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - San Luis. Instituto de FĂ­sica Aplicada "Dr. Jorge AndrĂ©s Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias FĂ­sico MatemĂĄticas y Naturales. Instituto de FĂ­sica Aplicada "Dr. Jorge AndrĂ©s Zgrablich"; ArgentinaFil: Pagliero, Cecilia Liliana. Universidad Nacional de RĂ­o Cuarto. Facultad de Ciencias Exactas FisicoquĂ­micas y Naturales. Instituto de Investigaciones en TecnologĂ­as EnergĂ©ticas y Materiales Avanzados. - Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto de Investigaciones en TecnologĂ­as EnergĂ©ticas y Materiales Avanzados; Argentin

    ProOpDB: Prokaryotic Operon DataBase

    Get PDF
    The Prokaryotic Operon DataBase (ProOpDB, http://operons.ibt.unam.mx/OperonPredictor) constitutes one of the most precise and complete repositories of operon predictions now available. Using our novel and highly accurate operon identification algorithm, we have predicted the operon structures of more than 1200 prokaryotic genomes. ProOpDB offers diverse alternatives by which a set of operon predictions can be retrieved including: (i) organism name, (ii) metabolic pathways, as defined by the KEGG database, (iii) gene orthology, as defined by the COG database, (iv) conserved protein domains, as defined by the Pfam database, (v) reference gene and (vi) reference operon, among others. In order to limit the operon output to non-redundant organisms, ProOpDB offers an efficient method to select the most representative organisms based on a precompiled phylogenetic distances matrix. In addition, the ProOpDB operon predictions are used directly as the input data of our Gene Context Tool to visualize their genomic context and retrieve the sequence of their corresponding 5â€Č regulatory regions, as well as the nucleotide or amino acid sequences of their genes

    Evaluation of Surface Microtopography Engineered by Direct Laser Interference for Bacterial Anti-Biofouling

    Get PDF
    © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Modification of the biomaterial surface topography is a promising strategy to prevent bacterial adhesion and biofilm formation. In this study, we use direct laser interference patterning (DLIP) to modify polystyrene surface topography at sub-micrometer scale. The results revealed that three-dimensional micrometer structures have a profound impact on bacterial adhesion. Thus, line- and pillar-like patterns enhanced S. aureus adhesion, whereas complex lamella microtopography reduced S. aureus adhesion in static and continuous flow culture conditions. Interestingly, lamella-like textured surfaces retained the capacity to inhibit S. aureus adhesion both when the surface is coated with human serum proteins and when the material is implanted subcutaneously in a foreign-body associated infection model.J. Valle was supported by Spanish Ministry of Science and Innovation “RamĂłn y Cajal” contract. This research was supported by grants AGL2011-23954 and BIO2011-30503-C02-02 from the Spanish Ministry of Economy and Competitivity and IIQ14066. RI1 from Innovation Department of the Government of Navarra. A. Lasagni, D. Langhenirich, and R. Helbig thank the Deutsche Forschungsgemeinschaft (DFG) for the financial support of the project “Mechanically stable anti-adhesive polymer surfaces” (LA-2513 4-1).Peer Reviewe
    • 

    corecore