370 research outputs found

    Elevated circulating Sclerostin concentrations in individuals with high bone mass, with and without LRP5 mutations.

    Get PDF
    CONTEXT: The role and importance of circulating sclerostin is poorly understood. High bone mass (HBM) caused by activating LRP5 mutations has been reported to be associated with increased plasma sclerostin concentrations; whether the same applies to HBM due to other causes is unknown. OBJECTIVE: Our objective was to determine circulating sclerostin concentrations in HBM. DESIGN AND PARTICIPANTS: In this case-control study, 406 HBM index cases were identified by screening dual-energy x-ray absorptiometry (DXA) databases from 4 United Kingdom centers (n = 219 088), excluding significant osteoarthritis/artifact. Controls comprised unaffected relatives and spouses. MAIN MEASURES: Plasma sclerostin; lumbar spine L1, total hip, and total body DXA; and radial and tibial peripheral quantitative computed tomography (subgroup only) were evaluated. RESULTS: Sclerostin concentrations were significantly higher in both LRP5 HBM and non-LRP5 HBM cases compared with controls: mean (SD) 130.1 (61.7) and 88.0 (39.3) vs 66.4 (32.3) pmol/L (both P < .001, which persisted after adjustment for a priori confounders). In combined adjusted analyses of cases and controls, sclerostin concentrations were positively related to all bone parameters found to be increased in HBM cases (ie, L1, total hip, and total body DXA bone mineral density and radial/tibial cortical area, cortical bone mineral density, and trabecular density). Although these relationships were broadly equivalent in HBM cases and controls, there was some evidence that associations between sclerostin and trabecular phenotypes were stronger in HBM cases, particularly for radial trabecular density (interaction P < .01). CONCLUSIONS: Circulating plasma sclerostin concentrations are increased in both LRP5 and non-LRP5 HBM compared with controls. In addition to the general positive relationship between sclerostin and DXA/peripheral quantitative computed tomography parameters, genetic factors predisposing to HBM may contribute to increased sclerostin levels.This study was supported by The Wellcome Trust NIHR Clinical Research Network (portfolio number 5163); and the supporting Comprehensive Local Research Networks included Birmingham and the Black Country, North and East Yorkshire and Northern Lincolnshire, South Yorkshire, West Anglia, and Western. C.L.G. was funded through a Wellcome Trust Clinical Research Training Fellowship (080280/Z/06/Z) and is now funded by Arthritis Research UK (Grant 20000). K.E.S.P. acknowledges the support of Cambridge NIHR Biomedical Research Centre and the Medical Research Council Human Nutrition Research Unit, Cambridge.This is the author accepted manuscript. The final version is available from the Endocrine Society via http://dx.doi.org/10.1210/jc.2013-395

    P53 forms redox-dependent protein–protein interactions through cysteine 277

    Get PDF
    Reversible cysteine oxidation plays an essential role in redox signaling by reversibly altering protein structure and function. Cysteine oxidation may lead to intra-and intermolecular di-sulfide formation, and the latter can drastically stabilize protein–protein interactions in a more oxidizing milieu. The activity of the tumor suppressor p53 is regulated at multiple levels, including various post-translational modification (PTM) and protein–protein interactions. In the past few decades, p53 has been shown to be a redox-sensitive protein, and undergoes reversible cysteine oxidation both in vitro and in vivo. It is not clear, however, whether p53 also forms intermolecular disulfides with interacting proteins and whether these redox-dependent interactions contribute to the regulation of p53. In the present study, by combining (co-)immunoprecipitation, quantitative mass spectrometry and Western blot we found that p53 forms disulfide-dependent interactions with several proteins under oxidizing conditions. Cysteine 277 is required for most of the disulfide-dependent interactions of p53, including those with 14-3-3θ and 53BP1. These interaction partners may play a role in fine-tuning p53 activity under oxidizing conditions

    The human 2-cys peroxiredoxins form widespread, cysteine-dependent-and isoform-specific protein-protein interactions

    Get PDF
    Redox signaling is controlled by the reversible oxidation of cysteine thiols, a post-translational modification triggered by H2O2 acting as a second messenger. However, H2O2 actually reacts poorly with most cysteine thiols and it is not clear how H2O2 discriminates between cysteines to trigger appropriate signaling cascades in the presence of dedicated H2O2 scavengers like perox-iredoxins (PRDXs). It was recently suggested that peroxiredoxins act as peroxidases and facilitate H2O2-dependent oxidation of redox-regulated proteins via disulfide exchange reactions. It is un-known how the peroxiredoxin-based relay model achieves the selective substrate targeting required for adequate cellular signaling. Using a systematic mass-spectrometry-based approach to iden-tify cysteine-dependent interactors of the five human 2-Cys peroxiredoxins, we show that all five human 2-Cys peroxiredoxins can form disulfide-dependent heterodimers with a large set of pro-teins. Each isoform displays a preference for a subset of disulfide-dependent binding partners, and we explore isoform-specific properties that might underlie this preference. We provide evidence that peroxiredoxin-based redox relays can proceed via two distinct molecular mechanisms. Alto-gether, our results support the theory that peroxiredoxins could play a role in providing not only reactivity but also selectivity in the transduction of peroxide signals to generate complex cellular signaling responses

    Scalable In Situ Hybridization on Tissue Arrays for Validation of Novel Cancer and Tissue-Specific Biomarkers

    Get PDF
    Tissue localization of gene expression is increasingly important for accurate interpretation of large scale datasets from expression and mutational analyses. To this end, we have (1) developed a robust and scalable procedure for generation of mRNA hybridization probes, providing >95% first-pass success rate in probe generation to any human target gene and (2) adopted an automated staining procedure for analyses of formalin-fixed paraffin-embedded tissues and tissue microarrays. The in situ mRNA and protein expression patterns for genes with known as well as unknown tissue expression patterns were analyzed in normal and malignant tissues to assess procedure specificity and whether in situ hybridization can be used for validating novel antibodies. We demonstrate concordance between in situ transcript and protein expression patterns of the well-known pathology biomarkers KRT17, CHGA, MKI67, PECAM1 and VIL1, and provide independent validation for novel antibodies to the biomarkers BRD1, EZH2, JUP and SATB2. The present study provides a foundation for comprehensive in situ gene set or transcriptome analyses of human normal and tumor tissues

    Mutations in Known Monogenic High Bone Mass Loci Only Explain a Small Proportion of High Bone Mass Cases.

