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Abstract 1 

Analysis of bacterial transcriptomes have shown the existence of a genome-wide process 2 

of overlapping transcription due to the presence of antisense RNAs, as well as messenger 3 

RNAs that overlapped in their entire length or in some portion of the 5’- and 3’-UTR 4 

regions. The biological advantages of such overlapping transcription are unclear but may 5 

play important regulatory roles at the level of transcription, RNA stability and translation. 6 

In a recent report, the human pathogen Staphylococcus aureus is observed to generate 7 

genome-wide overlapping transcription in the same bacterial cells leading to a collection 8 

of short RNA fragments generated by the endoribonuclease III, RNaseIII. This processing 9 

appears most prominently in Gram-positive bacteria. The implications of both the use of 10 

pervasive overlapping transcription and the processing of these double stranded 11 

templates into short RNAs are explored and the consequences discussed.  12 
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Pervasive overlapping transcription in bacteria 1 

Implementation of high-throughput RNA analysis techniques to the identification 2 

of the entire collection of RNA molecules (transcriptome) produced by a bacterial 3 

population has directed our view of RNA landscapes away from a protein-centric genome 4 

annotation. As with studies involving eukaryotic cells, the first bacterial transcriptomic 5 

studies also revealed the existence of a genome-wide process of overlapping transcription 6 
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15. To be clear overlapping transcription is defined as a process that 7 

generates overlapping sense/antisense RNAs from a genomic region. The resulting RNA 8 

transcripts show perfect complementarity at least in some portion of the length of the 9 

overlapping RNAs. There are at least four different mechanisms to generate overlapping 10 

transcription in bacteria (Fig. 1): (i) bona fide antisense RNAs (asRNA), RNA molecules that 11 

do not encoded for proteins and show complementarity with part of a gene, a complete 12 

gene or a group of genes; (ii) 5’ overlapping UTRs between mRNAs of contiguous genes 13 

(head-to-head) that are transcribed in divergent directions; (iii) 3’ overlapping UTRs 14 

between mRNAs of contiguous genes transcribed in convergent directions (tail-to-tail). In 15 

this case, the overlapping process can be caused by read-through of transcriptional 16 

terminator, the presence of anti-terminator elements or the location of the 17 

transcriptional terminators inside the contiguous gene; and (iv) overlapping operons, 18 

genes that being located in the middle of an operon are transcribed in opposite direction 19 

to the rest of the operon 12,16. In this definition of overlapping transcription, we exclude 20 

short transcripts that are encoded at genomic locations distant from the RNAs they 21 

regulate and sharing only limited complementarities with their targets, because they are 22 

not produced from complementary strands of the same DNA region.  23 

The possibility that well understood technical artefacts had the potential to generate 24 

pseudo-antisense transcription data prompted initial criticism 17. While these early 25 

uncertainties were partially justified and the signals detected from the antisense strand of 26 
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highly expressed genes in the earliest studies were in many cases due to the DNA-1 

dependent DNA polymerase activity of the reverse transcriptase 18, these technical issues 2 

have been solved in more recent studies. Examples of technical improvements included 3 

(Fig. 2): (i) cDNA synthesis performed in the presence of actinomycin D, which specifically 4 

inhibits the DNA-dependent DNA polymerase activity of the reverse transcriptase enzyme 5 
18; (ii) enrichment of RNA samples for primary transcripts by use of terminator 6 

exonuclease treatment that degrades 5’P (processed transcript) but not 5’PPP (primary 7 

transcript) allowing  for the identification of the transcript start and not the extent of the 8 

asRNA 2; (iii) direct labeling of 3’ and 5’ ends of the RNA molecules with adapters before 9 

cDNA synthesis, preserving the strand orientation of each RNA molecule 12,19; and (iv) 10 

synthesis of the cDNA second strand in the presence of dUTP, which allows the selective 11 

removal of the strand with UNG (Uracil-N-Glycosylase) after ligation of 5’ and 3’ adaptors 12 
20. The introduction of these technical modifications in the cDNA synthesis and labeling 13 

methodologies far from contradicting initial observations have confirmed that overlapping 14 

transcription is a very common process. Thus, the percentage of genes that have been 15 

associated with at least one antisense transcript in recent studies ranged from 13% in 16 

Bacillus subtilis 4, 27% in Synechocystis PCC6803 10, 30% in Anabaena  11, 46% en 17 

