83 research outputs found

    Lenvatinib for Anaplastic Thyroid Cancer

    Get PDF
    Background: Lenvatinib has been approved by regulatory agencies in Japan, the United States, and the European Union for treatment of radioiodine-refractory differentiated thyroid cancer (RR-DTC). Thyroid cancer, however, is a clinically diverse disease that includes anaplastic thyroid cancer (ATC), the subtype associated with the highest lethality. Effective therapy for ATC is an unmet need. Patients and methods: This phase 2, single-arm, open-label study in patients with thyroid cancer, including ATC, RR-DTC, and medullary thyroid cancer was conducted from 3 September 2012 to 9 July 2015. Patients received lenvatinib 24 mg daily until disease progression or development of unacceptable toxicity. The primary endpoint was safety, and the secondary endpoint was efficacy, as assessed by progression-free survival (PFS), overall survival (OS), and objective response rate. Results: At data cutoff, 17 patients with ATC were enrolled. All experienced >= 1 treatment-emergent adverse event (TEAE). The most frequent TEAEs were decreased appetite (82%), hypertension (82%), fatigue (59%), nausea (59%), and proteinuria (59%). Of note, only one patient required lenvatinib withdrawal because of a TEAE, and this TEAE was considered unrelated to lenvatinib. The median PFS was 7.4 months [95% confidence interval (CI): 1.7-12.9], the median OS was 10.6 months (95% CI: 3.8-19.8), and the objective response rate was 24%. Conclusion: In this study, lenvatinib demonstrated manageable toxicities with dose adjustments and clinical activity in patients with ATC. This clinical activity of lenvatinib warrants further investigation in ATC

    RNA-Binding Protein Musashi1 Modulates Glioma Cell Growth through the Post-Transcriptional Regulation of Notch and PI3 Kinase/Akt Signaling Pathways

    Get PDF
    Musashi1 (MSI1) is an RNA-binding protein that plays critical roles in nervous-system development and stem-cell self-renewal. Here, we examined its role in the progression of glioma. Short hairpin RNA (shRNA)-based MSI1-knock down (KD) in glioblastoma and medulloblastoma cells resulted in a significantly lower number of self renewing colony on day 30 (a 65% reduction), compared with non-silencing shRNA-treated control cells, indicative of an inhibitory effect of MSI1-KD on tumor cell growth and survival. Immunocytochemical staining of the MSI1-KD glioblastoma cells indicated that they ectopically expressed metaphase markers. In addition, a 2.2-fold increase in the number of MSI1-KD cells in the G2/M phase was observed. Thus, MSI1-KD caused the prolongation of mitosis and reduced the cell survival, although the expression of activated Caspase-3 was unaltered. We further showed that MSI1-KD glioblastoma cells xenografted into the brains of NOD/SCID mice formed tumors that were 96.6% smaller, as measured by a bioluminescence imaging system (BLI), than non-KD cells, and the host survival was longer (49.3±6.1 days vs. 33.6±3.6 days; P<0.01). These findings and other cell biological analyses suggested that the reduction of MSI1 in glioma cells prolonged the cell cycle by inducing the accumulation of Cyclin B1. Furthermore, MSI1-KD reduced the activities of the Notch and PI3 kinase-Akt signaling pathways, through the up-regulation of Numb and PTEN, respectively. Exposure of glioma cells to chemical inhibitors of these pathways reduced the number of spheres and living cells, as did MSI1-KD. These results suggest that MSI1 increases the growth and/or survival of certain types of glioma cells by promoting the activation of both Notch and PI3 kinase/Akt signaling

    CPF-Associated Phosphatase Activity Opposes Condensin-Mediated Chromosome Condensation

    Get PDF
    International audienceFunctional links connecting gene transcription and condensin-mediated chromosome condensation have been established in species ranging from prokaryotes to vertebrates. However, the exact nature of these links remains misunderstood. Here we show in fission yeast that the 3′ end RNA processing factor Swd2.2, a component of the Cleavage and Polyadenylation Factor (CPF), is a negative regulator of condensin-mediated chromosome condensation. Lack of Swd2.2 does not affect the assembly of the CPF but reduces its association with chromatin. This causes only limited, context-dependent effects on gene expression and transcription termination. However, CPF-associated Swd2.2 is required for the association of Protein Phosphatase 1 PP1Dis2 with chromatin, through an interaction with Ppn1, a protein that we identify as the fission yeast homologue of vertebrate PNUTS. We demonstrate that Swd2.2, Ppn1 and PP1Dis2 form an independent module within the CPF, which provides an essential function in the absence of the CPF-associated Ssu72 phosphatase. We show that Ppn1 and Ssu72, like Swd2.2, are also negative regulators of condensin-mediated chromosome condensation. We conclude that Swd2.2 opposes condensin-mediated chromosome condensation by facilitating the function of the two CPF-associated phosphatases PP1 and Ssu72

    Reaction of pseudoxazolones and hydrazoic acid

    No full text

    クマモト ダイガク クロカミ ジギョウバ ニ オケル アンゼン エイセイ カンリ ニ ツイテ : ショクバ ジュンシ ヘ ノ リスクアセスメント ノ ドウニュウ

    Get PDF
    九州地区総合技術研究会in熊本大学, 第21回情報処理センター等担当者技術研究会(2009年9月3.4日開催) 口頭発表

    Improved Training of Excitation for HMM-based Parametric Speech Synthesis

    Get PDF
    INTERSPEECH2010: 11th Annual Conference of the International Speech Communication Association, September 26-30, 2010, Chiba, Japan.This paper presents an improved method of training for the unvoiced filter that comprises an excitation model, within the framework of parametric speech synthesis based on hidden Markov models. The conventional approach calculates the unvoiced filter response from the differential signal of the residual and voiced excitation estimate. The differential signal, however, includes the error generated by the voiced excitation estimates. Contaminated by the error, the unvoiced filter tends to be overestimated, which causes the synthetic speech to be noisy. In order for unvoiced filter training to obtain targets that are free from the contamination, the improved approach first separates the non-periodic component of residual signal from the periodic component. The unvoiced filter is then trained from the non-periodic component signals. Experimental results show that unvoiced filter responses trained with the new approach are clearly noiseless, in contrast to the responses trained with the conventional approach
    corecore