151 research outputs found
Non-invasive monitoring of renal transplant recipients: Urinary excretion of soluble adhesion molecules and of the complement-split product C4d
Background: The number of inducible adhesion molecules known to be involved in cell-mediated allograft rejection is still increasing. In addition, recent data describe complement activation during acute humoral allograft rejection. The aim of this study was to assess whether specific molecules from either pathway are excreted into urine and whether they can provide useful diagnostic tools for the monitoring of renal transplant recipients. Methods: Urinary concentrations of soluble adhesion molecules (sICAM-1, sVCAM-1) and of the complement degradation product C4d were determined by standardized ELISA technique in 75 recipients of renal allografts and 29 healthy controls. Patient samples were assigned to four categories according to clinical criteria: group 1: acute steroid-sensitive rejection (ASSR, n=14), group 2: acute steroid-resistant rejection (ASRR, n=12), group 3: chronic allograft dysfunction (CAD, n=20) and group 4: stable graft function (SGF, n=29). Results: All patients with rejection episodes (groups 1-3) had significantly higher values of urinary sC4d compared with healthy controls and patients with stable graft function (p<0.05). The urinary levels of sVCAM-1 were significantly higher in group 2 (ASRR) compared with all other groups (p<0.001). Uniformly low amounts of s-VCAM-1 and complement-split product C4d were excreted by healthy controls (group 0). In contrast, urinary sICAM-1 concentration in healthy controls was almost as high as in group 2 (ASRR) whereas patients with a stable functioning graft (group 4) excreted significantly less sICAM-1 (p<0.05). Conclusion: The evaluation of sVCAM-1 and sC4d excretion in urine can provide a valuable tool with regard to the severity and type of allograft rejection. With respect to long-term allograft survival, serial measurements of these markers should have the potential to detect rejection episodes and prompt immediate treatment. Copyright (C) 2003 S. Karger AG, Basel
Non-invasive monitoring of renal transplant recipients: Urinary excretion of soluble adhesion molecules and of the complement-split product C4d
Background: The number of inducible adhesion molecules known to be involved in cell-mediated allograft rejection is still increasing. In addition, recent data describe complement activation during acute humoral allograft rejection. The aim of this study was to assess whether specific molecules from either pathway are excreted into urine and whether they can provide useful diagnostic tools for the monitoring of renal transplant recipients. Methods: Urinary concentrations of soluble adhesion molecules (sICAM-1, sVCAM-1) and of the complement degradation product C4d were determined by standardized ELISA technique in 75 recipients of renal allografts and 29 healthy controls. Patient samples were assigned to four categories according to clinical criteria: group 1: acute steroid-sensitive rejection (ASSR, n=14), group 2: acute steroid-resistant rejection (ASRR, n=12), group 3: chronic allograft dysfunction (CAD, n=20) and group 4: stable graft function (SGF, n=29). Results: All patients with rejection episodes (groups 1-3) had significantly higher values of urinary sC4d compared with healthy controls and patients with stable graft function (p<0.05). The urinary levels of sVCAM-1 were significantly higher in group 2 (ASRR) compared with all other groups (p<0.001). Uniformly low amounts of s-VCAM-1 and complement-split product C4d were excreted by healthy controls (group 0). In contrast, urinary sICAM-1 concentration in healthy controls was almost as high as in group 2 (ASRR) whereas patients with a stable functioning graft (group 4) excreted significantly less sICAM-1 (p<0.05). Conclusion: The evaluation of sVCAM-1 and sC4d excretion in urine can provide a valuable tool with regard to the severity and type of allograft rejection. With respect to long-term allograft survival, serial measurements of these markers should have the potential to detect rejection episodes and prompt immediate treatment. Copyright (C) 2003 S. Karger AG, Basel
Mechanism based therapies enable personalised treatment of hypertrophic cardiomyopathy
Cardiomyopathies have unresolved genotype–phenotype relationships and lack disease-specific treatments. Here we provide a framework to identify genotype-specific pathomechanisms and therapeutic targets to accelerate the development of precision medicine. We use human cardiac electromechanical in-silico modelling and simulation which we validate with experimental hiPSC-CM data and modelling in combination with clinical biomarkers. We select hypertrophic cardiomyopathy as a challenge for this approach and study genetic variations that mutate proteins of the thick (MYH7R403Q/+) and thin filaments (TNNT2R92Q/+, TNNI3R21C/+) of the cardiac sarcomere. Using in-silico techniques we show that the destabilisation of myosin super relaxation observed in hiPSC-CMs drives disease in virtual cells and ventricles carrying the MYH7R403Q/+ variant, and that secondary effects on thin filament