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Abstract

This paper presents an improved method of training for the
unvoiced filter that comprises an excitation model, within the
framework of parametric speech synthesis based on hidden
Markov models. The conventional approach calculates the un-
voiced filter response from the differential signal of the residual
and voiced excitation estimate. The differential signal, how-
ever, includes the error generated by the voiced excitation esti-
mates. Contaminated by the error, the unvoiced filter tends to be
overestimated, which causes the synthetic speech to be noisy
In order for unvoiced filter training to obtain targets that are
free from the contamination, the improved approach first sep-
arates the non-periodic component of residual signal from the
periodic component. The unvoiced filter is then trained from
the non-periodic component signals. Experimental results show
that unvoiced filter responses trained with the new approach are
clearly noiseless, in contrast to the responses trained with the
conventional approach.

Index Terms: speech synthesis, HMM-based speech synthesis,
mixed excitation, residual modelling.

1. Introduction

Text-to-speech synthesis (TTS) based on hidden Markov mod-
els (HMMs) [1] has a great advantage over the other leading
speech synthesis techniques in terms of flexibility in synthe-
sising speech with various voice characteristics and speaking
styles through the potential use of voice transformation tech-
niques, small corpora and small footprint demand. However,
unnatural speech produced through the parametric source-filter
model still represents a challenging issue. Attempts at solv-
ing this problem have become a research topic of increasing
interest.

Many approaches have been reported aiming to improve
HMM-based TTS systems through the design of better exci-
tation modelling. Modelling of the bandpass aperiodiciry pa-
rameters and eventual use of the excitation scheme proposed
in [2] at run-time is a component of the system described in [3].
Sinusoidal modelling is applied in [4], while the Liljencrants-
Fant (LF) glottal-waveform model is used in [5]. Application
of glottal inverse filtering is reported in [6]

In this context, we have proposed a trainable excitation
model [7](8][9]. The method is based on the principle of
analysis-by-synthesis speech coders and consists of the op-
timisation of state-dependent filter coefficients through itera-
tive minimisation of the difference between synthesised exci-
tation and the residual directly obtained from the speech corpus
through inverse filtering. At its synthesis stage, the trained fil-
ters are used to generate mixed excitation by inputting pulse
train and white noise into the filters.
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Synthetic speech from this model, however, contains an
excessive amount of noise. In the training stage, the residual
of a statistically-optimised voiced filter is dealt with as a tar-
get signal for determining the unvoiced filter coefficients. As
a result, errors caused in the voiced filter estimation contami-
nate the unvoiced excitation targets, and consequently influence
the unvoiced filter estimation, which makes the final speech
output noisy

To address this problem, in this paper, we employ
contamination-free unvoiced-excitation targets for training. In
this new training scheme, the ‘clean’ targets are extracted di-
rectly from the residual signals. This extraction is achieved
with a periodic signal estimator, which is used to separate
the non-periodic component of the residual from the periodic
component.

The remainder of this paper is organised as follows: Sec-
tion 2 outlines the basics of the excitation model; Section 3 ex-
plains how the unvoiced excitation training is improved; Sec-
tion 4 details the results of experiments conducted to confirm
the improvements; and the conclusions are in Section 5.

2. Trainable excitation model
2.1. Generation of excitation signals

Figure 1 shows the synthesis stage of our excitation model [8],
where pulse train ¢(n) and white noise w(n) are passed through
voiced and unvoiced filters, H,(z) and H,(z). They are added
together to result in the excitation signal €(n). Associated with
each HMM state position s, each of the filters has the following
transfer function:

M/2
Hi(z)= ) ho(l)z", )
I=—M/2
L
H(z) :1@/[1—2,5(1)2 ‘} . )
=1

where M and L are the respective filter orders. The excitation
signal thereby generated will be input into the vocal-tract filter
of the source-filter model at the next stage.

2.2. Training filters

The excitation model components, the filters H, (z) and H,(z),
and impulse train ¢(n), are iteratively calculated to minimise
the error between residual and synthetic excitation. Figure 2
illustrates the procedure diagrammatically.

Using matrices and vectors, with NV being the total number
of samples of the entire database, the filters are determined in a
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Figure 1: Excitation signal generation: filters H,(z) and
Hy(2) are associated with each HMM state s.
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Figure 2: Excitation model training: both filters are computed
based on an analvsis-by-synthesis optimisation

way that minimises the mean squared error €, given by
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s=1
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TW
where G is an N x N matrix containing the impulse
response of the inverse unvoiced filter G(z), hs =
[hs(=M/2) - ho(M/2)]" is the impulse response vector of
the voiced filter for state s, and the term A ; is the overall pulse
train matrix where only pulse positions belonging to state s are
non-zero. In this case, each state s = {1,...,S} corresponds
to a different HMM state-position covering the entire database,
after the Viterbi alignment.

Voiced filter coefficients for a given state s are obtained by
making @¢/@h, = 0, which results in a linear system for the
solution of ks [8]. On the other hand, the unvoiced filter co-
efficients for state s, {gs(1),...,9s(L)}, and related gain K,
are determined by performing linear prediction analysis on the
unvoiced excitation signal u(n) = e(n) — v(n) over segments
tagged as state s.

