23 research outputs found

    The influences of Nâ‚‚-fixing Alnus and atmospheric nitrogen deposition on the nitrogen balance in close to natural ecosystems

    Get PDF
    The aim of this thesis was to arrive at an understanding of how increased availability of reactive nitrogen (Nr) caused by atmospheric N deposition or by the dominance of N2-fixing Alnus species influences the N cycle and associated ecosystem properties in close to natural ecosystems. In Switzerland, atmospheric N deposition represents large N inputs across many close to natural ecosystems and may induce indirect NO and N2O emis- sions from soils in these ecosystems. In chapter 2 of this thesis, we present a model, based on literature data, for the estimation of the indirect emissions in forests, (semi-)natural grasslands and wetlands. In the second part of this thesis (chapter 3–5), effects of N2-fixing Alnus on ecosystems, and by N2O emission on the atmosphere, are addressed. In chapter 3, we review the causes of the rapid encroachment of Alnus viridis into grassland across the entire Alps, and its effects on biodiversity, ecosystem properties, and economy, and we present management options to reduce the expansion of this shrub. Building on the results from chapter 3, we present a multiyear field study (2009–2012) on the effects of the presence of Alnus viridis on N and C pools, and N fluxes, and associated changes in ecosystem properties in comparison to adjacent pastures. This fieldwork was conducted along a West–East gradient in three valleys in central Switzerland (chapter 4). Increased temperature and Nr availability is thought to increase N2O emissions from soils, at least under laboratory conditions. Whether these assumptions hold for field studies was explored in chapter 5

    Resource use and outcome in critically ill patients with hematological malignancy: a retrospective cohort study

    Get PDF
    INTRODUCTION: The paucity of data on resource use in critically ill patients with hematological malignancy and on these patients' perceived poor outcome can lead to uncertainty over the extent to which intensive care treatment is appropriate. The aim of the present study was to assess the amount of intensive care resources needed for, and the effect of treatment of, hemato-oncological patients in the intensive care unit (ICU) in comparison with a nononcological patient population with a similar degree of organ dysfunction. METHODS: A retrospective cohort study of 101 ICU admissions of 84 consecutive hemato-oncological patients and 3,808 ICU admissions of 3,478 nononcological patients over a period of 4 years was performed. RESULTS: As assessed by Therapeutic Intervention Scoring System points, resource use was higher in hemato-oncological patients than in nononcological patients (median (interquartile range), 214 (102 to 642) versus 95 (54 to 224), P < 0.0001). Severity of disease at ICU admission was a less important predictor of ICU resource use than necessity for specific treatment modalities. Hemato-oncological patients and nononcological patients with similar admission Simplified Acute Physiology Score scores had the same ICU mortality. In hemato-oncological patients, improvement of organ function within the first 48 hours of the ICU stay was the best predictor of 28-day survival. CONCLUSION: The presence of a hemato-oncological disease per se is associated with higher ICU resource use, but not with increased mortality. If withdrawal of treatment is considered, this decision should not be based on admission parameters but rather on the evolutional changes in organ dysfunctions

    Alnus viridis expansion contributes to excess reactive nitrogen release, reduces biodiversity and constrains forest succession in the Alps

    Get PDF
    Reduction in land use and complete land abandonment are widespread in mountainous regions and are mainly driven by socio-economic factors. Following land-use decline, shrubs and trees expand rapidly into montane and subalpine grassland and alter ecosystem properties at a large scale. In particular, the N2-fixing shrub Alnus viridis is currently spreading at a breath-taking speed and thereby reduces biodiversity, leads to substantial reactive nitrogen enrichment and suppresses species succession towards coniferous forests across large areas in the Alps. In addition, this shrub vegetation neither protects against avalanches nor does it secure slopes from erosion. The expanding, monotonous A. viridis shrubland is impenetrable for hikers and diminishes scenic beauty and touristic value of the landscape. Actions and management adaptations are needed to halt the expansion of A. viridis. Goats and the traditional sheep breed Engadine sheep proved to be very effective in preventing and reverting shrub expansion because of their specific browsing behaviour

    Ecological consequences of the expansion of N2-fixing plants in cold biomes

    Get PDF
    Research in warm-climate biomes has shown that invasion by symbiotic dinitrogen (N2)-fixing plants can transform ecosystems in ways analogous to the transformations observed as a consequence of anthropogenic, atmospheric nitrogen (N) deposition: declines in biodiversity, soil acidification, and alterations to carbon and nutrient cycling, including increased N losses through nitrate leaching and emissions of the powerful greenhouse gas nitrous oxide (N2O). Here, we used literature review and case study approaches to assess the evidence for similar transformations in cold-climate ecosystems of the boreal, subarctic and upper montane-temperate life zones. Our assessment focuses on the plant genera Lupinus and Alnus, which have become invasive largely as a consequence of deliberate introductions and/or reduced land management. These cold biomes are commonly located in remote areas with low anthropogenic N inputs, and the environmental impacts of N2-fixer invasion appear to be as severe as those from anthropogenic N deposition in highly N polluted areas. Hence, inputs of N from N2 fixation can affect ecosystems as dramatically or even more strongly than N inputs from atmospheric deposition, and biomes in cold climates represent no exception with regard to the risk of being invaded by N2-fixing species. In particular, the cold biomes studied here show both a strong potential to be transformed by N2-fixing plants and a rapid subsequent saturation in the ecosystem's capacity to retain N. Therefore, analogous to increases in N deposition, N2-fixing plant invasions must be deemed significant threats to biodiversity and to environmental quality

