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Abstract

We analyze a rate-independent model for damage evolution in elastic bodies. The central quan-

tities are a stored energy functional and a dissipation functional, which is assumed to be positively

homogeneous of degree one. Since the energy is not simultaneously (strictly) convex in the damage

variable and the displacements, solutions may have jumps as a function of time. The latter circum-

stance makes it necessary to recur to suitable notions of weak solution. However, the by-now classical

concept of global energetic solution fails to describe accurately the behavior of the system at jumps.

Hence, we consider rate-independent damage models as limits of systems driven by viscous, rate-

dependent dissipation. We use a technique for taking the vanishing viscosity limit, which is based on

arc-length reparameterization. In this way, in the limit we obtain a novel formulation for the rate-

independent damage model, which highlights the interplay of viscous and rate-independent effects in

the jump regime, and provides a better description of the energetic behavior of the system at jumps.

1 Introduction

In this paper, we focus on the modeling of damage in an elastic body Ω ⊂ Rd, d = 2, 3, during a time

interval [0, T ], as a rate-independent, activated process. The phenomenon is described in terms of a

damage parameter z : Ω× [0, T ]→ R, assessing the soundness of the material: usually, z takes values in

the interval [0, 1], and one has z(x, t) = 0 (z(x, t) = 1, respectively), when the system at the process time

t ∈ [0, T ] is fully damaged (completely sound), “locally” around x ∈ Ω. The driving energy is a function of

time (through the external loading), of the damage parameter z, and of the displacement variable u. We

consider small strains and assume that the elastic energy is quadratic. The external loading encompasses

time-dependent displacement boundary conditions, as well as volume and surface loading. All in all, the
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stored energy functional E : [0, T ] × U × Z → R (with the state space U =
{
v ∈ H1(Ω,Rd) ; v|ΓD = 0

}
for u, and Z the Sobolev-Slobodeckij space Hs(Ω), s ∈ {1, 3

2}, for z), is

E(t, u, z) :=
1

2
as(z, z) +

∫
Ω

f(z) dx+
1

2

∫
Ω

g(z)Cε(u+ uD(t)) : ε(u+ uD(t)) dx− 〈`(t), u〉U , (1.1)

where as is the bilinear form associated with the Hs semi-norm on Z = Hs(Ω), s ∈ {1, 3
2}, and ε(u) is the

symmetrized strain tensor. For the precise assumptions on the nonlinearities f : R→ R and g : R→ R,

the elasticity tensor C, the external loading ` = `(t), and the Dirichlet datum uD = uD(t), we refer the

reader to Section 2. We impose that at each time t ∈ [0, T ] the displacement u(t) minimizes the energy

E(t, ·, z(t)), namely

u(t) ∈ argminv∈U E(t, v, z(t)). (1.2a)

Dissipation occurs through the internal, fast variable z. As in [MR06, BMR09, TM10], we stay in the

rate-independent framework, which characterizes phenomena where the external loading is much slower

than the internal relaxation times. Hence, the evolution of z is described by the doubly nonlinear equation

∂R1(z′(t)) + DzE(t, u(t), z(t)) 3 0 in Z∗ for a.a. t ∈ (0, T ). (1.2b)

The above differential inclusion features the 1-positively homogeneous, unidirectional dissipation func-

tional R1 : Z → [0,∞] defined, for a given fracture toughness κ > 0 and η ∈ Z, by

R1(η) =


∫

Ω

κ |η(x)| dx if η ≤ 0 a.e. in Ω,

∞ else.
(1.3)

In (1.2b), DzE is the Gâteaux derivative of E w.r. to z, whereas ∂R1 : Z ⇒ Z∗ is the (convex analysis)

subdifferential of R1 in the frame of the duality between Z∗ and Z, i.e., for a given η ∈ dom(R1)

ζ ∈ ∂R1(η) if and only if R1(w)−R1(η) ≥ 〈ζ, w−η〉Z for all w ∈ Z. (1.4)

We observe that the dissipation potentialR1 only depends on z, and this causes a lack of time compactness

for u, but introducing the reduced energy functional I below allows us to deal with this degeneracy with

respect to u, and to formulate the problem only in the variable z. With

I : [0, T ]×Z → R, defined by I(t, z) = inf
v∈U
E(t, v, z), (1.5)

equations (1.2a) and (1.2b) are combined into

∂R1(z′(t)) + DzI(t, z(t)) 3 0 in Z∗ for a.a. t ∈ (0, T ). (1.6)

It will be shown in Lemma 2.7 that the Gâteaux derivative DzI is well defined on [0, T ]×Z and, taking

into account the concrete structure of DzI, (1.6) can be rewritten as

∂R1(z′(t))+Asz(t)+f ′(z(t))+
1

2
g′(z(t))Cε(u(t)+uD(t)) : ε(u(t)+uD(t)) 3 0 for a.a. t ∈ (0, T ), (1.7)

where As is the operator associated with the bilinear form as(·, ·), and u fulfills (1.2a). The model studied

here falls into the class of damage models introduced in [FN96, Kac86].
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Notice that the range of ∂R1 is ∂R1(0), which, due to (1.3), is an unbounded subset of Z∗. This will

cause difficulties when deriving uniform a-priori bounds. Since the reduced energy I arises as the minimum

of a family of not necessarily convex functionals, one cannot rely on standard convexity arguments to

study (1.6). Moreover, because of rate-independence we can only hope for a BV-control in time for z,

which does not prevent jumps. This calls for weak solvability notions for (1.6).

A well-established framework to describe rate-independent processes is the global energetic formulation

developed by Mielke & Theil, see [MT99, MT04, Mie05], and used, in the context of damage modeling,

in [MR06, BMR09, TM10, FKS12]. There, the evolution is characterized via a global stability criterion

and an energy balance, which must be satisfied during the whole evolution. Due to the global stability

condition, the prediction of the jumps of the solutions turns out to be not entirely satisfactory. Indeed,

global energetic solutions may change instantaneously in a very drastic way, jumping into very far-apart

energetic configurations (see, for instance, [Mie03, Ex. 6.1], [KMZ08, Ex. 6.3], and [MRS09, Ex. 1]), while

a local force balance criterion would predict a slow evolution.

In this paper, we discuss the vanishing viscosity approach as an alternative for the derivation of a local

rate-independent damage model. The philosophy that rate-independence should be considered as limit of

systems with smaller and smaller viscosity has by now been widely adopted in the applications, see, e.g.,

[TZ09, DDMM08, Cag08]. In the mainstream of the papers [EM06, MRS09, MRS12a, MZ12] on general

rate-independent systems, [KMZ08, KZM10, LT11] for rate-independent models of crack propagation, and

[BFM12, DDS11, DDS12] for rate-independent models in plasticity, we exploit this vanishing viscosity

approach to obtain a more precise description of the system behavior at jumps. Hence, we approximate

(1.6) with the doubly nonlinear equation

∂Rε(z′(t)) + DzI(t, z(t)) 3 0 in Z∗ for a.a. t ∈ (0, T ), (1.8)

where the dissipation functional Rε features an additional L2-viscosity term, viz.

Rε(η) = R1(η) +R2,ε(η) with R2,ε(η) = ε
2 ‖η‖

2
L2(Ω)

.
= εR2(η) for η ∈ Z. (1.9)

Let us mention that damage models with viscous dissipation (possibly with viscosity and inertia in the

displacement equation, and coupled with thermal effects) have been analyzed in [BS04, BSS05, BB08,

FK06], as well as in [HK10], where damage is coupled with phase separation processes. Bridging a

connection between the rate-dependent and rate-independent modeling approaches, in this paper we aim

to study the limit of (1.8), as the viscosity parameter ε tends to zero. Our vanishing viscosity results

hinge on a preliminary analysis of the Cauchy problem for (1.8), for which we establish an existence

result, cf. Theorem 3.3.

As it was shown in [EM06, MRS09, MRS12a, MZ12] for general rate-independent systems, passing to

the limit as ε↘ 0 in (1.8) leads to an alternative weak formulation of (1.6), featuring a finer description

of the solution jumps, which anyway occur later than for global energetic solutions. The key idea from

[EM06] is that, at jumps the vanishing viscosity solutions to (1.6) follow a path which is reminiscent

of the viscous approximation. To reveal this, one has to go over to an extended state space and study

the limiting behavior of the sequence (t̂ε, ẑε)ε as ε ↓ 0, for a suitable reparameterization ẑε = zε ◦ t̂ε of

a family (zε)ε of viscous solutions to (1.8), see (1.14) and (1.15) below. After establishing the relevant

a-priori estimates in Section 4, in Section 5 we will prove that, up to a subsequence, the functions (t̂ε, ẑε)ε

converge to a so-called Z-parameterized solution of (1.6). While referring to Definition 5.2 for the precise

assessment of Z-parameterized solutions, here we just mention that the limit pair (t̂, ẑ) is a Lipschitz
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continuous curve (t̂, ẑ) : [0, S]→ [0, T ]×Z, fulfilling a parameterized doubly nonlinear evolution equation,

viz.

∂R1(ẑ′(s)) + λ(s)ẑ′(s) + DzI(t̂(s), ẑ(s)) 3 0 in Z∗ for a.a. s ∈ (0, S), (1.10)

where λ : (0, S) → (0,+∞) is a Borel function such that t̂′(s)λ(s) = 0 a.e. in (0, S). Notice that

(1.10) encompasses both rate-independent evolution and, when the system jumps, the influence of rate-

dependent dissipation. To reveal this, we observe that the time function t̂ : [0, S] → [0, T ] encodes the

(slow) external time scale. When t̂′ > 0 on some interval (s1, s2), we have λ = 0 on (s1, s2), hence (1.10)

is simply a parameterized version of (1.6): the system dissipation is only due to rate-independent, dry

friction. When t̂′ = 0 on some interval (s1, s2), the external time is frozen. Indeed, the system has

switched to a different regime, which is seen as a jump in the slow external time scale. If λ > 0 in (1.10),

also viscous dissipation is active. This is in accordance with the following interpretation: jumps are fast

(with respect to the slow external time scale) transitions between two metastable states, during which

the system may switch to a viscous regime. We refer to [EM06, MRS09, MRS12a], and to Section 5, for

further observations on (1.10).

Let us shortly compare our model and results with the results for the damage model developed in [GL09,

FG06]. In these papers, the influence of the damage state on the elastic properties is not postulated as in

our case (where the effective tensor is defined by g(z)C), but it is the outcome of a certain homogenization

procedure that takes place during the evolution process. It is shown in [GL09] that the solutions are

(possibly discontinuous) threshold solutions. Roughly speaking, this means in particular that solutions

do not jump before the forces reach a certain critical value. In the one-dimensional setting, the model from

[GL09] can be reformulated in terms of a convex, but not strictly convex, reduced energy I (cf. Remark 6

in [FG06]) and the dissipation potential R1 from (1.3). In this one-dimensional case, due to the convexity

of I, the threshold solutions from [GL09] coincide with solutions of the corresponding global energetic

model, as well as with the vanishing viscosity solutions considered here.

The main difficulties for the existence and vanishing viscosity analysis of (1.8) are of course related to

its doubly nonlinear character. In particular, let us note in (1.7) the simultaneous presence of a quadratic

term in ε(u) (featured from the derivative DzI of the nonconvex energy I), and of the multivalued oper-

ator ∂R1. Indeed, differently from [EM06, MRS09, MRS12a, MZ12], here we are enforcing irreversibility,

hence the operator ∂R1 : Z ⇒ Z∗ is unbounded. This makes it difficult to derive suitable bounds for

the thermodynamically conjugated force, i.e. the derivative DzI, and it motivates the presence of the

regularizing term as in the energy functional, hence our choice of the Z-topology, which is stronger than

the natural one associated with R1. Indeed, one technical difficulty is that on the one hand it is possible

to derive an estimate for z′ in L2(0, T ;L2(Ω)) and for the term DzI(t, z(t)) in the space L∞(0, T ;Z∗), and

a comparison argument in (1.8) will not give additional information on DzI, due to the unboundedness

of the term ∂R1(z′(t)). On the other hand, it is crucial both, for the existence and for the vanishing

viscosity analysis of (1.8), that the terms DzI and z′ are in duality.