Helicobacter pylori 2, to 49% in Staphylococcus aureus 12. The first impression of these 18 

data is that strong differences in the extent of overlapping transcription between bacteria 19 

exist. However, it is uncertain whether these differences reflect real biological differences 20 

or a combination of both biological and methodological bias. The answer to this question 21 

would require comparative transcriptomic studies using standardized protocols and 22 

computational tools.  23 

What mechanisms regulate the transcription of overlapping transcripts? The origin of the 24 

messenger RNAs participating in overlapping transcription involves promoters recognized 25 

by sigma factors. The few studies that have been done on bona-fide antisense transcripts 26 

reveal that they are transcribed from similar promoters as their sense counterparts 3,4. 27 
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Therefore, it is conceivable that the sense and antisense transcripts are regulated via the 1 

same mechanisms. However, it is noteworthy that expression of antisense RNAs is for 2 

most genes lower than those of the corresponding sense transcript, suggesting that the 3 

promoters of antisense transcripts have evolved and modulated their strength to that of 4 

the sense transcript or that transcription process of sense and antisense transcripts is 5 

coordinated by unknown mechanisms.  6 

Role of RNase III in antisense regulation  7 

In a recent study devoted to analyzing the transcriptome of the human pathogen 8 

Staphylococcus aureus the total RNA sample was fractionated in long and short (<50 9 

nucleotides) RNA fractions. RNA sequencing of both fractions revealed a genome-wide 10 

process of overlapping sense/antisense RNA processing by the activity of double stranded 11 

endoribonuclease, RNase III 12. The end products of the process are a collection of short 12 

RNA fragments (20 nucleotides on average) that accumulate in every genome region 13 

where overlapping transcription is detected. Given that short RNA fragments originate 14 

from the digestion of overlapping transcripts, the total amount of short RNA fragments is 15 

similar in both strands and is proportional to the amount of double stranded RNA 16 

molecules. 17 

This process of overlapping RNA digestion and production of a collection of short 18 

RNA molecules that are symmetrically distributed in both strands of the annotated genes 19 

is not exclusive of S. aureus and it also occurs in different Gram-positive bacteria such as 20 

Bacillus subtilis, Listeria monocytogenes and Enterococcus faecalis. In contrast, analysis of 21 

the transcriptome of the Gram-negative bacteria Salmonella enterica ser. Enteritidis using 22 

the same approach could not identify the collection of short RNA fragments. The absence 23 

of this process in Salmonella supports that a technical artifact does not generate the 24 

collection of short RNAs during the preparation of the RNA libraries. Different reasons can 25 

be envisioned to explain why the complement of short RNA fragments is not detected in 26 
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Salmonella. It is possible that the size of the RNA fragments produced by RNase III enzyme 1 

of Salmonella are longer than 50 nucleotides, in which case the RNA fragments would be 2 

excluded from the RNA fraction used to prepare the short RNA libraries. Alternatively, 3 

overlapping transcripts might be processed by a different mechanism or the resulting 4 

short RNA molecules might be unstable in Gram-negative bacteria. Indeed, although 5 

fundamental principles govern RNA degradation in bacteria, significant differences have 6 

been also identified in the degradosome composition of Gram-positive and Gram-7 

negative bacteria 21,22,23. Analysis of the short RNA fraction of other Gram-negative 8 

bacteria as well as isogenic mutants in different RNases would aid to clarify whether the 9 

digestion of overlapping transcripts occurs through different mechanisms in both types of 10 

bacteria. 11 

 Irrespective of the length of the sense/antisense complementarity region, the 12 

formation of the RNA duplexes between overlapping transcripts have been shown to 13 

affect the final amount of the protein encoded by the sense RNA in different ways. 14 

Examples have been described in which sense-antisense duplex formation results in the 15 

sense RNA degradation by RNases such as RNase III and RNase E, an endoribonuclease 16 

that cleaves single strand RNA molecules, thus lowering the amount of translatable sense 17 

