176 research outputs found
Analysis of the Steinmetz compensation circuit with distorted waveforms through symmetrical component-based indicators
This paper deals with the use of a set of indicators defined within a symmetrical component-based framework to study the characteristics of the Steinmetz compensation circuit in the presence of waveform distortion. The Steinmetz circuit is applied to obtain balanced currents in a three-phase system supplying a single-phase load. The circuit is analyzed without and with harmonic distortion of the supply voltages. The compensation effect is represented by the classical unbalance factor and by the Total Phase Unbalance (TPU) indicator defined in the symmetrical component-based framework. Comparing the two indicators, it is shown that the classical unbalance factor is insufficient to represent the effect of voltage distortion and fails to detect the lack of total unbalance compensation occurring with distorted waveforms. Correct information is provided by calculating the TPU indicator. © 2009 IEEE
Linearly constrained evolutions of critical points and an application to cohesive fractures
We introduce a novel constructive approach to define time evolution of critical points of an energy functional. Our procedure, which is different from other more established approaches based on viscosity approximations in infinite dimension, is prone to efficient and consistent numerical implementations, and allows for an existence proof under very general assumptions. We consider in particular rather nonsmooth and nonconvex energy functionals, provided the domain of the energy is finite dimensional. Nevertheless, in the infinite dimensional case study of a cohesive fracture model, we prove a consistency theorem of a discrete-to-continuum limit. We show that a quasistatic evolution can be indeed recovered as a limit of evolutions of critical points of finite dimensional discretizations of the energy, constructed according to our scheme. To illustrate the results, we provide several numerical experiments both in one and two dimensions. These agree with the crack initiation criterion, which states that a fracture appears only when the stress overcomes a certain threshold, depending on the material
Cellulose acetate membranes functionalized with resveratrol by covalent immobilization for improved osseointegration
Covalent immobilization of resveratrol onto cellulose acetate polymeric membranes used as coating on a Mg-1Ca-0.2Mn-0.6Zr alloy is presented for potential application in the improvement of osseointegration processes. For this purpose, cellulose acetate membrane is hydrolysed in the presence of potassium hydroxide, followed by covalent immobilization of aminopropyl triethoxy silane. Resveratrol was immobilized onto membranes using glutaraldehyde as linker. The newly synthesised functional membranes were thoroughly characterized for their structural characteristics determination employing X-ray photoelectron spectroscopy (XPS), infrared spectroscopy (FT-IR), Raman spectroscopy, thermogravimetric analysis (TGA/DTG) and scanning electron microscopy (SEM) techniques. Subsequently, in vitro cellular tests were performed for evaluating the cytotoxicity biocompatibility of synthesized materials and also the osseointegration potential of obtained derivatised membrane material. It was demonstrated that both polymeric membranes support viability and proliferation of the pre-osteoblastic MC3T3-E1 cells, thus providing a good protection against the potential harmful effects of the compounds released from coated alloys. Furthermore, cellulose acetate membrane functionalized with resveratrol exhibits a significant increase in alkaline phosphatase activity and extracellular matrix mineralization, suggesting its suitability to function as an implant surface coating for guided bone regeneration
Water-based strippable coatings containing bentonite clay for heavy metal surface decontamination
In this paper, a novel approach for water-based strippable coatings for surface decontamination is reported. The novelty of this work consists in the development of a new method of removing heavy metals from contaminated surfaces by using polyvinyl alcohol strippable coatings containing bentonite clay.