In fact, the key step for the proof of existence of viscous solutions to (1.8) (cf. Theorem 3.3), is to

obtain for viscous solutions (zε)ε>0 ⊂ H1(0, T ;L2(Ω)), the improved bound

‖z′ε‖L2(0,T ;Z) ≤ Cε, (1.11)

where Cε is a positive constant which depends on the viscosity parameter ε and explodes as ε ↘ 0. We

will prove (1.11) by means of careful estimates carried out for related time-incremental problems. Here

we rely on a refined elliptic regularity result for the Euler-Lagrange equation for the minimum problem

(1.2a), from the recent [HMW11]. We highlight that this regularity result does not hinge on smoothness
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of the boundary ∂Ω, and thus it allows us to deal with a broad class of domains, as well as with mixed

boundary conditions, which is crucial for real-world applications.

Next, we develop enhanced estimates, relying on the parabolic character of (1.7) and partially drawn

from [MZ12]. In this way, we obtain for viscous solutions the further BV-bound

‖z′ε‖L1(0,T ;Z) ≤ C, (1.12)

for a constant C which is now independent of ε > 0. Indeed, estimate (1.12) is the starting point for

the vanishing viscosity analysis developed Theorem 5.3. Thanks to (1.12) it is possible to reparameterize

viscous solutions (zε)ε>0 by the Z-arclength of their graph, which leads in the limit ε ↘ 0 to the

aforementioned Z-parameterized solutions.

In Section 4 we shall prove the estimates (1.11) and (1.12) by working on the time-discretization scheme

associated with (1.8): in particular, we shall suitably adapt to the time-discrete setting the arguments

from [MZ12, Lemma 3.4]. Note that this is not trivial and will involve an extension of the sharp, time-

discrete Gronwall-type Lemma in [NSV00], cf. Lemma 4.9 later on. Moving from (1.12), we shall perform

the vanishing viscosity analysis as ε↘ 0 in Section 5.

For a different approach to the proof of estimates (1.11) and (1.12) the reader is referred to the Preprint

version of this article [KRZ11], where we regularize (1.8) by adding a Z-viscosity term, modulated by

a “small” parameter δ > 0. We obtain both estimate (1.11) (with a constant depending on ε but

independent of δ) and estimate (1.12) (with a constant independent of ε and δ), for the solutions of

the δ-regularized viscous problem. Hence, we pass to the limit as δ ↘ 0 and conclude the existence of

solutions to the Cauchy problem for (1.8).

We emphasize that the time-discrete approach is clearly interesting in view of numerical analysis.

Indeed, it has been proved in [MRS12a] (cf. also the forthcoming [MRS12c]) for general rate-independent

systems, and in [KMZ08] for a crack propagation model that, passing to the limit in the time-discretization

scheme for (1.8) as both the viscosity parameter and the time-step tend to zero, leads to the so-called BV

solutions to (1.6). Loosely speaking, the latter concept is the “non-parameterized” version of the notion

of parameterized solution. We plan to address within our damage model this simultaneous passage to the

limit, as well as the analysis of BV solutions. Taking into account also spatial discretizations, the task

is to derive relations between the discretization parameters (time-step size τn, mesh size hn, viscosity

νn) such that in the limit (τn, hn, νn)→ 0 the approximate solutions converge to the vanishing viscosity

solution (and not, for instance, to global energetic solutions), cf. [KS12], where a similar question for

a crack propagation model is discussed. The arguments developed in Section 4 on the time-discrete

problems will be fundamental for these studies.

A second issue we are going to address in the future, is to replace the linear s-Laplacian in (1.7) with the

nonlinear p-Laplacian operator, which is usually found in models for damage, cf. [MR06, BMR09, TM10].

The key step for doing so will be to obtain, via regularity arguments, enhanced estimates for the term

DzI(t, z(t)) in (1.8). We are convinced that the careful study of the properties of the reduced functional

I performed in Section 2 as well as the discretization tools and estimates that have been established in

Section 4, will be of some interest also in other contexts.

Our main result. For the reader’s convenience, we collect here the main results of this paper, referring

to the statements throughout the paper for the precise assumptions.

First, in Section 2, relying on the recent regularity results from [HMW11] we derive basic properties

of the marginal energy functional I. These include the Gâteaux-differentiability as well as continuity
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properties of DzI and ∂tI with respect to weak and strong convergence.

Estimates (1.11) and (1.12) are derived based on a time-discretization scheme associated with (1.8).

We prove that for given ε > 0, z0 ∈ Z, and a partition {0 = tτ0 < . . . < tτN = T} of the time interval [0, T ]

with time step τ = tτk+1 − tτk, k = 0, . . . , N − 1, there exist elements (zτk )0≤k≤N such that zτ0 = z0 and

∂R1

(
zτk+1 − zτk

τ

)
+ ε

zτk+1 − zτk
τ

+ DzI(tτk+1, z
τ
k+1) 3 0. (1.13)

Hence we consider the piecewise linear interpolants (ẑτ )τ of the discrete solutions to (1.13) and, under

suitable assumptions, in Theorem 4.3 show that for every sequence τ j ↘ 0 as j →∞ there exists a (not

relabeled) subsequence of (ẑτj ) and zε ∈ H1(0, T ;Z) such that ẑτj ⇀ zε weakly in H1(0, T ;Z) and zε

is a solution to the Cauchy problem for (1.8). Under additional regularity assumptions, in Theorem 3.7

we prove that the latter Cauchy problem in fact admits a unique solution zε ∈ H1(0, T ;Z). Further (cf.

Proposition 4.5), in the case of dimension d = 2, if the initial datum z0 fulfills z0(x) ∈ [0, 1] for a.a. x ∈ Ω,

then every viscous solution zε constructed via time-discretization also fulfills

zε(t, x) ∈ [0, 1] for a.a.x ∈ Ω, for all t ∈ [0, T ].

The starting point for the vanishing viscosity analysis as ε→ 0 is the crucial BV-estimate

sup
ε>0

∫ T

0

‖z′ε(t)‖Z dt ≤ C0

for viscous solutions to (1.8), see Theorem 3.3 and Corollary 4.8. Based on this, we are entitled to consider

the graph Graph(zε) := { (t, zε(t)) ; t ∈ [0, T ] } ⊂ [0, T ]×Z and its Z-arclength parameterization

sε(t) = t+

∫ t

0

‖z′ε(r)‖Z dr. (1.14)

For Sε = sε(T ) we introduce the functions t̂ε : [0, Sε]→ [0, T ] and ẑε : [0, Sε]→ Z

t̂ε(s) := s−1
ε (s), ẑε(s) := zε(t̂ε(s)) (1.15)

and study the limiting behavior as ε→ 0 of the parameterized viscous trajectories
{

(t̂ε(s), ẑε(s)) ; s ∈ [0, Sε]
}

.

In Theorem 5.3 and Proposition 5.7 we prove that there exist S > 0 such that for every sequence

εn ↘ 0, up to a not relabeled subsequence there exists a pair (t̂, ẑ) ∈ C0
lip([0, S]; [0, T ]×Z) with

(t̂εn , ẑεn)
∗
⇀ (t̂, ẑ) in W 1,∞(0, S; [0, T ]×Z),

and (t̂, ẑ) is a Z-parameterized solution in the sense of Def. 5.2, fulfilling the parameterized doubly

nonlinear evolution equation (1.10).

Plan of the paper. In Section 2 we set up the model and thoroughly analyze the properties of the

reduced energy I. Next, in Section 3 we state Theorem 3.3 (=existence of solutions and a priori estimates

uniform w.r. to the viscosity parameter ε) for the Cauchy problem associated with (1.8). In Sec. 3 we

also discuss uniqueness of viscous solutions under special assumptions. We prove Thm. 3.3 via a time-

discretization in Section 4. Finally, in Section 5 we develop the vanishing viscosity analysis of (1.8).
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2 The energy functional and its properties

2.1 Set-up

Hereafter Ω ⊂ Rd, d ∈ {2, 3}, is a bounded domain with Lipschitz boundary, and ∂Ω = ΓD ∪ ΓN , with

the open Dirichlet boundary ΓD such that Hd−1(ΓD) > 0, and the Neumann boundary ΓN . We shall

assume that

ΓD and ΓN are regular in the sense of Gröger, [Grö89], (2.1)

viz., loosely speaking, that the hypersurface separating ΓD and ΓN is Lipschitz.

Notation. For a given Banach space X, we shall denote by 〈·, ·〉X the duality pairing between X∗

and X, and, if X is a Hilbert space, we shall use the symbol (·, ·)X for its scalar product. For matrices

A,B ∈ Rm×d the inner product is defined by A : B = tr(B>A) =
∑m
i=1

∑d
j=1 aijbij .

The letter Q shall stand for the space-time cylinder Ω × (0, T ). The following function spaces and

notation shall be used for σ ≥ 0, p ∈ [1,∞]:

- Wσ,p(Ω) Sobolev-Slobodeckij spaces, Hσ(Ω) := Wσ,2(Ω),

- W 1,p
ΓD

(Ω) :=
{
u ∈W 1,p(Ω) ; u

∣∣
ΓD

= 0
}

and W−1,p
ΓD

(Ω) :=
(
W 1,p′

ΓD
(Ω)
)∗

the dual space, 1
p + 1

p′ = 1.

We shall denote by u : Ω→ Rd the displacement, and by z : Ω→ R the (scalar) damage variable. The

corresponding state spaces are

U =
{
v ∈ H1(Ω,Rd) ; v

∣∣
ΓD

= 0
}

= W 1,2
ΓD

(Ω,Rd) (2.2)

Z = Hs(Ω), with s ≥ d

2
. (2.3)

In fact, we restrict to the case s < 2, so that the associated bilinear form on Z is:

as(z1, z2) =

∫
Ω

∇z1 · ∇z2 dx if s = 1, (2.4a)

as(z1, z2) =

∫
Ω

∫
Ω

(
∇z1(x)−∇z1(y)

)
·
(
∇z2(x)−∇z2(y)

)
|x− y|d+2(s−1)

dxdy if s ∈ (1, 2). (2.4b)

Recall that Z is a Hilbert space, with the inner product (z1, z2)Z = (z1, z2)L2(Ω) +as(z1, z2). We denote

by As : Z → Z∗ the associated operator, viz.

〈As(z), w〉Z := as(z, w) for every z, w ∈ Z. (2.5)

Notice that

Z b Lr(Ω) for every r ∈ [1,∞). (2.6)

Furthermore, since Z is dense in L2(Ω), we have that (Z, L2(Ω) ∼= L2(Ω)∗,Z∗) is a Hilbert triple. In

particular, every element of L2(Ω) is identified with an element in Z∗, and we thus have

Z ⊂ L2(Ω) ⊂ Z∗. (2.7)
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2.2 The energy functional

The energy is given by the sum of the elastic energy and an energy only depending on the damage

variable. As for the latter contribution, we consider a function

f ∈ C2(R), such that ∃K1, K2, K3 > 0 ∀x ∈ R : |f ′′(x)| ≤ K1 and f(x) ≥ K2 |x|2−K3. (2.8)

A typical choice for f is f(z) = (1− z)2, see [Gia05]. We then have the functional

I1 : Z → R defined by I1(z) :=
1

2
as(z, z) +

∫
Ω

f(z) dx .