RNA 24,25. Other interactions between overlapping transcripts have been shown to 18 

increase the amount of sense RNA coding protein since the duplex formation process 19 

protects the sense transcript from degradation or increases the likelihood that sense 20 

transcripts will be made at levels exceeding the amount degraded due to the formation of 21 

a double stranded substrate of RNase III 26,27. Finally, the overlapping of sense and 22 

antisense transcripts can inhibit the binding of the sense transcript to the ribosome and 23 

translation process 28. 24 

What is the role of the genome–wide overlapping transcription process?  25 
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The presence of a stable collection of short RNA fragments derived from the 1 

digestion of overlapping transcripts by RNase III demonstrates that both overlapping 2 

transcripts are present at the same time in the same cell. The observation of co-3 

expression in the same cell is informative because current transcriptomic studies are 4 

carried out with RNA purified from at least few millions of bacteria and without the RNAse 5 

III results it is impossible to determine whether the expression of overlapping transcripts 6 

occurs in the same bacteria or it is mutually exclusive.  7 

The question then arises as to what is the role of overlapping transcription and 8 

RNase III mediated digestion for bacterial gene regulation? Two possible alternatives may 9 

be considered to answer this question: short RNA fragments are residual non-functional 10 

products of the overlapping RNA digestion or such fragments are functional molecules 11 

with a specific role in gene regulation. With respect to the first possibility, our results 12 

support the hypothesis that overlapping transcription provides a simple mechanism to 13 

remove all those transcripts that are produced in response to transitory stimuli or escape 14 

the regular transcription repression process. For this purpose, the antisense transcript 15 

would establish the threshold level that the sense RNA have to reach in order to be 16 

translated, removing all the residual RNA molecules whose level are not enough to 17 

produce the minimal amount of protein required to be functional. It has been speculated 18 

that stochastic variations on transcriptional levels might be beneficial to enhance the 19 

phenotypic heterogeneity of the cells within a genetically uniform microbial population 29. 20 

However, if the transcription initiation process is more leaky than expected and all mRNAs 21 

are indiscriminately translated into protein, then, the cytoplasm will accumulate hundreds 22 

of unintended proteins in insufficient amounts to achieve their function. The presence of 23 

these proteins would have adverse effects in a particular environmental condition. 24 

Alternatively, we cannot exclude the possibility that the RNA transcripts resulting from 25 

the RNaseIII-mediated digestion process could be more stable or translate more 26 

efficiently than the primary transcripts.  27 
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In the case of 5’ and 3’ overlapping UTRs, the consequences of the digestion could 1 

be different for the 5’ divergent overlapping UTRs or for the 3’ convergent overlapping 2 

UTRs. Regardless of the specific consequences, digestion of overlapping UTRs would allow 3 

coordination of the expression of neighboring genes. This finding is in line with the idea 4 

that distribution of bacterial genes within the genomes is not random 30. Thus, to the 5 

deeply rooted concept that genes encoding proteins of the same metabolic pathway are 6 

clustered together (operons) to facilitate the regulation of their expression, such a second 7 

regulatory level coordinating the expression of adjacent transcription units should be 8 

considered when investigating bacterial gene regulation. Needless to say that overlapping 9 

transcription between adjacent genes also has important consequences when phenotypes 10 

associated with insertion or deletion mutants are investigated. Additional thoughts 11 

related with the function of the overlapping RNA digestion process are the binding 12 

kinetics between overlapping transcripts and the digestion rate of the RNA duplex. 13 

Extensive experimental efforts would be necessary to uncover how these factors affect to 14 

the overlapping RNA digestion process.   15 

Concerning the possibility that short RNA fragments may fulfill a function by 16 

themselves, the average size of the RNA fragments generated by overlapping RNA 17 

digestion is 20-22 nucleotides depending on the bacterial species in which they are 18 

generated. The size and double stranded structure of the fragments is similar to that of 19 

the eukaryotic microRNAs (miRNAs). miRNAs are produced by the successive actions of 20 

two RNase III enzymes, Drosha and Dicer, in precursor RNA molecules. Following their 21 

processing, one strand of the miRNAs is loaded into a ribonucleoprotein complexes, which 22 

key component is the Argonaute (AGO) protein. Then, miRNA-AGO complex interact with 23 

their mRNA target by based pairing and direct the inactivation of target RNAs by mRNA 24 

degradation or translational arrest and heterochromatin formation 31,32,33,34.  25 



 

9 

 

