129 research outputs found

    A low number of introduced marine species in the tropics: A case study from Singapore

    Get PDF
    Non-indigenous marine species (NIMS) are being transported around the world by anthropogenic mechanisms, particularly by vessels in ballast water or as biofouling. A small subset of NIMS become invasive marine species (IMS) and can cause considerable damage to local marine ecosystems. Understanding where NIMS originate, how they are transported, and their effects in the new environments are crucial to the management of IMS. As one of the busiest ports in the world that handles tens of thousands of high invasion-risk vessels annually, Singapore is regarded as being at very high risk for the introduction of NIMS and IMS. However, a compilation of 3,650 marine invertebrates, fishes and plants revealed that only 22 species have been confirmed as NIMS. The results are consistent with a growing dataset that suggests biodiverse marine ecosystems in the tropical Indo-West Pacific are less susceptible to introductions than previously thought

    A tale of two capitalisms: preliminary spatial and historical comparisons of homicide rates in Western Europe and the USA

    Get PDF
    This article examines comparative homicide rates in the United States and Western Europe in an era of increasingly globalized neoliberal economics. The main finding of this preliminary analysis is that historical and spatial correlations between distinct forms of political economy and homicide rates are consistent enough to suggest that social democratic regimes are more successful at fostering the socio-cultural conditions necessary for reduced homicide rates. Thus Western Europe and all continents and nations should approach the importation of American neo-liberal economic policies with extreme caution. The article concludes by suggesting that the indirect but crucial causal connection between political economy and homicide rates, prematurely pushed into the background of criminological thought during the ‘cultural turn’, should be returned to the foreground

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele

    Ab Initio Nonadiabatic Quantum Molecular Dynamics

    Get PDF
    The Born–Oppenheimer approximation underlies much of chemical simulation and provides the framework defining the potential energy surfaces that are used for much of our pictorial understanding of chemical phenomena. However, this approximation breaks down when the dynamics of molecules in excited electronic states are considered. Describing dynamics when the Born–Oppenheimer approximation breaks down requires a quantum mechanical description of the nuclei. Chemical reaction dynamics on excited electronic states is critical for many applications in renewable energy, chemical synthesis, and bioimaging. Furthermore, it is necessary in order to connect with many ultrafast pump–probe spectroscopic experiments. In this review, we provide an overview of methods that can describe nonadiabatic dynamics, with emphasis on those that are able to simultaneously address the quantum mechanics of both electrons and nuclei. Such ab initio quantum molecular dynamics methods solve the electronic Schrödinger equation alongside the nuclear dynamics and thereby avoid the need for precalculation of potential energy surfaces and nonadiabatic coupling matrix elements. Two main families of methods are commonly employed to simulate nonadiabatic dynamics in molecules: full quantum dynamics, such as the multiconfigurational time-dependent Hartree method, and classical trajectory-based approaches, such as trajectory surface hopping. In this review, we describe a third class of methods that is intermediate between the two: Gaussian basis set expansions built around trajectories

    Ab Initio Multiple Spawning Photochemical Dynamics of DMABN Using GPUs

    Get PDF
    The ultrafast decay dynamics of 4-(N,N-dimethylamino)benzonitrile (DMABN) following photoexcitation was studied with the ab initio multiple spawning (AIMS) method, combined with GPU-accelerated linear-response time-dependent density functional theory (LR-TDDFT). We validate the LR-TDDFT method for this case and then present a detailed analysis of the first ≈200 fs of DMABN excited-state dynamics. Almost complete nonadiabatic population transfer from S2 (the initially populated bright state) to S1 takes place in less than 50 fs, without significant torsion of the dimethylamino (DMA) group. Significant torsion of the DMA group is only observed after the nuclear wavepacket reaches S1 and acquires locally excited electronic character. Our results show that torsion of the DMA group is not prerequisite for nonadiabatic transitions in DMABN, although such motion is indeed relevant on the lowest excited state (S1)

    Communication: XFAIMS—eXternal Field Ab Initio Multiple Spawning for electron-nuclear dynamics triggered by short laser pulses

    Get PDF
    Attoscience is an emerging field where attosecond pulses or few cycle IR pulses are used to pump and probe the correlated electron-nuclear motion of molecules. We present the trajectory-guided eXternal Field Ab Initio Multiple Spawning (XFAIMS) method that models such experiments “on-the-fly,” from laser pulse excitation to fragmentation or nonadiabatic relaxation to the ground electronic state. For the photoexcitation of the LiH molecule, we show that XFAIMS gives results in close agreement with numerically exact quantum dynamics simulations, both for atto- and femtosecond laser pulses. We then show the ability of XFAIMS to model the dynamics in polyatomic molecules by studying the effect of nuclear motion on the photoexcitation of a sulfine (H2CSO)

    GPU-Accelerated State-Averaged Complete Active Space Self-Consistent Field Interfaced with Ab Initio Multiple Spawning Unravels the Photodynamics of Provitamin D-3

    Get PDF
    Excited-state molecular dynamics is essential to the study of photochemical reactions, which occur under nonequilibrium conditions. However, the computational cost of such simulations has often dictated compromises between accuracy and efficiency. The need for an accurate description of both the molecular electronic structure and nuclear dynamics has historically stymied the simulation of medium- to large-size molecular systems. Here, we show how to alleviate this problem by combining ab initio multiple spawning (AIMS) for the nuclear dynamics and GPU-accelerated state-averaged complete active space self-consistent field (SA-CASSCF) for the electronic structure. We demonstrate the new approach by first-principles SA-CASSCF/AIMS nonadiabatic dynamics simulation of photoinduced electrocyclic ring-opening in the 51-atom provitamin D3 molecule
    corecore