Linearly elastic materials are considered with an elastic energy density

W (x, η) =
1

2
C(x)η : η, for η ∈ Rd×dsym and almost every x ∈ Ω.

Hereafter, we shall suppose for the elasticity tensor that

C ∈ L∞(Ω,Lin(Rd×dsym ,Rd×dsym)) (2.9a)

∃ γ0 > 0 for all ξ ∈ Rd×dsym and almost all x ∈ Ω : C(x)ξ : ξ ≥ γ0 |ξ|2 . (2.9b)

Let g : R→ R be a further constitutive function such that

g ∈ C2(R), with g′, g′′ ∈ L∞(R), and ∃ γ1, γ2 > 0 : ∀ z ∈ R : γ1 ≤ g(z) ≤ γ2. (2.10)

Given an external loading ` ∈ C0([0, T ],U∗) and a Dirichlet datum uD ∈ C0([0, T ];H1(Ω,Rd)), we take

the elastic energy

E2 : [0, T ]× U × Z → R defined by E2(t, u, z) :=

∫
Ω

g(z)W (ε(u+ uD(t))) dx− 〈`(t), u〉U (2.11)

where ε(u) = 1
2 (∇u+∇uT ) is the symmetrized strain tensor. For u ∈ U and z ∈ Z the stored energy is

then defined as

E(t, u, z) = I1(z) + E2(t, u, z).

Minimizing the stored energy with respect to the displacements we obtain the reduced energy

I : [0, T ]×Z → R given by I(t, z) = I1(z) + I2(t, z) with I2(t, z) = inf { E2(t, v, z) ; v ∈ U } . (2.12)

Remark 2.1. For our main results on the vanishing viscosity analysis of (1.6) (cf. Theorems 3.3 and 5.3

later on), it will be sufficient to suppose that the index s in (2.3) fulfills s = d
2 . In particular, let us

highlight that, in the bi-dimensional case d = 2, we have s = 1, hence the operator As reduces to the

usual Laplacian operator.

Remark 2.2. As we have already pointed out, the irreversibility of the damage process is enforced in our

model through the choice of the dissipation functional (1.3). Instead, so far we have not included in our

model the constraint that the damage variable z only take values in [0, 1]: indeed, the term I[0,1](z) does

not contribute to the energy I. However, in Section 4 we shall prove via a time-discretization procedure

that, in the bi-dimensional case d = 2 and under suitable assumptions on the nonlinearities g and f , if
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the initial datum z0 satisfies z0(x) ∈ [0, 1] for almost every x ∈ Ω, then there exists a viscous solution

z ∈ H1(0, T ;Z) with z(0) = z0 and z(x) ∈ [0, 1] for almost every x ∈ Ω. Ultimately, with the vanishing

viscosity analysis developed in Section 5, we shall obtain parameterized solutions to the rate-independent

system for damage, which only take values in [0, 1]. The proof relies on a comparison principle argument

that cannot be adapted to the case with Hs-regularizations, s ≥ 3
2 . However, using a p-Laplace-like

regularization instead of a Hs-regularization would allow us to prove the non-negativity of z also in

higher space dimension.

Notation 2.3. Hereafter, throughout the paper we shall use the symbols c, c′, C, and C ′ for various

positive constants which only depend on known quantities, and whose meaning may vary even in the

same line.

2.3 Properties of the energy functional

A regularity result from [HMW11]. The following result has been recently proved in [HMW11] (cf.

Thm. 1.1 therein): For C as in (2.9a), g as in (2.10), and z ∈ Z, let Lz be the linear elliptic operator

defined by

〈Lz(v), w〉U :=

∫
Ω

g(z(x))C(x)ε(v(x)) : ε(w(x)) dx for all v, w ∈ U . (2.13)

Then,

there exists p > 2 s.t. for all p̃ ∈ [2, p] Lz : W 1,p̃
ΓD

(Ω;Rd)→W−1,p̃
ΓD

(Ω;Rd) is an isomorphism, (2.14)

and there exists some constant c0 > 0, only depending on ‖C‖L∞(Ω) and ‖g‖L∞(R), such that

‖L−1
z h‖

W 1,p̃
ΓD

(Ω)
≤ c0‖h‖W−1,p̃

ΓD
(Ω)

for all h ∈W−1,p̃
ΓD

(Ω) and p̃ ∈ [2, p]. (2.15)

Notice that, in particular, the integrability exponent p and the constant c0 are independent of z ∈ Z.

Relying on this regularity result, in the next lemmatas we prove some crucial properties of the reduced

energy (2.12).

Assumptions on the initial data. Hereafter, we shall require that

` ∈ C1,1([0, T ];W−1,p
ΓD

(Ω;Rd)), uD ∈ C1,1([0, T ];W 1,p(Ω;Rd)) with p > 2 from (2.14). (2.16)

Coercivity of the reduced energy and properties of minimizers.

Lemma 2.4 (Existence of minimizers and their regularity).

Let s = d/2. Under assumptions (2.1), (2.8)–(2.10), and (2.16), for every (t, z) ∈ [0, T ]×Z there exists a

unique umin(t, z) ∈ U , which minimizes E(t, z, ·). Moreover, there exists p > 2 such that for all p̃ ∈ [2, p]

and (t, z) ∈ [0, T ]×Z it holds that umin(t, z) ∈W 1,p̃
ΓD

(Ω), and

∀ (t, z) ∈ [0, T ]×Z : ‖umin(t, z)‖
W 1,p̃(Ω)

≤ c0
(
‖`(t)‖

W−1,p̃
ΓD

(Ω)
+ ‖uD(t)‖

W 1,p̃(Ω)

)
, (2.17)

where c0 is the constant from (2.15). Furthermore, the following coercivity inequality for I is valid: There

exist constants c1, c2 > 0 such that for all (t, z) ∈ [0, T ]×Z it holds

I(t, z) ≥ c1
(
‖z‖2Hs(Ω) + ‖umin(t, z)‖2H1(Ω)

)
− c2. (2.18)
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Proof. Taking into account (2.10), (2.16), and employing Korn’s inequality, it is immediate to see that

for every (t, z) ∈ [0, T ]×Z the functional E2(t, z, ·) is uniformly convex on U . Therefore, E2(t, z, ·) (and,

hence, E(t, z, ·)), has a unique minimizer umin(t, z), satisfying the Euler equation

Lz(umin(t, z) + uD(t)) = `(t) for every t ∈ [0, T ]. (2.19)

Since `(t) ∈W−1,p
ΓD

(Ω) for all t ∈ [0, T ] by (2.16), from (2.14) we deduce that umin(t, z) ∈W 1,p̃
ΓD

(Ω) for all

p̃ ∈ [2, p]. Then, (2.17) follows from (2.15) and assumption (2.16).

Finally, estimate (2.18) follows from combining

I2(t, z) = E2(t, umin(t, z), z) ≥ γ1γ0

2

∫
Ω

|ε(umin(t, z) + uD(t))|2 dx− ‖`(t)‖H−1(Ω) ‖umin(t, z)‖U

≥ C ‖umin(t, z)‖2U − C
′
(
‖uD‖2L∞(0,T ;H1(Ω)) + ‖`‖2L∞(0,T ;H−1(Ω))

)
,

(where we have again used (2.10), Korn’s inequality, (2.16) and (2.17)), with

I1(t, z) ≥ 1

2
as(z, z) + C‖z‖2L2(Ω) − C

′ ≥ C‖z‖2Hs(Ω) − C
′ ,

where the first inequality follows from (2.8), and the second one from a Poincaré-type inequality.

Lemma 2.5 (Continuous dependence on the data).

Let s = d/2. Under assumptions (2.1), (2.8)–(2.10), there exists a constant c3 > 0 such that for all ` and

uD with (2.16), all z1, z2 ∈ Z, all t1, t2 ∈ [0, T ] and all p̃ ∈ [2, p) it holds with r = pp̃(p− p̃)−1

‖umin(t1, z1)− umin(t2, z2)‖
W 1,p̃(Ω)

≤ c3
(
|t1 − t2|+ ‖z1 − z2‖Lr(Ω)

)(
‖`‖C1([0,T ];W−1,p

ΓD
(Ω)) + ‖uD‖C1([0,T ];W 1,p(Ω))

)
. (2.20)

Proof. For i = 1, 2, let ui := umin(ti, zi) ∈ W 1,p(Ω), with p from Lemma 2.4. From the Euler-Lagrange

equation (2.19) written for ui, i = 1, 2, with algebraic manipulations we obtain that u1 − u2 satisfies for

all v ∈ U∫
Ω

g(z1)Cε(u1 − u2) : ε(v) dx =

∫
Ω

(
g(z2)− g(z1)

)
Cε(u2) : ε(v) dx

−
∫

Ω

(
g(z1)Cε(uD(t1))− g(z2)Cε(uD(t2))

)
: ε(v) dx+ 〈`(t1)− `(t2), v〉U .

(2.21)

Hence, the function u1 − u2 fulfills∫
Ω

g(z1)Cε(u1 − u2) : ε(v) dx = 〈˜̀1,2, v〉 for all v ∈ U ,

where ˜̀
1,2 ∈W−1,p̃

ΓD
(Ω) subsumes the terms on the right-hand side of (2.21). Therefore, (2.15) gives

‖u1 − u2‖W 1,p̃(Ω)
≤ c0

∥∥∥˜̀
1,2

∥∥∥
W−1,p̃

ΓD
(Ω)

,
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whence we deduce the estimate

‖u1 − u2‖W 1,p̃(Ω)
≤ c0

(
‖`(t1)− `(t2)‖

W−1,p̃
ΓD

(Ω)
+ ‖(g(z1)− g(z2))Cε(u2)‖

Lp̃(Ω)

+ ‖g(z1)Cε(uD(t1))− g(z2)Cε(uD(t2))‖
Lp̃(Ω)

)
. (2.22)

Now, the Lipschitz continuity of g and Hölder’s inequality imply that

‖(g(z1)− g(z2))Cε(u2)‖
Lp̃(Ω)

≤ C ‖z1 − z2‖Lr(Ω) ‖ε(u2)‖Lp(Ω) ≤ C
′ ‖z1 − z2‖Lr(Ω) (2.23)

with r = pp̃(p− p̃)−1, where the second inequality follows from (2.16) and from estimate (2.17). We use

(2.23) to estimate the second term on the right-hand side of (2.22). As for the third summand, we have

‖g(z1)Cε(uD(t1))− g(z2)Cε(uD(t2))‖
Lp̃(Ω)

≤ ‖(g(z1)− g(z2))Cε(uD(t1))‖
Lp̃(Ω)

+ ‖g(z2)C(ε(uD(t1)))− ε(uD(t2)))‖
Lp̃(Ω)

≤ C
(
‖z1 − z2‖Lr(Ω) ‖uD‖L∞(0,T ;W 1,p(Ω)) + ‖uD(t1)− uD(t2)‖W 1,p(Ω)

)
, (2.24)

where the latter inequality again follows from (2.23), and from the fact that g ∈ L∞(R). Combining all

of the above inequalities, and relying on (2.16), we finally arrive at (2.20).

Differentiability w.r. to time.

Lemma 2.6 (Differentiability and growth w.r. to time).