activation are necessary to precipitate slowed relaxation of the cell and diastolic insufficiency in the chamber. In-silico modelling shows that Mavacamten corrects the MYH7R403Q/+ phenotype in agreement with hiPSC-CM experiments. Our in-silico model predicts that the thin filament variants TNNT2R92Q/+ and TNNI3R21C/+ display altered calcium regulation as central pathomechanism, for which Mavacamten provides incomplete salvage, which we have corroborated in TNNT2R92Q/+ and TNNI3R21C/+ hiPSC-CMs. We define the ideal characteristics of a novel thin filament-targeting compound and show its efficacy in-silico. We demonstrate that hybrid human-based hiPSC-CM and in-silico studies accelerate pathomechanism discovery and classification testing, improving clinical interpretation of genetic variants, and directing rational therapeutic targeting and design
Influence of soil on the efficacy of entomopathogenic nematodes in reducing Diabrotica virgifera virgifera in maize
The use of entomopathogenic nematodes is one potential non-chemical approach to control the larvae of the invasive western corn rootworm (Diabrotica virgifera virgifera LeConte, Coleoptera: Chrysomelidae) in Europe. This study investigated the efficacy of Heterorhabditis bacteriophora Poinar (Rhabditida: Heterorhabditidae), Heterorhabditis megidis Poinar, Jackson and Klein (Rh., Heterorhabditidae) and Steinernema feltiae Filipjev (Rh., Steinernematidae) in reducing D. v. virgifera as a function of soil characteristics. A field experiment was repeated four times in southern Hungary using artificially infested maize plants potted into three different soils. Sleeve gauze cages were used to assess the number of emerging adult D. v. virgifera from the treatments and untreated controls. Results indicate that nematodes have the potential to reduce D. v. virgifera larvae in most soils; however, their efficacy can be higher in maize fields with heavy clay or silty clay soils than in sandy soils, which is in contrast to the common assumption that nematodes perform better in sandy soils than in heavy soils
Hierarchical and stage-specific regulation of murine cardiomyocyte maturation by serum response factor
After birth, cardiomyocytes (CM) acquire numerous adaptations in order to efficiently pump blood throughout an animal’s lifespan. How this maturation process is regulated and coordinated is poorly understood. Here, we perform a CRISPR/Cas9 screen in mice and identify serum response factor (SRF) as a key regulator of CM maturation. Mosaic SRF depletion in neonatal CMs disrupts many aspects of their maturation, including sarcomere expansion, mitochondrial biogenesis, transverse-tubule formation, and cellular hypertrophy. Maintenance of maturity in adult CMs is less dependent on SRF. This stage-specific activity is associated with developmentally regulated SRF chromatin occupancy and transcriptional regulation. SRF directly activates genes that regulate sarcomere assembly and mitochondrial dynamics. Perturbation of sarcomere assembly but not mitochondrial dynamics recapitulates SRF knockout phenotypes. SRF overexpression also perturbs CM maturation. Together, these data indicate that carefully balanced SRF activity is essential to promote CM maturation through a hierarchy of cellular processes orchestrated by sarcomere assembly
Potentially inappropriate medication in older participants of the Berlin Aging Study II (BASE-II) - Sex differences and associations with morbidity and medication use
INTRODUCTION:
Multimorbidity in advanced age and the need for drug treatment may lead to polypharmacy, while pharmacokinetic and pharmacodynamic changes may increase the risk of adverse drug events (ADEs).
OBJECTIVE:
The aim of this study was to determine the proportion of subjects using potentially inappropriate medication (PIM) in a cohort of older and predominantly healthy adults in relation to polypharmacy and morbidity.
METHODS:
Cross-sectional data were available from 1,382 study participants (median age 69 years, IQR 67-71, 51.3% females) of the Berlin Aging Study II (BASE-II). PIM was classified according to the EU(7)-PIM and German PRISCUS (representing a subset of the former) list. Polypharmacy was defined as the concomitant use of at least five drugs. A morbidity index (MI) largely based on the Charlson Index was applied to evaluate the morbidity burden.
RESULTS:
Overall, 24.1% of the participants were affected by polypharmacy. On average, men used 2 (IQR 1-4) and women 3 drugs (IQR 1-5). According to PRISCUS and EU(7)-PIM, 5.9% and 22.6% of participants received at least one PIM, while use was significantly more prevalent in females (25.5%) compared to males (19.6%) considering EU(7)-PIM (p = 0.01). In addition, morbidity in males receiving PIM according to EU(7)-PIM was higher (median MI 1, IQR 1-3) compared to males without PIM use (median MI 1, IQR 0-2, p<0.001).
CONCLUSION:
PIM use occurred more frequently in women than in men, while it was associated with higher morbidity in males. As expected, EU(7)-PIM identifies more subjects as PIM users than the PRISCUS list but further studies are needed to investigate the differential impact of both lists on ADEs and outcome.