    Cloning of the Repertoire of Individual Plasmodium falciparum var Genes Using Transformation Associated Recombination (TAR)

    Get PDF
    One of the major virulence factors of the malaria causing parasite is the Plasmodium falciparum encoded erythrocyte membrane protein 1 (PfEMP1). It is translocated to It the membrane of infected erythrocytes and expressed from approximately 60 var genes in a mutually exclusive manner. Switching of var genes allows the parasite to alter functional and antigenic properties of infected erythrocytes, to escape the immune defense and to establish chronic infections. We have developed an efficient method for isolating VAR genes from telomeric and other genome locations by adapting transformation-associated recombination (TAR) cloning, which can then be analyzed and sequenced. For this purpose, three plasmids each containing a homologous sequence representing the upstream regions of the group A, B, and C var genes and a sequence homologous to the conserved acidic terminal segment (ATS) of var genes were generated. Co-transfection with P. falciparum strain ITG2F6 genomic DNA in yeast cells yielded 200 TAR clones. The relative frequencies of clones from each group were not biased. Clones were screened by PCR, as well as Southern blotting, which revealed clones missed by PCR due to sequence mismatches with the primers. Selected clones were transformed into E. coli and further analyzed by RFLP and end sequencing. Physical analysis of 36 clones revealed 27 distinct types potentially representing 50% of the var gene repertoire. Three clones were selected for sequencing and assembled into single var gene containing contigs. This study demonstrates that it is possible to rapidly obtain the repertoire of var genes from P. falciparum within a single set of cloning experiments. This technique can be applied to individual isolates which will provide a detailed picture of the diversity of var genes in the field. This is a powerful tool to overcome the obstacles with cloning and assembly of multi-gene families by simultaneously cloning each member

    Data from: Shrub expansion of Alnus viridis drives former montane grassland into nitrogen saturation

    No full text
    The N2-fixing shrub Alnus viridis is currently encroaching on montane grasslands in the Alps as a result of reduced land management and complete abandonment. Alnus introduces large amounts of nitrogen (N) into these formerly N-poor grasslands and restricts the succession to montane forests. We studied pools and fluxes of N and the associated C pools in pastures (controls) and adjacent Alnus shrublands at two elevations (1650 versus 1950 m a.s.l.) in three valleys in the Swiss central Alps. The total N and C pools stored in 50-year-old Alnus shrubland did not exceed those in adjacent pastures with a total of approximately 610 g N m−2 in phytomass plus soil (down to 30 cm) at both elevations. In Alnus stands, reduced soil N pools balanced the gain in phytomass N pools, a likely result of a faster turnover of soil N. The soil solution under Alnus was continuously enriched with nitrate, with a total N leaching of 0.79 g N m−2 season−1 (June–October) under 50-year-old stands at both elevations and the highest flux of 1.76 g N m−2 season−1 in 25-year-old shrubland at low elevation, clearly indicating an excess of available N in Alnus shrubland. In contrast, N leaching across all pastures was close to zero (0.08 g N m−2) throughout the season. At the catchment scale, streamlet water showed increased nitrate concentrations with typical flushing peaks in spring and autumn, provided more than one fifth of the catchment area was covered by Alnus shrubs. We conclude that the expansion of Alnus rapidly converts centuries-old, N-poor grassland into N saturated shrubland, irrespective of elevation, and it reduces the C storage potential of the landscape because the Alnus dominance constrains re-establishment of a natural montane forest

    Shrub Expansion of Alnus viridis Drives Former Montane Grassland into Nitrogen Saturation

    No full text
    The N2-fixing shrub Alnus viridis is currently encroaching on montane grasslands in the Alps as a result of reduced land management and complete abandonment. Alnus introduces large amounts of nitrogen (N) into these formerly N-poor grasslands and restricts the succession to montane forests. We studied pools and fluxes of N and the associated C pools in pastures (controls) and adjacent Alnus shrublands at two elevations (1650 versus 1950 m a.s.l.) in three valleys in the Swiss central Alps. The total N and C pools stored in 50-year-old Alnus shrubland did not exceed those in adjacent pastures with a total of approximately 610 g N m-2 in phytomass plus soil (down to 30 cm) at both elevations. In Alnus stands, reduced soil N pools balanced the gain in phytomass N pools, a likely result of a faster turnover of soil N. The soil solution under Alnus was continuously enriched with nitrate, with a total N leaching of 0.79 g N m-2 season -1 (June–October) under 50-year-old stands at both elevations and the highest flux of 1.76 g N m-2 season-1 in 25-year-old shrubland at low elevation, clearly indicating an excess of available N in Alnus shrubland. In contrast, N leaching across all pastures was close to zero (0.08 g N m-2) throughout the season. At the catchment scale, streamlet water showed increased nitrate concentrations with typical flushing peaks in spring and autumn, provided more than one fifth of the catchment area was covered by Alnus shrubs. We conclude that the expansion of Alnus rapidly converts centuries-old, N-poor grassland into N saturated shrubland, irrespective of elevation, and it reduces the C storage potential of the landscape because the Alnus dominance constrains re-establishment of a natural montane forest
    corecore