Let s = d/2. Under assumptions (2.1), (2.8)–(2.10) and (2.16), for every z ∈ Z the map t 7→ I(t, z)

belongs to C1([0, T ],R) with

∂tI(t, z) =

∫
Ω

g(z)C(ε(umin(t, z) + uD(t))) : ε(u̇D(t)) dx− 〈 ˙̀(t), umin(t, z)〉. (2.25)

Moreover, there exists a constant c4 > 0 such that for all t ∈ [0, T ], z ∈ Z and uD, ` with (2.16) we have

|∂tI(t, z)| ≤ c4
(
‖uD‖2C1([0,T ];W 1,p(Ω)) + ‖`‖2C1([0,T ];W−1,p

ΓD
(Ω))

)
. (2.26)

Finally, for all r ∈ [ p
p−2 ,∞) there exists a constant c5 > 0 depending on ‖`‖C1,1([0,T ];W−1,p

ΓD
(Ω)) and

‖uD‖C1,1([0,T ];W 1,p(Ω)) such that for all ti ∈ [0, T ] and zi ∈ Z we have

|∂tI(t1, z1)− ∂tI(t2, z2)| ≤ c5
(
|t1 − t2|+ ‖z1 − z2‖Lr(Ω)

)
. (2.27)

Proof. Relation (2.25) follows from direct calculations. Then,

|∂tI(t, z)| ≤ c3
(
‖uD‖C1([0,T ];H1(Ω)) + ‖`‖C1([0,T ];U∗)

)
‖umin(t, z)‖H1(Ω) + c5 ‖uD‖2C1([0,T ];H1(Ω)) .
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In view of (2.17) we arrive at (2.26). In order to prove (2.27), we calculate

∂tI(t1, z1)− ∂tI(t2, z2)

=

∫
Ω

(g(z1)−g(z2))C(ε(umin(t1, z1) + uD(t1))) : ε(u̇D(t1)) dx

+

∫
Ω

g(z2)C(ε(umin(t1, z1) + uD(t1))−ε(umin(t2, z2) + uD(t2))) : ε(u̇D(t1)) dx

+

∫
Ω

g(z2)C(ε(umin(t2, z2) + uD(t2))) : (ε(u̇D(t1))−ε(u̇D(t2))) dx

− 〈 ˙̀(t1)− ˙̀(t2), umin(t1, z1)〉+ 〈 ˙̀(t2), umin(t2, z2)−umin(t1, z1)〉 .= I1 + I2 + I3 + I4 + I5

To estimate I1, I2, and I3 we rely on the fact that g, g′ ∈ L∞(R), on the previously proved (2.17) and

(2.20), and on the following Hölder-estimate: For z ∈ Z and vi ∈W 1,q(Ω) we have

‖z |∇v1| |∇v2|‖L1(Ω) ≤ ‖z‖Lr(Ω) ‖v1‖W 1,q(Ω) ‖v2‖W 1,q(Ω) ,

with q defined by 1
r+ 2

q = 1, i.e. r = q/(q−2). The estimates for I4 and I5 ensue from (2.16) and (2.20).

Differentiability w.r. to z. The differentiability of I with respect to z will be studied in the Z −Z∗

duality. In particular, DzI(t, ·) : Z → Z∗ shall denote the Gâteaux-differential of the functional I(t, ·).

Lemma 2.7 (Gâteaux-differentiability).

Let s = d/2. Under assumptions (2.1), (2.8)–(2.10) and (2.16), for all t ∈ [0, T ] the functional I(t, ·) :

Z → R is Gâteaux-differentiable at all z ∈ Z, and for all η ∈ Z we have

DzI(t, z)[η] = as(z, η) +

∫
Ω

f ′(z)η dx+

∫
Ω

g′(z)W̃ (t,∇umin(t, z))η dx, (2.28)

where we use the abbreviation W̃ (t,∇v) = W (∇v+∇uD(t)) = 1
2Cε(v+uD(t)):ε(v+uD(t)). In particular,

the following estimate holds

∃ c6 > 0 ∀ (t, z) ∈ [0, T ]×Z : ‖DzI(t, z)‖Z∗ ≤ c6 (‖z‖Z + 1) . (2.29)

Proof. The Gâteaux-differentiability of I1 follows from the definition of the bilinear form as(·, ·) and

assumption (2.8) on f . We only have to verify the Gâteaux-differentiability of I2(t, z). In this direction,

let u ∈W 1,p̃
ΓD

(Ω) with p̃ ∈ (2, p), p as in Lemma 2.4, and t ∈ [0, T ] be fixed. The mapping E2(t, u, ·) : Z → R
is Gâteaux-differentiable, as shown by the following calculations: Let z, η ∈ Z, h ∈ R\{0}, and set

bh(z, η) := h−1
(
E2(t, u, z + hη)− E2(t, u, z)

)
=

∫
Ω

∫ 1

0

g′(z + σhη)ηW̃ (t,∇u)dσ dx.

For h → 0 the integrand pointwise converges to g′(z)ηW̃ (t,∇u). Moreover, since Z ⊂ Lr(Ω) for all

r ∈ [1,∞) and since W̃ (t,∇u) ∈ L
p̃
2 (Ω), the function x 7→ ‖g′‖L∞(R) |η(x)| W̃ (t,∇u(x)) is an integrable

majorant. Hence, with Lebesgue’s theorem it follows that for h → 0 the sequence (bh(z, η))h converges

to b(z, η) :=
∫

Ω
g′(z)ηW̃ (t,∇u) dx. Observe that for every z the mapping b(z, ·) : Z → R is an element

of Z∗. This proves that E2(t, u, ·) is Gâteaux differentiable, with

DzE2(t, u, z)[η] =

∫
Ω

g′(z)ηW̃ (t,∇u) dx for all η ∈ Z. (2.30)
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The previous calculations show that for h↘ 0 we have

lim sup
h↘0

h−1
(
I2(t, z + hη)− I2(t, z)

)
≤ lim
h↘0

h−1
(
E2(t, umin(t, z), z + hη)− E2(t, umin(t, z), z)

)
= DzE2(t, umin(t, z), z)[η].

On the other hand, for h > 0 the following inequality is valid:

h−1
(
I2(t, z + hη)− I2(t, z)

)
≥ h−1

(
E2(t, umin(t, z + hη), z + hη)− E2(t, umin(t, z + hη), z)

)
=

∫
Ω

∫ 1

0

g′(z + σhη)ηW̃ (t,∇umin(t, z + hη))dσ dx. (2.31)

Choose 2 < p̃ < p with p from Lemma 2.4. From (2.20) it follows that umin(t, z + hση)
h→0→ umin(t, z)

strongly in W 1,p̃(Ω). Hence, W̃ (t,∇umin(t, z + hση)) converges strongly in L
p̃
2 (Ω) to W̃ (t,∇umin(t, z)).

Moreover, g′(z + hση)η converges to g′(z)η strongly in Lp̃/(p̃−2)(Ω), since g′ is continuous and bounded.

Hence, the right-hand side in (2.31) converges to DzE2(t, umin(t, z), z)[η] given by (2.30). This proves

that for every (t, z) ∈ [0, T ]×Z

DzI2(t, z)[η] =

∫
Ω

g′(z)ηW̃ (t,∇umin(t, z)) dx for all η ∈ Z, (2.32)

whence (2.28). Relying on (2.8), which in particular yields that f ′ is Lipschitz continuous on R, on (2.10),

and on (2.16), we easily deduce the estimate

‖DzI(t, z)‖Z∗ ≤ C
(

1 + ‖z‖Z + ‖umin‖2H1(Ω)

)
.

Then, (2.29) ensues from estimate (2.17).

Lemma 2.8 (Lipschitz continuity of DzI).

Let s = d/2. Assume (2.1), (2.8)–(2.10) and (2.16), and set

Ĩ(t, z) := I2(t, z) +

∫
Ω

f(z) dx for all (t, z) ∈ [0, T ]×Z. (2.33)

For every r ∈ ( 3p
p−2 ,+∞) (where p is as in (2.14)), there exists a constant c7 > 0 depending on r,

‖`‖C1([0,T ];W−1,p
ΓD

(Ω)) and ‖uD‖C1([0,T ];W 1,p(Ω)), such that for all ti ∈ [0, T ] and zi ∈ Z, i = 1, 2, we have

∥∥DzĨ(t1, z1)−DzĨ(t2, z2)
∥∥
Lσ′ (Ω)

≤ c7(|t1 − t2|+ ‖z1 − z2‖Lr(Ω)) (2.34)

with σ = rp
pr−3p−2r ∈ (1,+∞) and σ′ its conjugate exponent. In particular, there exists a constant c8

depending on c7 and r such that∥∥DzĨ(t1, z1)−DzĨ(t2, z2)
∥∥
Z∗ ≤ c8(|t1 − t2|+ ‖z1 − z2‖Lr(Ω)). (2.35)

Hence,

if tn → t and zn ⇀ z weakly in Z, then DzĨ(tn, zn)→ DzĨ(t, z) strongly in Z∗. (2.36)

Proof. Since f ′ is Lipschitz, in order to prove estimate (2.35) it remains to investigate the properties of

DzI2, given by (2.28). For i = 1, 2, let ui := umin(ti, zi) ∈ W 1,p(Ω). For every fixed r ∈ ( 3p
p−2 ,∞), set
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p̃ = rp
p+r , and notice that 2 < 3p

p+1 < p̃ < p, and that r = pp̃
p−p̃ >

p̃
p̃−2 . Hence, the exponent σ defined by

σ−1 + r−1 + 2p̃−1 = 1 belongs to (1,∞). For all ti ∈ [0, T ], zi ∈ Z and η ∈ Lσ(Ω) it follows with Hölder’s

inequality, and relying on the Lipschitz continuity of g, that∫
Ω

(
DzI2(t1, z1)−DzI2(t2, z2)

)
η dx

≤ ‖η‖Lσ(Ω)

(
‖g′(z1)− g′(z2)‖Lr(Ω)

∥∥∥W̃ (t1,∇u1)
∥∥∥
L
p̃
2 (Ω)

+ ‖g′(z2)‖Lr(Ω)

∥∥∥W̃ (t1,∇u1)− W̃ (t2,∇u2)
∥∥∥
L
p̃
2 (Ω)

)
≤ C ‖η‖Lσ(Ω)

(
‖z1 − z2‖Lr(Ω)

(
‖u1‖2W 1,p(Ω) + ‖uD‖2L∞(0,T ;W 1,p(Ω))

)
+
(
‖u1 + uD(t1)‖W 1,p(Ω) + ‖u2 + uD(t2)‖W 1,p(Ω)

) (
‖u1 − u2‖W 1,p̃(Ω)

+ ‖uD(t1)− uD(t2)‖W 1,p(Ω)

))
≤ C ‖η‖Lσ(Ω)

(
‖z1 − z2‖Lr(Ω) + |t1 − t2|

) (
‖`‖C1([0,T ];W−1,p

ΓD
(Ω)) + ‖uD‖C1([0,T ];W 1,p(Ω))

)2

. (2.37)

For the last estimate we have used (2.17) and (2.20), and (2.34) follows. Since for every σ ∈ (1,∞) the

space Z is embedded in Lσ(Ω), hence Lσ
′
(Ω) ⊂ Z∗, we finally arrive at (2.35). Observe that the constant

c8 also depends on the embedding constant for Lσ
′
(Ω) ⊂ Z∗, and thus ultimately on r.

Corollary 2.9 (Fréchet differentiability of I).

Let s = d/2. Under assumptions (2.1), (2.8)–(2.10) and (2.16), the functional I is Fréchet differentiable

on [0, T ]×Z with a Lipschitz continuous derivative, i.e. I ∈ C1,1([0, T ]×Z,R). Furthermore, Ĩ (defined

in (2.33)), ∂tI and DzI are weakly continuous and I is weakly lower semicontinuous, i.e.

tn → t and zn ⇀ z weakly in Z implies


lim infn→∞ I(tn, zn) ≥ I(t, z),

Ĩ(tn, zn)→ Ĩ(t, z),

∂tI(tn, zn)→ ∂tI(t, z),

DzI(tn, zn) ⇀ DzI(t, z) weakly in Z∗.

(2.38)

Proof. This follows from the previous Lemmatas 2.6 and 2.8. Notice that the continuity property (2.38)

of ∂tI and DzI is an immediate consequence of estimates (2.27) and (2.35), joint with the compact

embedding of Z in Lr(Ω).

A further consequence of Lemma 2.8 is that DzI fulfills a “generalized” monotonicity property.

Corollary 2.10.