KEY POINTS:
We found PIM use to be associated with a higher number of regular medications and with increased morbidity. Additionally, we detected a higher prevalence of PIM use in females compared to males, suggesting that women and people needing intensive drug treatment are patient groups, who are particularly affected by PIM use
Myosin Sequestration Regulates Sarcomere Function, Cardiomyocyte Energetics, and Metabolism, Informing the Pathogenesis of Hypertrophic Cardiomyopathy
BACKGROUND: Hypertrophic cardiomyopathy (HCM) is caused by pathogenic variants in sarcomere protein genes that evoke hypercontractility, poor relaxation, and increased energy consumption by the heart and increased patient risks for arrhythmias and heart failure. Recent studies show that pathogenic missense variants in myosin, the molecular motor of the sarcomere, are clustered in residues that participate in dynamic conformational states of sarcomere proteins. We hypothesized that these conformations are essential to adapt contractile output for energy conservation and that pathophysiology of HCM results from destabilization of these conformations. METHODS: We assayed myosin ATP binding to define the proportion of myosins in the super relaxed state (SRX) conformation or the disordered relaxed state (DRX) conformation in healthy rodent and human hearts, at baseline and in response to reduced hemodynamic demands of hibernation or pathogenic HCM variants. To determine the relationships between myosin conformations, sarcomere function, and cell biology, we assessed contractility, relaxation, and cardiomyocyte morphology and metabolism, with and without an allosteric modulator of myosin ATPase activity. We then tested whether the positions of myosin variants of unknown clinical significance that were identified in patients with HCM, predicted functional consequences and associations with heart failure and arrhythmias. RESULTS: Myosins undergo physiological shifts between the SRX conformation that maximizes energy conservation and the DRX conformation that enables cross-bridge formation with greater ATP consumption. Systemic hemodynamic requirements, pharmacological modulators of myosin, and pathogenic myosin missense mutations influenced the proportions of these conformations. Hibernation increased the proportion of myosins in the SRX conformation, whereas pathogenic variants destabilized these and increased the proportion of myosins in the DRX conformation, which enhanced cardiomyocyte contractility, but impaired relaxation and evoked hypertrophic remodeling with increased energetic stress. Using structural locations to stratify variants of unknown clinical significance, we showed that the variants that destabilized myosin conformations were associated with higher rates of heart failure and arrhythmias in patients with HCM. CONCLUSIONS: Myosin conformations establish work-energy equipoise that is essential for life-long cellular homeostasis and heart function. Destabilization of myosin energy-conserving states promotes contractile abnormalities, morphological and metabolic remodeling, and adverse clinical outcomes in patients with HCM. Therapeutic restabilization corrects cellular contractile and metabolic phenotypes and may limit these adverse clinical outcomes in patients with HCM
Nycthemeral and Monthly Occupation of the Fish Assemblage on a Sheltered Beach of Baía Norte, Florianópolis, Santa Catarina State, Brazil
Interpreting fish community records is challenging for several reasons, including the lack of past ichthyofauna data, the cyclical temporal variations in the community, and the methodology employed, which usually underestimates fish assemblages. The objective of this study was to describe short-scale and meso-scale (nycthemeral period and months, respectively) temporal variations in the ichthyofauna composition and structure of a sheltered beach of Baía Norte (Florianópolis, Santa Catarina state, Brazil), using a capéchade net. Samples were collected monthly for a period of 48 hours. During the period from December 2010 to November 2011, a total of 19,302 individuals belonging to 89 species and 39 families were captured. The number of individuals that were sampled during the day and/or night was dependent on the sampling month. On average, the daytime assemblage was more abundant and different in structure and composition than the nighttime assemblage. Of the eight species that had the highest Index of Relative Importance (%IRI), five had higher variations (ANOVA F) between the day and night than between the months. This finding reinforced the need for sampling during both the day and night. The capéchade net effectively captured demersal and pelagic individuals in a broad range of sizes
Fires at Neumark-Nord 2, Germany: An analysis of fire proxies from a Last Interglacial Middle Palaeolithic basin site
Few sites with evidence for fire use are known from the Last Interglacial in Europe. Hearth features are rarely preserved, probably as a result of post-depositional processes. The small postglacial basins (<300 m in diameter) that dominate the sedimentary context of the Eemian record in Europe are high-resolution environmental archives often containing charcoal particles. This case study presents the macroscopic charcoal record of the Neumark-Nord 2 basin, Germany, and the correlation of this record with the distinct find levels of the basin margin that also contain thermally altered archaeological material. Increased charcoal quantities are shown to correspond to phases of hominin presence-a pattern that fits best with recurrent anthropogenic fires within the watershed. This research shows the potential of small basin localities in the reconstruction of local fire histories, where clear archaeological features like hearths are missing
- …