366 research outputs found

    Additive effects of beta-alanine and sodium bicarbonate on high-intensity upper-body intermittent performance

    Get PDF
    We examined the isolated and combined effects of beta-alanine (BA) and sodium bicarbonate (SB) on high-intensity intermittent upper-body performance in judo and jiu-jitsu competitors. 37 athletes were assigned to one of four groups: (1) placebo (PL)+PL; (2) BA+PL; (3) PL+SB or (4) BA+SB. BA or dextrose (placebo) = (6.4 g day-1) was ingested for 4 weeks and 500 mg kg-1 BM of SB or calcium carbonate (placebo) was ingested for 7 days during the 4th week. Before and after 4 weeks of supplementation, the athletes completed four 30-s upper-body Wingate tests, separated by 3 min. Blood lactate was determined at rest, immediately after and 5 min after the 4th exercise bout, with perceived exertion reported immediately after the 4th bout. BA and SB alone increased the total work done in +7 and 8 %, respectively. The co-ingestion resulted in an additive effect (+14 %, p < 0.05 vs. BA and SB alone). BA alone significantly improved mean power in the 2nd and 3rd bouts and tended to improve the 4th bout. SB alone significantly improved mean power in the 4th bout and tended to improve in the 2nd and 3rd bouts. BA+SB enhanced mean power in all four bouts. PL+PL did not elicit any alteration on mean and peak power. Post-exercise blood lactate increased with all treatments except with PL+PL. Only BA+ SB resulted in lower ratings of perceived exertion (p = 0.05). Chronic BA and SB supplementation alone equally enhanced high-intensity intermittent upper-body performance in well-trained athletes. Combined BA and SB promoted a clear additive ergogenic effect

    Transport through a strongly coupled graphene quantum dot in perpendicular magnetic field

    Get PDF
    We present transport measurements on a strongly coupled graphene quantum dot in a perpendicular magnetic field. The device consists of an etched single-layer graphene flake with two narrow constrictions separating a 140 nm diameter island from source and drain graphene contacts. Lateral graphene gates are used to electrostatically tune the device. Measurements of Coulomb resonances, including constriction resonances and Coulomb diamonds prove the functionality of the graphene quantum dot with a charging energy of around 4.5 meV. We show the evolution of Coulomb resonances as a function of perpendicular magnetic field, which provides indications of the formation of the graphene specific 0th Landau level. Finally, we demonstrate that the complex pattern superimposing the quantum dot energy spectra is due to the formation of additional localized states with increasing magnetic field.Comment: 6 pages, 4 figure

    Visualization of Abscess Formation in a Murine Thigh Infection Model of Staphylococcus aureus by 19F-Magnetic Resonance Imaging (MRI)

    Get PDF
    Background: During the last years, 19 F-MRI and perfluorocarbon nanoemulsion (PFC) emerged as a powerful contrast agent based MRI methodology to track cells and to visualize inflammation. We applied this new modality to visualize deep tissue abscesses during acute and chronic phase of inflammation caused by Staphylococcus aureus infection. Methodology and Principal Findings: In this study, a murine thigh infection model was used to induce abscess formation and PFC or CLIO (cross linked ironoxides) was administered during acute or chronic phase of inflammation. 24 h after inoculation, the contrast agent accumulation was imaged at the site of infection by MRI. Measurements revealed a strong accumulation of PFC at the abscess rim at acute and chronic phase of infection. The pattern was similar to CLIO accumulation at chronic phase and formed a hollow sphere around the edema area. Histology revealed strong influx of neutrophils at the site of infection and to a smaller extend macrophages during acute phase and strong influx of macrophages at chronic phase of inflammation. Conclusion and Significance: We introduce 19 F-MRI in combination with PFC nanoemulsions as a new platform to visualize abscess formation in a murine thigh infection model of S. aureus. The possibility to track immune cells in vivo by this modality offers new opportunities to investigate host immune response, the efficacy of antibacterial therapies and th