Aside from the determination of the filters, the positions
and amplitudes of ¢(n), {p1,...,pz} and {a1,...,az}, with
Z being the number of pulses of the entire training database,
are modified in the sense of minimizing the mean squared error
of (3). The procedure to determine the positions and ampli-
tudes resembles multipulse excitation linear prediction coding
algorithms [10].

The overall procedure for the design of the filters and opti-
misation of t(n) is performed in an interchanging way, with the
convergence criterion being either the filter coefficient variation
or the mean squared error reduction.

2.3. Tree-based state definition

The filters vary according to each HMM state and their coef-
ficients are optimised using a residual signal ML criterion [7].
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The excitation training process can be enumerated through the
following steps: (1) state definition: (2) residual segment classi-
fication according to the defined states: (3) iterative filter calcu-
lation for each cluster of residual segments using the procedure
described in the previous section.

Assuming that the noise sequence w(n) output by filter
G(z) in Figure 2 is a Gaussian process, the log likelihood of
the signal u(n), also a Gaussian process, is given by

N 1 1
log PlulH,] = — = log 27 + 5 log|G' G| - su' G Gu,

G
where [V is the number of samples of the entire database, u =
[w(0)- - u(N — 1)]T, G =g B - g"¥="].and

T
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By arranging (4) with some approximations [9], the likelihood
of e(n) given the excitation model is simply a function of the
unvoiced filter gain component K as

N, . K?
logP[euiv,Hu,t]r’t’—ilogZﬂ—N lOng+T =

&)
Note that Pu(n)|H.(z)] < Ple(n)|Hu(z), Hu(z2),t(n)].
By taking into account the state-dependency of the filter
coefficients, (5) can be re-written as

s
N
leg Ple|H,, H,, t] :—710g2ﬂ’+Z£], (6)

i=1

where £, is the likelihood of e(n) under state s, and given as

[\’2
£, =-N, <logKJ + %) . @)
In (7), N, is its corresponding number of samples, K, is the
corresponding unvoiced filter gain, and & is the number of states
(or clusters for tied states).

From Figure 2, initially voiced filter coefficients are com-
puted, followed by the determination of u(n), finally leading to
gain component K'; . The process of splitting one cluster into
two can thus be sketched as follows: (1) split s, into s,, and
S5, given a candidate question; (2) calculate voiced filter coefhi-
cients, by and hs . for the new clusters s;, and s, , respec-
tively: (3) compute unvoiced filter coefficients with correspond-
ing gain components, g, , K;,. g,,, and K, respectively for
S5, and s;,. After calculating £,, and £,, from K, and K,,,
respectively, according to (7). the likelihood increment due to
the split can be measured by

Linc = Lafier — Lbefore = £ + £ — &5, (8
The minimum description length (MDL) [11] is adopted as a
stop criterion. Refer to [9] for details.

The determination of voiced filters and unvoiced filter gain
components for s, implies computationally-expensive optimi-
sation of filter coefficients and pulse trains for the new clus-
ters. To reduce the complexity, this iterative optimisation is
replaced by a single calculation of voiced filters followed by
linear prediction analysis of the unvoiced excitation signal un-
der segments belonging to s;, to derive the gain component
K;, 19].
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Figure 3: Proposed training scheme for unvoiced filter coeffi-
cients

3. Improved training of unvoiced excitation
3.1. Modification to unvoiced-filter training

As is clear from Fig. 2, w(n) is not actually whitened during
the training stage. The error of voiced component estimates
contaminates the unvoiced excitation target u(n), which causes
the final speech output to be ‘rough’ (i.e., noisy). Convention-
ally, we avoided the noisiness by attenuating the noise compo-
nent during the synthesis stage. This was being done mainly by
passing the synthesised unvoiced excitation through a high-pass
filter (HPF) with cut-off frequency 2 kHz before it is mixed with
the voiced counterpart [7].

This remedy, however, does not remove the root cause of
the rough speech problem. The total volume of perceptible
noise can certainly be reduced, but while unvoiced information
is almost eliminated for the range below the HPF cut-off fre-
quency, the influence of the voiced component estimation error
remains in the range above the frequency.

Toresolve this more effectively, we employ contamination-
free unvoiced-excitation targets for training. The "clean’ tar-
gets are extracted directly from the residual signals e(n). The
overall training scheme for the unvoiced filter is schematically
shown in Fig. 3. The extraction is achieved with a periodic
component estimator, which is used to separate the non-periodic
component of the residual from the periodic component.

It is true that periodic component estimation also introduces
a certain level of error, which smears the resulting non-periodic
component directly. However, the contamination should be mi-
nor because the periodic component is estimated /ocally for
each speech segment whereas in the conventional approach the
voiced filter is optimised over the entire database.

