108 research outputs found

    ALMA 870 μ\mum continuum observations of HD 100546. Evidence of a giant planet on a wide orbit

    Full text link
    This paper reports on a new analysis of archival ALMA 870μ870\,\mum dust continuum observations. Along with the previously observed bright inner ring (r2040r \sim 20-40\,au), two addition substructures are evident in the new continuum image: a wide dust gap, r40150r \sim 40-150\,au, and a faint outer ring ranging from r150r \sim 150\,au to r250r \sim 250\,au and whose presence was formerly postulated in low-angular-resolution ALMA cycle 0 observations but never before observed. Notably, the dust emission of the outer ring is not homogeneous, and it shows two prominent azimuthal asymmetries that resemble an eccentric ring with eccentricity e=0.07e = 0.07 . The characteristic double-ring dust structure of HD 100546 is likely produced by the interaction of the disk with multiple giant protoplanets. This paper includes new smoothed-particle-hydrodynamic simulations with two giant protoplanets, one inside of the inner dust cavity and one in the dust gap. The simulations qualitatively reproduce the observations, and the final masses and orbital distances of the two planets in the simulations are 3.1 MJM_{J} at 15 au and 8.5 MJM_{J} at 110 au, respectively. The massive outer protoplanet substantially perturbs the disk surface density distribution and gas dynamics, producing multiple spiral arms both inward and outward of its orbit. This can explain the observed perturbed gas dynamics inward of 100 au as revealed by ALMA observations of CO. Finally, the reduced dust surface density in the 40150\sim 40-150\,au dust gap can nicely clarify the origin of the previously detected H2_2O gas and ice emission.Comment: Accepted for publicatio

    Effects of photoevaporation on protoplanetary disc ‘isochrones’

    Get PDF
    Protoplanetary discs are the site of star and planet formation, and their evolution and consequent dispersal deeply affect the formation of planetary systems. In the standard scenario they evolve on time-scales similar to Myr due to the viscous transport of angular momentum. The analytical self-similar solution for their evolution predicts specific disc isochrones in the accretion rate-disc mass plane. However, photoevaporation by radiation emitted by the central star is likely to dominate the gas disc dispersal of the innermost region, introducing another (shorter) time-scale for this process. In this paper, we include the effect of internal (X and EUV) photoevaporation on the disc evolution, finding numerical solutions for a population of protoplanetary discs. Our models naturally reproduce the expected quick dispersal of the inner region of discs when their accretion rates match the rate of photoevaporative mass loss, in line with previous studies. We find that photoevaporation preferentially removes the lightest discs in the sample. The net result is that, counter-intuitively, photoevaporation increases the average disc mass in the sample, by dispersing the lightest discs. At the same time, photoevaporation also reduces the mass accretion rate by cutting the supply of material from the outer to the inner disc. In a purely viscous framework, this would be interpreted as the result of a longer viscous evolution, leading to an overestimate of the disc age. Our results thus show that photoevaporation is a necessary ingredient to include when interpreting observations of large disc samples with measured mass accretion rates and disc masses. Photoevaporation leaves a characteristic imprint on the shape of the isochrone. Accurate data of the accretion rate-disc mass plane in the low disc mass region therefore give clues on the typical photoevaporation rate

    Long-lived Dust Rings around HD 169142

    Get PDF
    Recent Atacama Large Millimeter/submillimeter Array (ALMA) observations of the protoplanetary disk around HD 169142 reveal a peculiar structure made of concentric dusty rings: a main ring at similar to 20 au, a triple system of rings at similar to 55-75 au in millimetric continuum emission, and a perturbed gas surface density from the (CO)-C-12,(CO)-C-13, and (CO)-O-18 (J = 2-1) surface brightness profile. In this Letter, we perform 3D numerical simulations and radiative transfer modeling exploring the possibility that two giant planets interacting with the disk and orbiting in resonant locking can be responsible for the origin of the observed dust inner rings structure. We find that in this configuration the dust structure is actually long lived while the gas mass of the disk is accreted onto the star and the giant planets, emptying the inner region. In addition, we also find that the innermost planet is located at the inner edge of the dust ring, and can accrete mass from the disk, generating a signature in the dust ring shape that can be observed in mm ALMA observations

    Changes in triacylglycerols and free fatty acids composition during storage of roasted coffee

    Get PDF
    AbstractLipids are major coffee components, and changes in their composition during storage may contribute to loss of sensorial quality. In this study, changes in the triacylglycerols (TAG) and free fatty acids (FFA) composition of Coffea arabica seeds roasted to two color degrees (light medium and dark medium) were evaluated during storage for 6 months, under two temperature (5 °C and 25 °C) and atmosphere (air and N2) conditions. For the first time, hydrolysis of TAG fraction was observed during storage of roasted coffee, with increases in FFA, after 1 month storage, from 0.4 to 93.5 mg/100 g in light-medium samples and from non-detected to 1.1 mg/100 g in dark-medium samples. After 3 months storage, 20% and 13% decreases in FFA from light-medium and dark-medium samples, respectively, were observed, suggesting oxidation. The N2 atmosphere contributed to a slower loss of FFA. In the same way, at 5 °C, lower release of FFA was observed compared to 25 °C. Considering the inversion in the unsaturated FA (UFA) and saturated FA (SFA) contents observed in the dark-medium sample, the present results also show that the ratio Σ UFA/SFA, in TAG and AGL fractions might potentially be used as a tool to establish the shelf life of roasted coffee