Let s = d/2. Under assumptions (2.1), (2.8)–(2.10) and (2.16), for every r ∈ ( 3p
p−2 ,+∞) (where p is as

in (2.14)), there exist constants c9, c10 > 0 such that for all t ∈ [0, T ] and zi ∈ Z, i = 1, 2, we have

‖z1−z2‖2L2(Ω) + 〈DzI(t, z1)−DzI(t, z2), z1−z2〉Z ≥ c9 ‖z1−z2‖2Z − c10 ‖z1−z2‖2L2(Ω) . (2.39)

Proof. It is sufficient to observe that for any r ∈ ( 3p
p−2 ,+∞) (where p is as in (2.14)) there holds

‖z1−z2‖2L2(Ω) + 〈DzI(t, z1)−DzI(t, z2), z1−z2〉Z
= ‖z1−z2‖2L2(Ω) + as(z1−z2, z1−z2) + 〈DzĨ(t, z1)−DzĨ(t, z2), z1−z2〉Z
≥ ‖z1−z2‖2Z − c8 ‖z1−z2‖Z ‖z1−z2‖Lr(Ω) ,
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where Ĩ is defined as in (2.33). Then, (2.39) follows upon using that Z b Lr(Ω) ⊂ L2(Ω), and the

well-known fact that for every η > 0 there exists Cη > 0 such that for all z ∈ Z we have ‖z‖Lr(Ω) ≤
η ‖z‖Z + Cη ‖z‖L2(Ω).

2.4 Improved estimates under special conditions

If the boundary of Ω is smooth and if the coefficients g(z)C in the elastic energy functional (2.11) are con-

tinuous on Ω, then the previous estimates (2.20), (2.27), and (2.35) can be refined. These improvements

will be relevant for the uniqueness analysis of the viscous problem, see Section 3.2.

Throughout this section, in addition to (2.1) and (2.9a) we suppose that

Ω ⊂ Rd, d ∈ {2, 3}, is a bounded domain with C1-boundary ∂Ω

and Dirichlet boundary ΓD = ∂Ω,
(2.40)

s > d/2. (2.41)

Observe that (2.41) implies

Z b C0,α(Ω) for some α ∈ (0, 1]. (2.42)

We shall then also require that, for the same α ∈ (0, 1],

C ∈ C0,α(Ω,Lin(Rd×dsym ,Rd×dsym)). (2.43)

Under these conditions, we may apply to the linear elliptic operator Lz(u) = − div(g(z)Cε(u)) (cf.

(2.13)) a W 1,p-regularity result for weak solutions of partial differential equations on smooth domains,

see e.g. [Giu03, Section 10.4]. Adapted to our situation it reads:

for every p ∈ [2,∞) the operator Lz : W 1,p
0 (Ω;Rd)→W 1,p′

0 (Ω;Rd)∗ is an isomorphism, (2.44)

and the operator-norm of L−1
z depends uniformly on the ellipticity constant γ0, and on the Hölder-norm

of C and of g(z) (thus, ultimately, on ‖z‖Z in view of (2.42)).

In this setting, we have the following improved estimates.

Proposition 2.11. In addition to (2.1), (2.8)–(2.10), assume (2.40), (2.41), and (2.43). Let p ∈ (2,∞)

be fixed, and suppose that (2.16) holds for the index p. Then, the estimates in Lemmatas 2.4–2.8 are

valid, with constants depending uniformly on ‖z‖Z . In particular, for p = 4 there holds: for all M > 0

there exist positive constants c̃0 = c̃0(M), c̃3 = c̃3(M), such that

∀ (t, z) ∈ [0, T ]×Z, ‖z‖Z ≤M : ‖umin(t, z)‖W 1,4
ΓD

(Ω) ≤ c̃0
(
‖`(t)‖W−1,4

ΓD
(Ω) + ‖uD(t)‖W 1,4(Ω)

)
, (2.45)

∀ (ti, zi) ∈ [0, T ]×Z, ‖zi‖Z ≤M, i = 1, 2 :

‖umin(t1, z1)−umin(t2, z2)‖W 1,4
ΓD

(Ω)

≤ c̃3 (|t1−t2|+ ‖z1−z2‖Z)
(
‖`‖C1([0,T ];W−1,4

ΓD
(Ω)) + ‖uD(t)‖C1([0,T ];W 1,4(Ω))

)
.

(2.46)

Proof. Estimate (2.45) can be proved by the very same argument as for (2.17), relying on (2.44) for p = 4.

Estimate (2.46) can be obtained as in the proof of Lemma 2.5, up to the following changes: One chooses

p̃ = 4 in (2.22), and p = p̃ = 4 and r =∞ in (2.23) and (2.24).

15



3 The viscous problem

The viscous approximation. Recall that Rε = R1 + R2,ε, with R2,ε(η) = ε
2 ‖η‖

2
L2(Ω), denotes the

viscous dissipation functional, and ∂Rε : Z ⇒ Z∗ is its subdifferential (in the sense of convex analysis),

in the duality between Z∗ and Z, cf. with (1.4). Throughout this section, we shall analyze the viscous

doubly nonlinear evolution equation

∂Rε(z′(t)) + DzI(t, z(t)) 3 0 in Z∗ for a.a. t ∈ (0, T ), (3.1)

with the initial condition, featuring z0 ∈ Z,

z(0) = z0. (3.2)

We shall denote by R∗ε the convex conjugate of the functional Rε, taken in the Z − Z∗ duality, viz.

R∗ε (σ) = sup { 〈σ, η〉Z −Rε(η) : η ∈ Z} .

The following lemma collects, for later use, two crucial formulae for ∂Rε and R∗ε .

Lemma 3.1. There holds

∂Rε(η) = ∂R1(η) + ∂R2,ε(η) = ∂R1(η) + εη for all η ∈ Z; (3.3)

R∗ε (σ) = inf
µ∈∂R1(0)

1

ε
R̃2(σ − µ) =

1

ε
min

µ∈∂R1(0)
R̃2(σ − µ)

with R̃2(σ) :=

 1
2 ‖σ‖

2
L2(Ω) if σ ∈ L2(Ω),

+∞ if σ ∈ Z∗\L2(Ω).

(3.4)

Proof. The first identity in (3.3) follows from [AE84, Cor. IV.6]. Next, we observe ∂R2,ε(η) = {DR2,ε(η)},
as R2,ε is Fréchet differentiable on Z. On account for (2.7), DR2,ε coincides with the Fréchet derivative

of R2,ε in the L2(Ω)-topology, whence the second identity in (3.3).

The inf − sup convolution formula (see, e.g., [IT79, Theorem 3.3.4.1]), for R∗ε yields

R∗ε (σ) = inf
{
R∗2,ε(σ − µ) : µ ∈ ∂R1(0)

}
whence the first identity in (3.4). Using that ∂R1(0) ⊂ Z∗ is weakly closed, it can be easily checked that

the inf is in fact a min.

As a consequence of (3.3) and of (2.28), the doubly nonlinear evolution equation (3.1) reads

∂R1(z′(t)) + εz′(t) +As(z(t)) + f ′(z(t)) + g′(z(t))W̃ (t,∇umin(t, z(t))) 3 0 for a.a. t ∈ (0, T ). (3.5)

Finally, for later convenience we observe that, by the 1-positive homogeneity of R1, its convex analysis

subdifferential ∂R1 satisfies the following relations for every v ∈ Z:

η ∈ ∂R1(v) ⇒

{
〈η, v〉Z = R1(v),

〈η, w〉Z ≤ R1(w) for all w ∈ Z.
(3.6)
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3.1 Existence and a priori estimates for viscous solutions

The following result clarifies the properties of solutions to (3.1) (equivalently, of (3.5)), with the regularity

z ∈ H1(0, T ;Z).

Proposition 3.2. Let s = d/2. Assume (2.1), (2.8)–(2.10), and (2.16). Then, for a curve z ∈
H1(0, T ;Z) the following are equivalent:

1. z is a solution to (3.1);

2. z fulfills for all 0 ≤ s ≤ t ≤ T the energy identity∫ t

s

Rε(z′(τ))dτ +

∫ t

s

R∗ε (−DzI(τ, z(τ)))dτ + I(t, z(t)) = I(s, z(s)) +

∫ t

s

∂tI(τ, z(τ))dτ ; (3.7)

3. z fulfills for all 0 ≤ t ≤ T the energy inequality∫ t

0

Rε(z′(τ))dτ +

∫ t

0

R∗ε (−DzI(τ, z(τ)))dτ + I(t, z(t)) ≤ I(0, z(0)) +

∫ t

0

∂tI(τ, z(τ))dτ. (3.8)

Proof. We start by observing the following crucial fact: For every z ∈ H1(0, T ;Z), there holds DzI(·, z(·))
∈ L∞(0, T ;Z∗) (thanks to (2.29)), and Corollary 2.9 guarantees the chain rule identity

d

dt
I(t, z(t)) = ∂tI(t, z(t)) + 〈DzI(t, z(t)), z′(t)〉Z for a.a. t ∈ (0, T ). (3.9)

Clearly, (3.7) implies (3.8). Suppose now that z fulfills (3.8): applying (3.9) we have that I(0, z(0)) +∫ t
0
∂tI(τ, z(τ))dτ = I(t, z(t)) +

∫ t
0
〈−DzI(τ, z(τ)), z′(τ)〉Z dτ , so that from (3.8) we deduce∫ t

0

Rε(z′(τ))dτ +

∫ t

0

R∗ε (−DzI(τ, z(τ)))dτ + I(t, z(t)) ≤ I(t, z(t)) +

∫ t

0

〈−DzI(τ, z(τ)), z′(τ)〉Z dτ.

Taking into account the elementary convex analysis inequality 〈ζ, v〉Z ≤ Rε(v) + R∗ε (ζ) for all z ∈
Z, ζ ∈ Z∗, we immediately conclude that the above integral inequality indeed holds as an equality, in

fact pointwise

Rε(z′(t)) +R∗ε (−DzI(t, z(t)))− 〈−DzI(t, z(t)), z′(t)〉Z = 0 for a.a. t ∈ (0, T ).

Again by convex analysis, from the above relation we infer that −DzI(t, z(t)) ∈ ∂Rε(z′(t)) for almost all

t ∈ (0, T ), i.e. z is a solution to (3.1).

Suppose now that z fulfills (3.1), test it by z′(t), and use for every ξ(t) ∈ ∂Rε(z′(t)) the convex analysis

identity 〈ξ(t), z′(t)〉Z = Rε(z′(t)) + R∗ε (ξ(t)) for a.a. t ∈ (0, T ). Then, (3.7) follows upon applying the

chain rule (3.9), and integrating on (s, t) for all 0 ≤ s ≤ t.

We may now state our main result on the viscous problem (3.1).

Theorem 3.3. Let s = d/2. Assume (2.1), (2.8)–(2.10), and (2.16). Suppose that the initial datum

z0 ∈ Z additionally fulfills

DzI(0, z0) ∈ L2(Ω). (3.10)

Then,
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1. for every ε > 0 there exists a viscous solution zε ∈ H1(0, T ;Z) to the Cauchy problem (3.1)–(3.2),

satisfying for all 0 ≤ s ≤ t ≤ T the energy identity∫ t

s

(
R1(z′ε(τ))+εR2(z′ε(τ))+

1

ε
min

µ∈∂R1(0)
R̃2(−DzI(τ, zε(τ))− µ)

)
dτ + I(t, zε(t))

= I(s, zε(s)) +

∫ t

s

∂tI(τ, zε(τ))dτ.

(3.11)

2. There exists a family of viscous solutions (zε)ε>0 and a constant C0 > 0 such that

sup
ε>0

∫ T

0

‖z′ε(τ)‖Z dτ ≤ C0. (3.12)

Outlook to the proof of Theorem 3.3. The proof will be developed in Section 4 working on the

time-discretization scheme associated with (3.1).