3.2. Periodic/non-periodic decomposition of residual sig-
nals

Since the decomposition is a part in the offline training pro-
cess, one may employ a relatively computationally-expensive
approach. We adopt the following model to represent the peri-
odic (i.e., harmonic) component of the residual:

J

Z Ak(t)eJ[@k(t)+<«"k] .

k=—-J

K

where Ax(t) = art + B and Ok (t) = wk (')t2 +t) with
wr = wok = 27 fok and the fundamental frequency fo. Rep-
resented by J is the number of harmonics. Obviously, in this
model both the frequency and amplitude of each harmonic are
approximated in a piecewise linear sense.

The problem is to find o, B, ¥ and ¢« that minimise

to+Ny,

fi= w%abu)—anr, (10)

t=to— Ny
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Figure 4: Comparing unvoiced filter responses from the conven-
tional (thin black line) and improved (thick red line) training
schemes

where s(t) is the original signal and w(t) is a window function
whose length is 2N, + 1. The solution described in [12] is
applied to the problem above.

3.3. Modified unvoiced filter training

The unvoiced filter coefficients for state s, {gs(1), ..., 9s(L)},
and related gain K5, can be determined using linear predic-
tion analysis on the unvoiced excitation signal @’ (n) over seg-
ments tagged as state s. The states are defined using the same
decision-tree-based technique as in Section 2.3. Thus, a differ-
ent tree is constructed for the unvoiced filter additionally to the
one for the voiced tree.

Figure 4 shows typical unvoiced filter responses obtained
from the improved training and from the conventional training.
These responses correspond to the second state of the S-state
HMM of English sound /i:/ in a certain context. It can be ob-
served from this figure that spectral energy in the low frequency
range is sufficiently low for the improved training, but not for
the conventional traming.

4. Experiments

We conducted a subjective evaluation to confirm the effective-
ness of the modified training for unvoiced excitation.

4.1. Conditions and procedure

A listening test was performed with five subjects consisting of
four speech synthesis experts and one with no experience in
speech research. The test took the form of an AB forced pref-
erence, with the utterances of 20 sentences taken from the Bliz-
zard Challenge 2009 test set (the first ten sentences from each
of the ‘news’ and ‘novel” categories), with the aim of compar-
ing the quality of speech from the conventional and improved
training both with and without the application of the HPF men-
tioned in Section 3.1. The test was carried out in a quiet room,
and the listeners used headphones.

The speech data used for training were 4014 English ut-
terances by a British male speaker. They were recorded by
Phonetic Arts Ltd., U.K. and released for Blizzard Challenge
2010 [13]). Fys and spectral envelopes were estimated from the
recordings (16-kHz sampling) using the Snack Sound Toolkit
and the STRAIGHT analysis [14], respectively, with 5-ms
frame shifts. Each of the spectral envelopes was then converted
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Figure 5. Subjective evaluation results: the figures indicate
preference scores (%).

into the 39*P-order mel-cepstrum using the Speech Signal Pro-
cessing Toolkit (SPTK). Residual signals as excitation-training
targets are extracted by passing speech through the mel-log-
spectrum approximation (MLSA) filter [ 15]. The periodic com-
ponent of the residual is estimated on the technique described
in Section 3 using 20-ms-width window and 5-ms frame shift
Five-state left-to-right no-skip HSMMs for duration, Fy
and mel-cepstral coeflicients were trained on the basis of the tra-
jectory training scheme under global-variance constraint [16].
The orders of excitation filters were A/ = 512 and L = 64

4.2. Results and Discussion

The number of terminal nodes of the resulting trees (i.e., the
number of clusters) were 83 and 254 for the voiced and un-
voiced filters, respectively. Figure 5 shows the listeners’ prefer-
ence for each type of test pair. Since the unvoiced filter is esti-
mated separately from the voiced filter estimation, clear speech
with little noise is synthesised from the excitation model trained
with the improved method. For this reason, as shown in Fig-
ure 5(a), speech from the improved training is preferred by lis-
teners in 97% of all cases, if no HPF is applied to the synthe-
sised unvoiced excitation signals during synthesis.

On the other hand, Figs. 5(b)—(f) show that the HPF is still
necessary even for models from the improved approach, and
that when the HPF is applied for both approaches, the model
can produce speech of slightly better quality, although this is
not significant. Careful listening by the authors revealed that the
types of noise perceptible in the background differ depending
on the approach. With respect to the improved training, it is an
intermittent type of noise arising segmentally, whereas the noise
from the conventional method is rather stationary. The former
noise is considered to be generated at state boundaries, where
the excitation filter response can change dramatically, because
no dynamic features are used in the current model of excitation.

5. Conclusions

We have investigated an improved training framework for our
mixed excitation model, where unvoiced excitation signals are
generated through a filter whose coefficients are trained directly
from a non-periodic component of the residual signals.

Some problems still remain with our mixed excitation train-
ing scheme. First, during synthesis, the unvoiced filter response

changes state by state, which causes perceptible noise in syn-
thetic speech. To attenuate that noise, the dynamic features
of the filter response may be effective. Second, in the current
framework, the power of the voiced excitation cannot be de-
termined. The amplitude of the optimised impulses should be
taken into account for the determination. Resolving these will
be part of our future work
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