    Effect of soil management and training system on negroamaro wine aroma

    Get PDF
    This study aimed to assess the impact of two soil managements and training systems on yield and wine aroma compounds of Negroamaro variety grown in a warm climate region (southern Italy). Cover crop (CC) and soil tillage (ST) as soil management, whilst bilateral Guyot (BG) and monolateral Guyot (MG) as training systems were compared. Free and bound volatile fractions were evaluated by GC-MS. ST and CC as well as BG and MG significantly affected yield parameters. In particular, yield was higher in ST and BG than in CC and MG, respectively; moreover, it was found to be positively influenced by interaction between BG and ST. Regarding aroma compounds, significant interactions between soil management and training system factors were observed. In case of free volatiles, the most positive interaction was found between BG and ST, whereas, for bound volatiles, the best interaction was represented by MG with both soil tillage and cover crop. Vine leaf area and development over vine growth stages along with water stress levels played an important role in determining the aroma profile as well as yield parameters. In conclusion, the training system significantly interacted with soil management and affected most of important aroma compounds in Negroamaro wine

    On the secular evolution of the ratio between gas and dust radii in protoplanetary discs

    Get PDF
    Interstellar matter and star formatio

    Achievements and Future Perspectives of the Trivalent Thulium-Ion-Doped Mixed-Sesquioxide Ceramics for Laser Applications

    Full text link
    This paper is devoted to reviewing the latest results achieved in solid-state lasers based on thulium-doped mixed-sesquioxide ceramics, i.e., (Lu,Sc,Y)2O3 . The near-and mid-infrared regions are of interest for many applications, from medicine to remote sensing, as they match molecular fingerprints and cover several atmospheric transparency windows. These matrices are characterized by a strong electron–phonon interaction—which results in a large splitting of the ground state—and by a spectral broadening of the optical transition suitable for developing tunable and short-pulse lasers. In particular, the manuscript reports on the trivalent thulium laser transitions at 1.5, 1.9, and 2.3 µm, along with the thermal and optical characteristics of the (Lu,Sc,Y)2O3 ceramics, including the fabrication techniques, spectroscopic and optical properties, and laser performances achieved in different pumping regimes, such as continuous-wave (CW), quasi-CW, and pulsed modes. A comparison of the performance obtained with these mixed-sesquioxide ceramics and with the corresponding crystals is reported. © 2022 by the authors. Licensee MDPI, Basel, Switzerland

    A giant planet shaping the disk around the very low-mass star CIDA 1

    Get PDF
    Context. Exoplanetary research has provided us with exciting discoveries of planets around very low-mass (VLM) stars (0.08 M⊙ ≲ M* ≲ 0.3 M⊙; e.g., TRAPPIST-1 and Proxima Centauri). However, current theoretical models still strive to explain planet formation in these conditions and do not predict the development of giant planets. Recent high-resolution observations from the Atacama Large Millimeter/submillimeter Array (ALMA) of the disk around CIDA 1, a VLM star in Taurus, show substructures that hint at the presence of a massive planet. Aims. We aim to reproduce the dust ring of CIDA 1, observed in the dust continuum emission in ALMA Band 7 (0.9 mm) and Band 4 (2.1 mm), along with its 12CO (J = 3−2) and 13CO (J = 3−2) channel maps, assuming the structures are shaped by the interaction of the disk with a massive planet. We seek to retrieve the mass and position of the putative planet, through a global simulation that assesses planet-disk interactions to quantitatively reproduce protoplanetary disk observations of both dust and gas emission in a self-consistent way. Methods. Using a set of hydrodynamical simulations, we model a protoplanetary disk that hosts an embedded planet with a starting mass of between 0.1 and 4.0 MJup and initially located at a distance of between 9 and 11 au from the central star. We compute the dust and gas emission using radiative transfer simulations, and, finally, we obtain the synthetic observations, treating the images as the actual ALMA observations. Results. Our models indicate that a planet with a minimum mass of ~1.4 MJup orbiting at a distance of ~9−10 au can explain the morphology and location of the observed dust ring in Band 7 and Band 4. We match the flux of the dust emission observation with a dust-to-gas mass ratio in the disk of ~10−2. We are able to reproduce the low spectral index (~2) observed where the dust ring is detected, with a ~40−50% fraction of optically thick emission. Assuming a 12CO abundance of 5 × 10−5 and a 13CO abundance 70 times lower, our synthetic images reproduce the morphology of the 12CO (J = 3−2) and 13CO (J = 3−2) observed channel maps where the cloud absorption allowed a detection. From our simulations, we estimate that a stellar mass M* = 0.2 M⊙ and a systemic velocity vsys = 6.25 km s−1 are needed to reproduce the gas rotation as retrieved from molecular line observations. Applying an empirical relation between planet mass and gap width in the dust, we predict a maximum planet mass of ~4−8 MJup. Conclusions. Our results suggest the presence of a massive planet orbiting CIDA 1, thus challenging our understanding of planet formation around VLM stars
    corecore