    Septic rupture of the ascending aorta after aortocoronary bypass surgery

    Get PDF
    We describe an exceptional case of non-fatal septic rupture of the ascending aorta in a patient with sternal dehiscence, deep sternal wound infection (DSWI) and pleural empyema after aortocoronary bypass surgery. Routine follow-up computed tomography (CT) detected a mediastinal pseudoaneurysm originating from the ascending aorta. Thereby, massive and irregular sternal bone defects and contrast-enhancing mediastinal soft tissue suggest osteomyelitis and highly-active and aggressive DSWI as initial triggers. Urgent thoracotomy 1 day later included ascending aorta reconstruction, total sternum resection and broad wound debridement. Follow-up CT 1 year later showed a regular postoperative result in a fully recovered patient

    Large tunable valley splitting in edge-free graphene quantum dots on boron nitride

    Full text link
    Coherent manipulation of binary degrees of freedom is at the heart of modern quantum technologies. Graphene offers two binary degrees: the electron spin and the valley. Efficient spin control has been demonstrated in many solid state systems, while exploitation of the valley has only recently been started, yet without control on the single electron level. Here, we show that van-der Waals stacking of graphene onto hexagonal boron nitride offers a natural platform for valley control. We use a graphene quantum dot induced by the tip of a scanning tunneling microscope and demonstrate valley splitting that is tunable from -5 to +10 meV (including valley inversion) by sub-10-nm displacements of the quantum dot position. This boosts the range of controlled valley splitting by about one order of magnitude. The tunable inversion of spin and valley states should enable coherent superposition of these degrees of freedom as a first step towards graphene-based qubits

    The association between failed quit attempts and increased levels of psychological distress in smokers in a large New Zealand cohort

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although the association between smoking status and poorer mental health has been well documented, the association between quit status and psychological distress is less clear. The aim of the present study is to investigate the association of smoking status and quit status with psychological distress.</p> <p>Methods</p> <p>Data for this study is from a single year of the Survey of Families, Income and Employment (SoFIE) conducted in New Zealand (2004/05) (n = 18,525 respondents). Smoking status and quit status were treated as exposure variables, and psychological distress (Kessler-10) was treated as the outcome variable. Logistic regression analyses were performed to determine the association of smoking with psychological distress in the whole adult population and quit status with psychological distress in the ex- and current-smoking population.</p> <p>Results</p> <p>Current smokers had higher rates of high and very high psychological distress compared to never smokers (adjusted odds ratio (aOR) = 1.45; 95% CI: 1.24-1.69). Unsuccessful quitters had much higher levels of high to very high levels of psychological distress (16%) than any other group. Moreover, compared to long-term ex-smokers, unsuccessful quitters had a much higher odds of high to very high levels of psychological distress (aOR = 1.73; 95% CI: 1.36-2.21).</p> <p>Conclusion</p> <p>These findings suggest that the significant association between smoking and psychological distress might be partly explained by increased levels of psychological distress among current smokers who made a quit attempt in the last year. This issue needs further study as it has implications for optimising the design of quitting support.</p

    Covid-on-the-Web: Knowledge Graph and Services to Advance COVID-19 Research

    Get PDF
    International audienceScientists are harnessing their multidisciplinary expertise and resources to fight the COVID-19 pandemic. Aligned with this mind-set, the Covid-on-the-Web project aims to allow biomedical researchers to access, query and make sense of COVID-19 related literature. To do so, it adapts, combines and extends tools to process, analyze and enrich the "COVID-19 Open Research Dataset" (CORD-19) that gathers 50,000+ full-text scientific articles related to the coronaviruses. We report on the RDF dataset and software resources produced in this project by leveraging skills in knowledge representation, text, data and argument mining, as well as data visualization and exploration. The dataset comprises two main knowledge graphs describing (1) named entities mentioned in the CORD-19 corpus and linked to DBpedia, Wikidata and other BioPortal vocabularies, and (2) arguments extracted using ACTA, a tool automating the extraction and visualization of argumentative graphs, meant to help clinicians analyze clinical trials and make decisions. On top of this dataset, we provide several visualization and exploration tools based on the Corese Semantic Web platform, MGExplorer visualization library, as well as the Jupyter Notebook technology. All along this initiative, we have been engaged in discussions with healthcare and medical research institutes to align our approach with the actual needs of the biomedical community, and we have paid particular attention to comply with the open and reproducible science goals, and the FAIR principles