    Get PDF
    High bone mass (HBM) can be an incidental clinical finding; however, monogenic HBM disorders (eg, LRP5 or SOST mutations) are rare. We aimed to determine to what extent HBM is explained by mutations in known HBM genes. A total of 258 unrelated HBM cases were identified from a review of 335,115 DXA scans from 13 UK centers. Cases were assessed clinically and underwent sequencing of known anabolic HBM loci: LRP5 (exons 2, 3, 4), LRP4 (exons 25, 26), SOST (exons 1, 2, and the van Buchem's disease [VBD] 52-kb intronic deletion 3'). Family members were assessed for HBM segregation with identified variants. Three-dimensional protein models were constructed for identified variants. Two novel missense LRP5 HBM mutations ([c.518C>T; p.Thr173Met], [c.796C>T; p.Arg266Cys]) were identified, plus three previously reported missense LRP5 mutations ([c.593A>G; p.Asn198Ser], [c.724G>A; p.Ala242Thr], [c.266A>G; p.Gln89Arg]), associated with HBM in 11 adults from seven families. Individuals with LRP5 HBM (∼prevalence 5/100,000) displayed a variable phenotype of skeletal dysplasia with increased trabecular BMD and cortical thickness on HRpQCT, and gynoid fat mass accumulation on DXA, compared with both non-LRP5 HBM and controls. One mostly asymptomatic woman carried a novel heterozygous nonsense SOST mutation (c.530C>A; p.Ser177X) predicted to prematurely truncate sclerostin. Protein modeling suggests the severity of the LRP5-HBM phenotype corresponds to the degree of protein disruption and the consequent effect on SOST-LRP5 binding. We predict p.Asn198Ser and p.Ala242Thr directly disrupt SOST binding; both correspond to severe HBM phenotypes (BMD Z-scores +3.1 to +12.2, inability to float). Less disruptive structural alterations predicted from p.Arg266Cys, p.Thr173Met, and p.Gln89Arg were associated with less severe phenotypes (Z-scores +2.4 to +6.2, ability to float). In conclusion, although mutations in known HBM loci may be asymptomatic, they only account for a very small proportion (∼3%) of HBM individuals, suggesting the great majority are explained by either unknown monogenic causes or polygenic inheritance.This study was supported by The Wellcome Trust and NIHR CRN (portfolio number 5163). CLG was funded by a Wellcome Trust Clinical Research Training Fellowship (080280/Z/06/Z), the EU 7th Framework Programme under grant agreement number 247642 (GEoCoDE), a British Geriatric Society travel grant, and is now funded by Arthritis Research UK (grant ref 20000). SH acknowledges Arthritis Research UK support (grant ref 19580). KESP acknowledges the support of Cambridge NIHR Biomedical Research Centre. KAW is supported by the core programme of the MRC Nutrition and Bone Health group at MRC Human Nutrition Research, funded by the UK Medical Research Council (Grant code U10590371). EM acknowledges support of the Sheffield Teaching Hospitals Foundation Trust Clinical Research Facility. The SGC is a registered charity (no. 1097737) that receives funds from AbbVie, Bayer, Boehringer Ingelheim, Genome Canada (Ontario Genomics Institute OGI- 055), GlaxoSmithKline, Janssen, Lilly Canada, Novartis Research Foundation, Ontario Ministry of Economic Development & Innovation, Pfizer, Takeda, and Wellcome Trust (092809/Z/10/Z).This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1002/jbmr.270

    Bioclipse: an open source workbench for chemo- and bioinformatics

    Get PDF
    BACKGROUND: There is a need for software applications that provide users with a complete and extensible toolkit for chemo- and bioinformatics accessible from a single workbench. Commercial packages are expensive and closed source, hence they do not allow end users to modify algorithms and add custom functionality. Existing open source projects are more focused on providing a framework for integrating existing, separately installed bioinformatics packages, rather than providing user-friendly interfaces. No open source chemoinformatics workbench has previously been published, and no sucessful attempts have been made to integrate chemo- and bioinformatics into a single framework. RESULTS: Bioclipse is an advanced workbench for resources in chemo- and bioinformatics, such as molecules, proteins, sequences, spectra, and scripts. It provides 2D-editing, 3D-visualization, file format conversion, calculation of chemical properties, and much more; all fully integrated into a user-friendly desktop application. Editing supports standard functions such as cut and paste, drag and drop, and undo/redo. Bioclipse is written in Java and based on the Eclipse Rich Client Platform with a state-of-the-art plugin architecture. This gives Bioclipse an advantage over other systems as it can easily be extended with functionality in any desired direction. CONCLUSION: Bioclipse is a powerful workbench for bio- and chemoinformatics as well as an advanced integration platform. The rich functionality, intuitive user interface, and powerful plugin architecture make Bioclipse the most advanced and user-friendly open source workbench for chemo- and bioinformatics. Bioclipse is released under Eclipse Public License (EPL), an open source license which sets no constraints on external plugin licensing; it is totally open for both open source plugins as well as commercial ones. Bioclipse is freely available at
    corecore