First, we will prove for the approximate solutions (ẑτ )τ (obtained through linear interpolation of the

discrete solutions with time-step τ ; we omit to highlight in the notation their dependence on ε), the

estimate supτ ‖ẑτ‖H1(0,T ;Z) ≤ C(ε), with C(ε) depending on ε > 0 and exploding as ε → 0. Second, for

(ẑτ )τ we will obtain an estimate in BV([0, T ];Z), for a constant independent of ε.

Furthermore, arguing on the time-discrete approximation of (3.1), we shall prove the following remark-

able fact (cf. Proposition 4.5): Under special conditions, if d = 2 and if the initial datum z0 fulfills

z0(x) ∈ [0, 1] for a.a.x ∈ Ω, then there exist viscous solutions zε with zε(x) ∈ [0, 1] for a.a.x ∈ Ω.

Remark 3.4 (A different approach to the proof of Theorem 3.3). As an alternative to the time-discretization

scheme for (3.1), one might consider the “augmented” viscous dissipation for η ∈ Z

Rε,δ(η) := Rε(η) +RZ,δ(η) = R1(η) +R2,ε(η) +RZ,δ(η) with RZ,δ(η) = δ
2 |η|

2
Z ,

where |η|Z :=
√
as(η, η) denotes the semi-norm on Z induced by the bilinear form as and δ > 0. This

approach was developed in detail in [KRZ11, Sec. 4]. The arguments to prove Theorem 3.3 are slightly

shorter compared to the proof via time-discretization. However, in view of further developments in

the direction of numerical analysis we have confined ourselves to the approach via time-discretization.

Moreover, let us stress that in the special framework of Prop. 4.5, time-discretization brings about

additional information. If the solutions to the Cauchy problem (3.1)–(3.2) are unique (see Section 3.2 for

sufficient conditions), then the solutions arising as limits of the time-discrete scheme, and the solutions

as limits of the δ-viscous problem as δ → 0, do coincide.

Remark 3.5 (Results under the sole condition z0 ∈ Z). As it will be clear from the discussion in Section

4 (cf. Remark 4.4), we are not able to prove existence of viscous solutions under the sole condition

z0 ∈ Z. Indeed, with the latter condition, and standard energy estimates in the time-discrete approximate

problem, we can prove that there exists zε ∈ L∞(0, T ;Z)∩H1(0, T ;L2(Ω)), with zε(0) = z0, fulfilling the

energy inequality (3.8) for all 0 ≤ t ≤ T . However, without the additional condition (3.10), we are not

able to obtain the further regularity zε ∈ H1(0, T ;Z) (viz., the higher spatial regularity z′ε ∈ L2(0, T ;Z)

for z′ε). On the other hand, only such a regularity ensures the validity of the chain rule (3.9), and (3.9)

is the key point for deducing, from (3.8), that zε in fact fulfills (3.1), cf. the proof of Proposition 3.2.
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3.2 Uniqueness for the viscous problem under special conditions

In the setting of Proposition 2.11, we have the following uniqueness result for viscous solutions.

Proposition 3.6 (Uniqueness for viscous solutions). In addition to (2.1), (2.8)–(2.10), assume (2.40),

(2.41), and (2.43). Suppose further that for i ∈ {1, 2} the data (uiD, `
i) satisfy (2.16) for p = 4, and that

for zi0 ∈ Z it holds DzI(0, zi0) ∈ L2(Ω). Let z1, z2 ∈ H1(0, T ;Z) be solutions to (3.1), supplemented with

the data (u1
D, `

1) and (u2
D, `

2), respectively. Set M =
∑2
i=1 ‖zi‖L∞(0,T ;Z). Then, there exists a constant

C1 > 0, depending on M , on T , and on γ2 (cf. (2.10)), such that for almost all t ∈ (0, T ) it holds

‖z1(t)−z2(t)‖Z +
√
ε ‖z′1−z′2‖L2(0,t;L2(Ω))

≤ C1

(∥∥z1
0−z2

0

∥∥
Z +

∥∥u1
D−u2

D

∥∥
L2(0,T ;W 1,4(Ω))

+
∥∥`1−`2∥∥

L2(0,T ;W−1,4
ΓD

(Ω))

)
.

(3.13)

Proof. We subtract the differential inclusion (3.1) for z2 from (3.1) for z1, and we use z′1−z′2 as test

function. Taking into account that, by monotonicity, 〈∂R1(z′1(t))−∂R1(z′2(t)), z′1(t)−z′2(t)〉Z ≥ 0 for

almost all t ∈ (0, T ) (where with abuse of notation we have written ∂R1 as single-valued), we arrive at

the following inequality

〈ε(z′1(t)−z′2(t)) + DzI(t, z1(t))−DzI(t, z2(t)), z′1(t)−z′2(t)〉Z ≤ 0 for a.a. t ∈ (0, T )

We rearrange the terms, and add and subtract 〈z1(t)−z2(t), z′1(t)−z′2(t)〉Z . Thus,

ε ‖z1(t)−z2(t)‖2L2(Ω) +
1

2

d

dt
‖z1(t)−z2(t)‖2L2(Ω) +

1

2

d

dt
as(z1(t)−z2(t), z1(t)−z2(t))

≤ −
∫

Ω

(f ′(z1(t))−z1(t)− f ′(z2(t))+z2(t))(z′1(t)−z′2(t)) dx

−
∫

Ω

(G1(t)−G2(t))(z′1(t)−z′2(t)) dx
.
= S1 + S2,

(3.14)

where we have used the short-hand notation Gi(t) := g′(zi(t))W̃ (t,∇umin(t, zi(t))), and umin(t, zi(t)) is

the minimizer of E i2(t; ·, zi(t)) with the data uiD(t), `i(t).

Now, for almost all t ∈ (0, T ) the following estimate holds

‖G1(t)−G2(t)‖2L2(Ω)

≤ 2

∫
Ω

|g′(z1(t))−g′(z2(t))|2|W̃ (t,∇umin(t, z1(t)))|2 dx

+ 2

∫
Ω

|g′(z2(t))|2|W̃ (t,∇umin(t, z1(t)))−W̃ (t,∇umin(t, z2(t)))|2 dx

≤ C ‖z1(t)−z2(t)‖2L∞(Ω) (‖umin(t, z1(t))‖4W 1,4(Ω) +
∥∥u1

D(t)
∥∥4

W 1,4(Ω)
)

+C ′ ‖g(z2(t))‖2L∞(Ω)(‖umin(t, z1(t))+umin(t, z2(t))‖2W 1,4(Ω) +
∥∥u1

D(t)+u2
D(t)

∥∥2

W 1,4(Ω)
)

× (‖umin(t, z1(t))−umin(t, z2(t))‖2W 1,4(Ω) +
∥∥u1

D(t)−u2
D(t)

∥∥2

W 1,4(Ω)
)

≤ C(M,γ2)
(

1 +

2∑
i=1

∥∥uiD(t)
∥∥4

W 1,4(Ω)
+
∥∥`i(t)∥∥4

W−1,4
ΓD

(Ω)

)
×
(
‖z1(t)− z2(t)‖2Z +

∥∥u1
D(t)− u2

D(t)
∥∥2

W 1,4(Ω)
+
∥∥`1(t)− `2(t)

∥∥2

W−1,4
ΓD

(Ω)

)
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where the second inequality follows from (2.10) and Hölder’s inequality, and the last one from the estimate

‖umin(t, z1(t))− umin(t, z2(t))‖W 1,4(Ω)

≤
∥∥umin(t, z1(t), `1(t), u1

D(t))− umin(t, z1(t), `2(t), u2
D(t))

∥∥
W 1,4(Ω)

+
∥∥umin(t, z1(t), `2(t), u2

D(t))− umin(t, z2(t), `2(t), u2
D(t))

∥∥
W 1,4(Ω)

≤ C ′(M,γ2)
(
‖z1(t)−z2(t)‖Z +

∥∥`1(t)−`2(t)
∥∥
W−1,4

ΓD
(Ω)

+
∥∥u1

D(t)−u2
D(t)

∥∥
W 1,4(Ω)

)
for some C ′(M,γ2), which follows from (2.45) and (2.46). Notice that the constants C(M,γ2) and

C ′(M,γ2) depend on M and on γ2.

Then, also taking into account that f ′ is Lipschitz continuous, the terms S1 and S2 on the right-hand

side of (3.14) can be estimated via

|S1| ≤
ε

4
‖z′1(t)−z′2(t)‖2L2(Ω) + C ‖z1(t)−z2(t)‖2L2(Ω) ,

|S2| ≤
ε

4
‖z′1(t)−z′2(t)‖2L2(Ω) + C ‖G1(t)−G2(t)‖2L2(Ω)

≤ ε

4
‖z′1(t)−z′2(t)‖2L2(Ω)

+ C

(
‖z1(t)−z2(t)‖2Z +

∥∥`1(t)− `2(t)
∥∥2

W−1,4
ΓD

(Ω)
+
∥∥u1

D(t)−u2
D(t)

∥∥2

W 1,4(Ω)

)
.

Now, we integrate (3.14) on (0, t), and, taking into account all of the above calculations, conclude

ε

2
‖z′1−z′2‖

2
L2(0,t;L2(Ω)) + c ‖z1(t)−z2(t)‖2Z

≤ C
∥∥z1

0−z2
0

∥∥2

Z + C

∫ t

0

(
‖z1(τ)−z2(τ)‖2Z +

∥∥`1(τ)− `2(τ)
∥∥2

W−1,4
ΓD

(Ω)
+
∥∥u1

D(τ)−u2
D(τ)

∥∥2

W 1,4(Ω)

)
dτ.

Gronwall’s inequality (cf. e.g. [Bre73, Lemma A.4]) finally yields (3.13).

We conclude this section with the following corollary of Proposition 3.6.

Theorem 3.7. In addition to (2.1), (2.8)–(2.10), assume (2.40), (2.41), (2.43), and that (2.16) holds for

p = 4. Then, for every initial datum z0 ∈ Z fulfilling (3.10), there exists a unique solution z ∈ H1(0, T ;Z)

to the Cauchy problem for (3.1).

4 Time-discrete viscous approximation and uniform estimates

In this section, we shall prove Theorem 3.3 by passing to the limit in the time-discretization scheme which

we set up below. First, in Section 4.1 we show the existence of viscous solutions. Next, in Section 4.2 we

prove the BV -estimate (3.12).

Throughout this section, we omit the dependence of the discrete solutions on ε > 0, and only highlight

their dependence on the fineness of the non-constant time-steps.

Time-incremental problem. We consider the following time-discrete incremental minimization prob-

lem: Given ε > 0, z0 ∈ Z and a partition {0 = tτ0 < . . . < tτN = T} of the time interval [0, T ] with fineness
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τ = sup0≤k≤N (tτk+1 − tτk), the elements (zτk )0≤k≤N are determined through zτ0 = z0 and

zτk+1 ∈ Argmin

{
I(tτk+1, z) + τkRε

(
z − zτk
τk

)
; z ∈ Z

}
. (4.1)

Here, τk = tτk+1 − tτk and Rε is defined in (1.9). The existence of minimizers follows with the direct

method in the calculus of variations, thanks to the properties of the reduced energy I formulated in

Section 2.3. Relying on Corollary 2.10, it can be easily shown that, indeed, the minimum problem 4.1

has a unique solution provided that τ is small enough.

We point out that any family {zτ1 , . . . , zτN} ⊂ Z of minimizers of the incremental problem (4.1) satisfy

for all k ∈ {0, . . . , N − 1} the discrete Euler-Lagrange equation

∂R1

(
zτk+1 − zτk

τk

)
+ ε

zτk+1 − zτk
τk

+ DzI(tk+1, zk+1) 3 0, (4.2)

also taking into account (3.3).