The existence of a miRNA-based regulatory mechanism in prokaryotic cells was 1 

not considered due to the absence of the required machinery to generate the miRNAs and 2 

more importantly to the absence of argonaute-like proteins. However, very recently a 3 

highly conserved protein (SMc01113/YbeY) sharing structural homology with the MID 4 

domain of the Argonaute protein has been described 35. YbeY protein is required for 5 

maturation of bacterial 5S, 16S and 23S ribosomal RNAs and it seems to facilitate the 6 

establishment of interactions between small RNA and the mRNA targets, in a similar way 7 

to Hfq protein 35,36. Furthermore, structural and docking analysis suggests that YbeY could 8 

contribute catalytically, like an RNase, to RNA cleavage after binding to a guide RNA. Thus, 9 

it is tempting to speculate that similarly to what happens in eukaryotes, binding of one 10 

strand of the short RNA to the MID domain of YbeY protein can facilitate the mRNA target 11 

recognition and subsequently affect the mRNA stability or translation efficiency. YbeY and 12 

RNase III are both required for correct maturation of ribosomal RNAs and double knock-13 

out of both genes encoding these proteins caused a strong defect on bacterial growth 36. 14 

This overlap in function and sharing of components between RNA processing and 15 

ribosomal RNA maturation constitute an additional difficulty for understanding the 16 

biological relevance of short RNA molecules because it is puzzling to distinguish whether 17 

phenotypes associated to the absence of these enzymes are due to defects on ribosomal 18 

maturation or functions related with post-transcriptional gene regulation. A definitive 19 

strategy to answer this question and demonstrate the functionality of the short RNAs 20 

would require the depletion of the short RNA pool or trans-complementation of the 21 

bacterial cell with a collection of short RNA molecules, two challenging approaches that 22 

warrants methodological developments.  23 

Perspectives and unresolved issues associated with sense and antisense transcription 24 

The mechanisms through which overlapping transcription can affect sense RNA 25 

expression are diverse and are thought to be primarily based on direct interactions 26 
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between sense/antisense transcripts. It is intriguing to consider what determines the 1 

accessibility of the sense/antisense RNA duplex to RNase III, or why all RNA duplexes are 2 

not degraded by RNAse III-like activities.  3 

If sense and antisense transcripts are being transcribed at the same locus within 4 

the same cell it is possible that transcriptional interference may play a role in their 5 

regulation 37,38,39. Several mechanisms have been proposed for transcriptional 6 

interference including the collision between both RNA polymerase complexes and 7 

removal of the transcription initiation complex by the continuous passing of the 8 

elongation RNA polymerase complex in the opposite strand have been proposed. In 9 

addition, the fate of both sense and antisense transcripts depend upon several factors 10 

including: the availability of complementary sequences to interact given that nascent 11 

RNAs are immediately bound and coated with a variety of RNA binding proteins, the 12 

affinity with which both RNA molecules will interact depending on the length of 13 

complementarity of the molecules, and the local and global folding predictions that may 14 

further decide the possible annealing fates of both RNAs. 15 

The first insights into the enzymes involved in regulation of overlapping 16 

transcription and the function of this conserved biological process are emerging. Due to 17 

their simplicity and feasibility for genetic manipulation, investigations with bacteria can 18 

provide clues to understanding of the function of overlapping transcription in eukaryotic 19 

cells. However, in order to fulfil this mission at least two methodological difficulties 20 

associated with the particularity of overlapping transcription process needs to be solved. 21 

One difficulty inherent to the double stranded DNA structure is how to genetically 22 

manipulate one of the strands without perturbing the expression of the complementary 23 

overlapping strand. The second difficulty is the necessity of evaluating the results of the 24 

experiments at single cell level, which implies development of specific reporter tools.    25 
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 Finally, with reference to many topics it is often said that “size matters”. An 1 

important lesson that emerges from these studies is that bacterial short RNA fraction 2 

deserves much more attention than has been paid to date and only the combination of 3 

long and short RNA fractions together with complementary sequencing strategies, as it is 4 

shown in figure 2C, can provide the complete and accurate landscape of bacterial 5 

transcriptomes.   6 
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using T4 RNA ligase. For the first strand synthesis of cDNA, an oligonucleotide complementary to the 3’ linker is   

used 12, 19. Removal of second strand cDNA: After the first strand cDNA synthesis non-incorporated nucleotides are    

removed and dTTP is substituted by dUTP during the synthesis of the second strand. After ligation with a Y-shaped 

adaptor, the dUTP-containing strand is selectively removed with UNG (Uracil-N-Glycosylase), leaving the first cDNA 

strand intact 20. (C) Summary flowchart suggesting an experimental design to define a complete and accurate     

transcriptional map.  
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