Viscosity measurements, evaporation rate tests, thermal analyses, FT-IR and tensile tests were performed for the optimization of the decontamination solution composition. For the decontamination experiments, copper surfaces were contaminated with mercury and, further, the decontamination water solutions containing polyvinyl alcohol, glycerol, EDTA and bentonite were applied onto these surfaces. After the removal of the polymer films, the copper coupons were subjected to SEM–EDX analysis, which revealed that introduction of bentonite in the polymer solution leads to a significant increase of the decontamination factor
X-ray anomalous scattering investigations on the charge order in -NaVO
Anomalous x-ray diffraction studies show that the charge ordering in
-NaVO is of zig-zag type in all vanadium ladders. We
have found that there are two models of the stacking of layers along
\emph{c-}direction, each of them consisting of 2 degenerated patterns, and that
the experimental data is well reproduced if the 2 patterns appears
simultaneously. We believe that the low temperature structure contains stacking
faults separating regions corresponding to the four possible patterns.Comment: Submitted to Phys. Rev. Lett., 4 pages, 4 eps figures inserted in the
tex
A vanishing viscosity approach to a rate-independent damage model
We analyze a rate-independent model for damage evolution in elastic bodies. The central quantities are a stored energy functional and a dissipation functional, which is assumed to be positively homogeneous of degree one. Since the energy is not simultaneously (strictly) convex in the damage variable and the displacements, solutions may have jumps as a function of time. The latter circumstance makes it necessary to recur to suitable notions of weak solution. However, the by-now classical concept of global energetic solution fails to describe accurately the behavior of the system at jumps. Hence, we consider rate-independent damage models as limits of systems driven by viscous, rate-dependent dissipation. We use a technique for taking the vanishing viscosity limit, which is based on arc-length reparameterization. In this way, in the limit we obtain a novel formulation for the rate-independent damage model, which highlights the interplay of viscous and rate-independent effects in the jump regime, and provides a better description of the energetic behavior of the system at jump
COMPETENCES AND JOB OPPORTUNITIES OF ORGANIC MEDICINAL AND AROMATIC PLANTS DOMAIN DEVELOPED BY HERBAL.MEDNET PROJECT
Herbal.Mednet project aims to design an e-learning training program for advisors and trainers in the field of organic Medicinal and Aromatic Plants (MAPs) in order to equip them with knowledge, competences and skills necessary for providing a support and technical and managerial assistance to producers, processors and traders of organic medicinal and aromatic plants domain. The results showed that more than 65% of the participants are quite familiar with using competences to describe a job profile, hence the overall feedback is of high importance.Almost of all users respond that competences are very useful in the thematic area of organic MAPs.The most of survey participants (over 65%) already are familiar and use the competence to describe job opportunities, and believe that it is a useful tool. From the results, it can be seen that the competence list that is been identified and is being used by the Herbal.Mednet consortium, reflects the needs in the organic MAPs job profiles
Using healthcare systems data for outcomes in clinical trials: issues to consider at the design stage.
BACKGROUND: Healthcare system data (HSD) are increasingly used in clinical trials, augmenting or replacing traditional methods of collecting outcome data. This study, PRIMORANT, set out to identify, in the UK context, issues to be considered before the decision to use HSD for outcome data in a clinical trial is finalised, a methodological question prioritised by the clinical trials community. METHODS: The PRIMORANT study had three phases. First, an initial workshop was held to scope the issues faced by trialists when considering whether to use HSDs for trial outcomes. Second, a consultation exercise was undertaken with clinical trials unit (CTU) staff, trialists, methodologists, clinicians, funding panels and data providers. Third, a final discussion workshop was held, at which the results of the consultation were fed back, case studies presented, and issues considered in small breakout groups. RESULTS: Key topics included in the consultation process were the validity of outcome data, timeliness of data capture, internal pilots, data-sharing, practical issues, and decision-making. A majority of consultation respondents (n = 78, 95%) considered the development of guidance for trialists to be feasible. Guidance was developed following the discussion workshop, for the five broad areas of terminology, feasibility, internal pilots, onward data sharing, and data archiving. CONCLUSIONS: We provide guidance to inform decisions about whether or not to use HSDs for outcomes, and if so, to assist trialists in working with registries and other HSD providers to improve the design and delivery of trials
Photonic band gaps in materials with triply periodic surfaces and related tubular structures
We calculate the photonic band gap of triply periodic bicontinuous cubic
structures and of tubular structures constructed from the skeletal graphs of
triply periodic minimal surfaces. The effect of the symmetry and topology of
the periodic dielectric structures on the existence and the characteristics of
the gaps is discussed. We find that the C(I2-Y**) structure with Ia3d symmetry,
a symmetry which is often seen in experimentally realized bicontinuous
structures, has a photonic band gap with interesting characteristics. For a
dielectric contrast of 11.9 the largest gap is approximately 20% for a volume
fraction of the high dielectric material of 25%. The midgap frequency is a
factor of 1.5 higher than the one for the (tubular) D and G structures
- …