Notation 4.1. The following piecewise constant and piecewise linear interpolation functions will be used

in the sequel:

zτ (t) = zτk+1 for t ∈ (tτk, t
τ
k+1],

zτ (t) = zτk for t ∈ [tτk, t
τ
k+1),

ẑτ (t) = zτk +
t− tτk
τk

(zτk+1 − zτk ) for t ∈ [tτk, t
τ
k+1].

Furthermore, we shall use the notation

τ(r) = τk for r ∈ (tτk, t
τ
k+1), tτ (r) = tτk+1 for r ∈ (tτk, t

τ
k+1], tτ (r) = tτk for r ∈ [tτk, t

τ
k+1).

Clearly,

tτ (t), tτ (t)→ t as τ → 0 for all t ∈ [0, T ]. (4.3)

Moreover, for any given function b which is piecewise constant on the intervals (tτi , t
τ
i+1) we set

4τ(r)b(r) = b(r)− b(s) for r ∈ (tτk, t
τ
k+1) and s ∈ (tτk−1, t

τ
k).

With the above notation, (4.2) can be reformulated as

∂R1 (ẑ′τ (t)) + εẑ′τ (t) + DzI(tτ (t), zτ (t)) 3 0 for a.a. t ∈ (0, T ). (4.4)

4.1 Existence of viscous solutions

The following result states the crucial a priori estimate on the approximate solutions (ẑτ )τ .

Proposition 4.2. Let s = d/2, and assume (2.1), (2.8)–(2.10) and (2.16). Suppose that z0 ∈ Z also

fulfills (3.10), viz. DzI(0, z0) ∈ L2(Ω).

Then, there exist constants C12, C13 > 0 such that for every ε, τ > 0 the solutions of the time incre-
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mental problem (4.1) satisfy∫ T

0

‖ẑ′τ (t)‖2Z dt ≤
(
1 + ε−1 ‖DzI(0, z0)‖2L2(Ω)

)
exp

(
C12(1 + T

ε )
)
, (4.5)

ε

∥∥∥∥ẑ′τ ( tτ12
)∥∥∥∥

L2(Ω)

≤ C13

(√
ε+ ‖DzI(0, z0)‖L2(Ω)

)
exp

(
C12

ε
tτ1

)
, (4.6)

where tτ1 is the first non-zero node of the partition of [0, T ].

Proof. Let τ > 0 and let {zτ1 , . . . , zτN} ⊂ Z be minimizers of the incremental problem (4.1). For t ∈
(tτk, t

τ
k+1) we define hτ (t) := εẑ′τ (t) +Aszτ (t) + DzĨ(tτ (t), zτ (t)), where Ĩ is as in (2.33). Hence, relation

(4.4) is equivalent to −hτ (t) ∈ ∂R1(ẑ′τ (t)) for t ∈ (tτk, t
τ
k+1). From the 1-homogeneity of R1 using (3.6)

we deduce

∀ t ∈ (tτk, t
τ
k+1) −R1(ẑ′τ (t)) = 〈hτ (t), ẑ′τ (t)〉Z , (4.7)

∀ r ∈ [0, T ]\{tτ0 , . . . , tτN} R1(ẑ′τ (t)) ≥ 〈−hτ (r), ẑ′τ (t)〉Z . (4.8)

Adding both relations and choosing ρ ∈ (tτi , t
τ
i+1) and σ ∈ (tτi−1, t

τ
i ), it follows

0 ≥ τ−1
i 〈hτ (ρ)− hτ (σ), ẑ′τ (ρ)〉Z .

This relation can be rewritten as

ετ−1
i 〈ẑ

′
τ (ρ)− ẑ′τ (σ), ẑ′τ (ρ)〉L2(Ω) + τ−1

i 〈As(zτ (ρ)− zτ (σ)), ẑ′τ (ρ)〉Z
≤ −τ−1

i 〈DzĨ(tτ (ρ), zτ (ρ))−DzĨ(tτ (σ), zτ (σ)), ẑ′τ (ρ)〉Z . (4.9)

Observe that τ−1
i (zτ (ρ) − zτ (σ)) = ẑ′τ (ρ), hence the second term on the left-hand side can be replaced

with as(ẑ
′
τ (ρ), ẑ′τ (ρ)). Moreover, using that 2a(a− b) = a2 − b2 + (a− b)2, the first term is equal to

ε

τi
〈ẑ′τ (ρ)− ẑ′τ (σ), ẑ′τ (ρ)〉L2(Ω) =

ε

2τi

(
‖ẑ′τ (ρ)‖2L2(Ω) − ‖ẑ

′
τ (σ)‖2L2(Ω) + ‖ẑ′τ (ρ)− ẑ′τ (σ)‖2L2(Ω)

)
.

Next, we “integrate” (4.9) on the time interval (τ0, t) (that is, we multiply both sides of (4.9) by τi and

sum for i = 1, . . . , k, assuming t ∈ (tτk, t
τ
k+1)). Since ẑ′τ ≡

zτ1−z0
τ0

on (0, τ0), in particular
zτ1−z0
τ0

= ẑ′τ
(
τ0
2

)
and thus, neglecting the non-negative term ‖ẑ′τ (ρ)− ẑ′τ (σ)‖2L2(Ω), we obtain the estimate

ε

2
‖ẑ′τ (t)‖2L2(Ω) −

ε

2

∥∥∥ẑ′τ (τ02 )∥∥∥2

L2(Ω)
+

∫ tτ (t)

τ0

as(ẑ
′
τ (r), ẑ′τ (r)) dr

≤ −
∫ tτ (t)

τ0

1

τ(r)
〈4τ(r)DzĨ(tτ (r), zτ (r)), ẑ′τ (r)〉Z dr for t ∈ [0, T ]\{tτ0 , . . . , tτN},

see Notation 4.1. Adding the squared L2(L2)-norm of ẑ′τ on both sides we arrive at

ε

2
‖ẑ′τ (t)‖2L2(Ω) +

∫ tτ (t)

τ0

‖ẑ′τ (r)‖2Z dr

≤ ε

2

∥∥∥ẑ′τ (τ02 )∥∥∥2

L2(Ω)
+

∫ tτ (t)

τ0

‖ẑ′τ (r)‖2L2(Ω) dr −
∫ tτ (t)

τ0

1

τ(r)
〈4τ(r)DzĨ(tτ (r), zτ (r)), ẑ′τ (r)〉Z dr. (4.10)
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The next goal is to derive for the right-hand side an upper bound that is independent of the time step

size τ . Since by assumption we have DzI(0, z0) ∈ L2(Ω), choosing t = τ0
2 in (4.7) gives

0 = R1(ẑ′τ (τ0/2)) + 〈hτ (τ0/2), ẑ′τ (τ0/2)〉Z ≥ ε ‖ẑ′τ (τ0/2)‖2L2(Ω) + 〈DzI(tτ (τ0/2), zτ (τ0/2)), ẑ′τ (τ0/2)〉Z .

Hence,

ε ‖ẑ′τ (τ0/2)‖2L2(Ω) ≤ −〈DzI(0, z0), ẑ′τ (τ0/2)〉Z − 〈DzI(tτ1 , z
τ
1 )−DzI(0, z0), ẑ′τ (τ0/2)〉Z

≤ 1

2ε
‖DzI(0, z0)‖2L2(Ω) +

ε

2
‖ẑ′τ (τ0/2)‖2L2(Ω) −

∫ τ0

0

τ−1
0 〈DzI(tτ1 , z

τ
1 )−DzI(0, z0), ẑ′τ (τ0/2)〉Z dr.

Absorbing the second term on the right-hand side into the term on the left-hand side, and combining the

resulting estimate with (4.10) leads to

ε

2
‖ẑ′τ (t)‖2L2(Ω) +

∫ tτ (t)

0

‖ẑ′τ (r)‖2Z dr

≤ 1

2ε
‖DzI(0, z0)‖2L2(Ω) +

∫ tτ (t)

0

‖ẑ′τ (r)‖2L2(Ω) dr −
∫ tτ (t)

0

1

τ(r)
〈4τ(r)DzĨ(tτ (r), zτ (r)), ẑ′τ (r)〉Z dr.

(4.11)

We now derive an estimate for the last term in the same way as in (2.37) in Lemma 2.8. Indeed, for

arbitrary p̃ ∈ (2, p) let r, σ ∈ (1,∞) be defined by r = pp̃(p− p̃)−1 and 1
σ + 1

r + 2
p̃ = 1. Observe that r > 2

and σ > 2. Using (2.37) for I2 and the fact that f ′ is Lipschitz by (2.16), for a.a. τ ∈ (0, T ) we find that∣∣∣∣ 1

τ(r)
〈4τ(r)DzĨ(tτ (r), zτ (r)), ẑ′τ (r)〉Z

∣∣∣∣ ≤ C ‖ẑ′τ (r)‖Lσ(Ω)

(
‖ẑ′τ (r)‖Lr(Ω) + 1

)
. (4.12)

Let σ0 = max{σ, r} > 2. Since s = d
2 , the space Z is embedded in Lσ0(Ω). Using a Gagliardo-Nirenberg

type inequality for Sobolev-Slobodeckij spaces (cf. e.g. [BM01, Cor. 3.2]), it follows with a suitable

θ ∈ (0, 1) and ρ > 0 to be chosen that

‖ẑ′τ (r)‖2Lσ0 (Ω) ≤ c ‖ẑ
′
τ (r)‖2(1−θ)

L2(Ω) ‖ẑ
′
τ (r)‖2θZ ≤ ρc ‖ẑ

′
τ (r)‖2Z + cρ ‖ẑ′τ (r)‖2L2(Ω) .

Therefore we obtain∣∣∣∣∣
∫ tτ (t)

0

1

τ(r)
〈4τ(r)DzĨ(tτ (r), zτ (r)), ẑ′τ (r)〉Z dr

∣∣∣∣∣ ≤ C
∫ tτ (t)

0

‖ẑ′τ (r)‖2L2(Ω) dr +
1

2

∫ tτ (t)

0

‖ẑ′τ (r)‖2Z dr + C ′

for some positive constants C and C ′ independent of τ (and ε). Absorbing the term 1
2

∫ tτ (t)

0
‖ẑ′τ (r)‖2Z dr

on the left-hand side of (4.11) we have finally shown that there exist constants C > 0 and C ′ > 0 such

that for all τ and all t ∈ [0, T ]\{tτ0 , . . . , tτN} it holds

ε

2
‖ẑ′τ (t)‖2L2(Ω) +

1

2

∫ tτ (t)

0

‖ẑ′τ (r)‖2Z dr ≤ C
∫ tτ (t)

0

‖ẑ′τ (r)‖2L2(Ω) dr +
1

2ε
‖DzI(0, z0)‖2L2(Ω) + C ′. (4.13)

Applying Gronwall’s inequality, we conclude that for all τ and all t ∈ [0, T ]\{tτ0 , . . . , tτN}

ε ‖ẑ′τ (t)‖2L2(Ω) ≤
(
C ′ +

1

2ε
‖DzI(0, z0)‖2L2(Ω)

)
exp(Ctτ (t)/ε), (4.14)
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which after multiplying with ε and taking the root, in particular yields (4.6). Then, estimate (4.5)

immediately follows from (4.13).

We can now prove the first part of Theorem 3.3, and pass to the limit in (4.4) as τ → 0.

Theorem 4.3 (Existence of viscous solutions). Let s = d/2. Assume (2.1), (2.8)–(2.10), and (2.16). Sup-

pose that the initial datum z0 ∈ Z also fulfills (3.10), viz. DzI(0, z0) ∈ L2(Ω). Let (ẑτ )τ>0 ⊂ H1(0, T ;Z)

be a family of piecewise affine interpolants constructed from the solutions of (4.1) and supplemented with

the initial datum z0.