    Antidepressants during and after Menopausal Transition: A Systematic Review and Meta-Analysis

    Get PDF
    To assess the therapeutic benefits of antidepressants in depressive women during and after menopausal transition, PubMed, Cochrane Library, EMBASE and Science Direct were systematically searched from inception to February 1, 2020 for randomized controlled trials examining antidepressants compared to placebo. Primary outcome was change in depressive symptom severity, while secondary outcomes were rates of response/remission rates and dropout/discontinuation due to adverse events. Seven trials involving 1,676 participants (mean age = 52.6 years) showed significant improvement in depressive symptoms (k = 7, Hedges’ g = 0.44, 95% confidence interval (CI) = 0.32 to 0.57, p < 0.001) relative to that in controls. Furthermore, response (k = 3, odds ratio (OR) = 2.53, 95% CI = 1.24 to 5.15, p = 0.01) and remission (k = 3, OR = 1.84, 95% CI = 1.32 to 2.57, p < 0.001) rates were significantly higher in antidepressant-treated groups compared to those with controls. Although dropout rates did not differ between antidepressant and control groups (k = 6, OR = 0.93, 95% CI = 0.70 to 1.26, p = 0.68), the rate of discontinuation due to adverse events was significantly higher in antidepressant-treated groups (k = 6, OR = 0.55, 95% CI = 0.35 to 0.86, p = 0.01). Subgroup analysis indicated that antidepressants were also efficacious for depressive symptoms in those without diagnosis of MDD. The results demonstrated that antidepressants were efficacious for women with depressive syndromes during and after menopausal transition but associated with a higher risk of discontinuation due to adverse events

    Linking a dermal permeation and an inhalation model to a simple pharmacokinetic model to study airborne exposure to di(n-butyl) phthalate

    Get PDF
    Six males clad only in shorts were exposed to high levels of airborne di(n-butyl) phthalate (DnBP) and diethyl phthalate (DEP) in chamber experiments conducted in 2014. In two 6 h sessions, the subjects were exposed only dermally while breathing clean air from a hood, and both dermally and via inhalation when exposed without a hood. Full urine samples were taken before, during, and for 48 h after leaving the chamber and measured for key DnBP and DEP metabolites. The data clearly demonstrated high levels of DnBP and DEP metabolite excretions while in the chamber and during the first 24 h once leaving the chamber under both conditions. The data for DnBP were used in a modeling exercise linking dose models for inhalation and transdermal permeation with a simple pharmacokinetic model that predicted timing and mass of metabolite excretions. These models were developed and calibrated independent of these experiments. Tests included modeling of the “hood-on” (transdermal penetration only), “hood-off” (both inhalation and transdermal) scenarios, and a derived “inhalation-only” scenario. Results showed that the linked model tended to duplicate the pattern of excretion with regard to timing of peaks, decline of concentrations over time, and the ratio of DnBP metabolites. However, the transdermal model tended to overpredict penetration of DnBP such that predictions of metabolite excretions were between 1.1 and 4.5 times higher than the cumulative excretion of DnBP metabolites over the 54 h of the simulation. A similar overprediction was not seen for the “inhalation-only” simulations. Possible explanations and model refinements for these overpredictions are discussed. In a demonstration of the linked model designed to characterize general population exposures to typical airborne indoor concentrations of DnBP in the United States, it was estimated that up to one-quarter of total exposures could be due to inhalation and dermal uptake
    corecore