Then, for every sequence of fineness-parameters (τ j)j with τ j ↘ 0 as j → ∞ there exists a (not

relabeled) subsequence of (ẑτj ) and z ∈ H1(0, T ;Z) such that z is a solution to the Cauchy problem

(3.1)–(3.2) and the following convergences hold as j →∞:

ẑτj ⇀ z weakly in H1(0, T ;Z), (4.15)∫ tτj (t)

0

R1(ẑ′τj (r)) dr →
∫ t

0

R1(z′(r)) dr (4.16)

Proof. We split the proof in three steps.

Step 1: compactness. It follows from estimate (4.5) that

‖zτ−ẑτ‖L∞(0,T ;Z) , ‖zτ−zτ‖L∞(0,T ;Z) ≤ τ
1/2 ‖ẑ′τ‖L2(0,T ;Z) . (4.17)

Now, in view of (4.5) and standard compactness results, there exist a (not-relabeled) sequence (τ j)j and

z ∈ H1(0, T ;Z) such that, as j →∞,

ẑτj ⇀ z in H1(0, T ;Z), ẑτj (t) ⇀ z(t) in Z for all t ∈ [0, T ], and ẑτj → z in C0([0, T ];X) (4.18)

for every Banach space X such that Z b X. Due to estimates (4.17), we conclude that, along the same

sequence,

zτj (t), zτj (t) ⇀ z(t) in Z for all t ∈ [0, T ]. (4.19)

Step 2: discrete energy equality. Arguing in the very same way as in the proof of [MRS12a,

Thm. 4.10], we see that the approximate solutions zτj , zτj , ẑτj fulfill the discrete energy identity

∫ tτj (t)

tτj (s)

(
Rε(ẑ′τj )(r) +R∗ε (−DzI(tτj (r), zτj (r)))

)
dr + I(tτj (t), zτj (t))

= I(tτj (s), zτj (s)) +

∫ tτj (t)

tτj (s)

∂tI(r, zτj (r)) dr +

∫ tτj (t)

tτj (s)

1

τ j(r)
F(tτj (r); zτj (r), zτj (r)) dr

(4.20)

where we have used the short-hand notation F(t; z, w) := I(t, z) − I(t, w) + 〈DzI(t, w), w − z〉Z . We

have the following estimate

|F(t; z, w)| =
∣∣∣∣∫ 1

0

〈DzI(t, w)−DzI(t, (1− σ)z+σw), w−z〉Z dσ

∣∣∣∣
≤
∫ 1

0

(1− σ)as(w−z, w−z) dσ +

∫ 1

0

∣∣∣ 〈DzĨ(t, w)−DzĨ(t, (1− σ)z+σw), w−z〉Z
∣∣∣ dσ

≤ 1

2
(‖w − z‖2Z + c8 ‖w − z‖Lr(Ω) ‖w − z‖Z),
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where the last inequality follows from (2.35), and r is any fixed index in
(

3p
p−2 ,+∞

)
.

Therefore, the last term on the right-hand side of (4.20) is estimated as follows:

∫ tτj (t)

tτj (s)

1

τ j(r)

∣∣F(tτj (r); zτj (r), zτj (r))
∣∣ dr ≤ C sup

t∈(0,T )

‖zτj (t)−zτj (t)‖Z ·
∫ tτj (t)

tτj (s)

‖ẑ′τj (r)‖Z dr. (4.21)

Step 3: passage to the limit in the discrete energy inequality. Writing (4.20) for s = 0 and any

t ∈ [0, T ], and taking into account (4.21), we find

∫ tτj (t)

0

(
Rε(ẑ′τj (r)) +R∗ε (−DzI(tτj (r), zτj (r)))

)
dr + I(tτj (t), zτj (t))

≤ I(0, z0) +

∫ tτj (t)

0

∂tI(r, zτj (r)) dr + C sup
t∈(0,T )

‖zτj (t)−zτj (t)‖Z ·
∫ tτj (t)

0

‖ẑ′τj (r)‖Z dr.

(4.22)

We will refer to the integral term on the left-hand side of (4.22) as I1
τj , and to the second and third term

on the right-hand side as I2
τj and I3

τj , respectively. Now, we take the lim inf as τ j → 0 of both sides

of (4.22). Combining (4.19) with (2.38), we find that DzI(tτj (t), zτj (t)) ⇀ DzI(t, z(t)) in Z∗ for all

t ∈ [0, T ]. Therefore, also taking into account (4.18) we conclude that lim infτj→0 I
1
τj ≥

∫ t
0
Rε(z′(r)) +

R∗ε (−DzI(r, z(r)))dr. In view of (4.18) and the weak lower semicontinuity of the energy I, cf. (2.38), we

also have that lim infτj→0 I(tτj (t), zτj (t)) ≥ I(t, z(t)). Again by (4.19), (2.38) and estimate (2.26), with

the Lebesgue theorem we find limτj→0 I
2
τ =

∫ t
0
∂tI(r, z(r))dr. Finally,

lim
τj→0

I3
τj ≤ C lim

τj→0
sup

t∈(0,T )

‖zτj−zτj‖L∞(0,T ;Z) ‖ẑ
′
τj‖L1(0,T ;Z) = 0, (4.23)

in view of the second estimate in (4.17), combined with (4.5). From the above arguments, we deduce

that the limit function z ∈ H1(0, T ;Z) fulfills the energy inequality (3.8). In view of Proposition 3.2, we

conclude that z is a solution to the Cauchy problem (3.1)–(3.2). Finally, in order to obtain (4.16), we

pass to the limit in the energy identity (4.20). Observe that, thanks to (4.23), the remainder term on

the right-hand side of (4.20) (viz., the third summand) converges to zero as τ j → 0. Therefore, in view

of the above discussion we obtain the following chain of inequalities∫ t

0

(Rε(z′(r)) +R∗ε (−DzI(r, z(r)))) dr + I(t, z(t))

≤ lim inf
τj→0

(∫ tτj (t)

0

(
Rε(ẑ′τj (r)) +R∗ε (−DzI(tτj (r), zτj (r)))

)
dr + I(tτj (t), zτj (t))

)

≤ lim sup
τj→0

(∫ tτj (t)

0

(
Rε(ẑ′τj (r)) +R∗ε (−DzI(tτj (r), zτj (r)))

)
dr + I(tτj (t), zτj (t))

)

≤ I(0, z0) +

∫ t

0

∂tI(r, z(r)) dr. (4.24)

Applying the chain rule (3.9) for the functional I, and arguing as described in Proposition 3.2, it follows

that all inequalities in (4.24) in fact are equalities. From this, (4.16) ensues, see the similar arguments in

the proof of [RMS08, Thm. 3.5], and [MRS12b, Thm. 4.4] for more details.

Remark 4.4 (Proof of the energy inequality under the condition z0 ∈ Z). As we have already mentioned

in Remark 3.5 if we just assume z0 ∈ Z for the initial datum, taking the limit as τ → 0 of the time-discrete
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approximation, we are only able to deduce that there exists a limit curve z ∈ L∞(0, T ;Z)∩H1(0, T ;L2(Ω))

fulfilling the energy inequality (3.8), without concluding that z is a solution to the Cauchy problem (3.1)–

(3.2). In this connection, let us also mention that we cannot prove (3.8) simply by passing to the limit

in the energy inequality (4.22). Indeed, under the sole condition z0 ∈ Z we are not able to obtain the

crucial H1(0, T ;Z)-estimate (4.5) for ẑτj , which guarantees that the remainder term on the right-hand

side of (4.22) converges to zero, cf. (4.23).

A possible way to obtain the energy inequality (3.8) for z, is to pass to the limit in an enhanced

approximate energy inequality for the interpolants of the discrete solutions, which has no remainder term

on the right-hand side. Such an inequality was proved for (the time-discrete approximation of) abstract

doubly nonlinear evolution equations in [MRS12b]. It involves a kind of variational interpolation of the

discrete solutions (zτk )0≤k≤N , i.e. the so-called De Giorgi interpolant, see also [Amb95, AGS08, RS06].

Proposition 4.5. In addition to (2.1), (2.8)–(2.10), and (2.16), suppose that

the space dimension is d = 2, hence s = 1 and As is the Laplace operator, (4.25)

and the nonlinearities f and g have the following property

f(0) ≤ f(z), g(0) ≤ g(z) for all z ≤ 0. (4.26)

Suppose moreover that the initial datum z0 fulfills (3.10) and that

z0(x) ∈ [0, 1] for a.a.x ∈ Ω. (4.27)

Then, every viscous solution z constructed via time-discretization also fulfills

z(t, x) ∈ [0, 1] for a.a.x ∈ Ω, for all t ∈ [0, T ]. (4.28)

Proof. Indeed, we shall prove that, starting from z0 which fulfills (4.27), all solutions of the time-

incremental minimization problem fulfill

zτk (x) ∈ [0, 1] for a.a.x ∈ Ω for all k = 1, . . . , N , (4.29)

and then deduce (4.28) by passing to the limit as τ → 0 in the time-discretization scheme, relying on

convergences (4.18), cf. the proof of Theorem 4.3. We shall prove (4.29) by induction on the index k,

namely we are going to show that, zτk (x) ∈ [0, 1] for a.a. x ∈ Ω implies that zτk+1(x) ∈ [0, 1] for a.a. x ∈ Ω.

Indeed, on the one hand, from R1((zτk+1 − zτk )/τk) < +∞ we gather that zτk+1(x) ≤ zτk (x) ≤ 1 for

almost all x ∈ Ω. On the other hand, it follows from (4.1) (choosing z = (zτk+1)+), that

R1

(
zτk+1 − zτk

)
+

ε

2τk

∫
Ω

|zτk+1(x)− zτk (x)|2 dx+
1

2

∫
Ω

|∇zτk+1(x)|2 dx+

∫
Ω

f(zτk+1(x)) dx+ I2(tk+1, z
τ
k+1)

≤ R1

(
(zτk+1)+ − zτk

)
+

ε

2τk

∫
Ω

|(zτk+1)+(x)− zτk (x)|2 dx+
1

2

∫
Ω

|∇(zτk+1)+(x)|2 dx

+

∫
Ω

f((zτk+1)+(x)) dx+ I2(tk+1, (z
τ
k+1)+).

(4.30)
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Now, with easy calculations one sees that

R1((zτk+1)+ − zτk ) ≤ R1(zτk+1 − zτk ), ‖(zτk+1)+ − zτk‖2L2(Ω) ≤ ‖z
τ
k+1 − zτk‖2L2(Ω),

‖∇(zτk+1)+‖2L2(Ω) ≤ ‖∇z
τ
k+1‖2L2(Ω).

(4.31)

Furthermore, it follows from assumption (4.26) on f that∫
Ω

f((zτk+1)+(x)) dx ≤
∫

Ω

f(zτk+1(x)) dx. (4.32)

Moreover, again in view of (4.26),

I2(tk+1, (z
τ
k+1)+) ≤

∫
Ω

g((zτk+1)+)W (ε(uτk+1 + uD(tk+1))) dx− 〈`(tk+1), uτk+1〉U

≤
∫

Ω

g(zτk+1)W (ε(uτk+1 + uD(tk+1))) dx− 〈`(tk+1), uτk+1〉U = I2(tk+1, z
τ
k+1),

(4.33)

where we have used the short-hand notation uτk+1 := umin(tk+1, z
τ
k+1). In view of (4.31)–(4.33), we

conclude that (zτk+1)+ as well is a minimizer for (4.1). Since the latter minimum problem has a unique

solution, we thus have zτk+1 ≡ (zτk+1)+. Therefore, zτk+1(x) ≥ 0 for almost all x ∈ Ω.

Remark 4.6. Notice that f(z) = (1 − z)2 from [Gia05] fulfills (2.8) and (4.26) as well. An example of g

which complies with both (2.10) and (4.26) is

g ∈ C2(R), g non-decreasing, ∃ γ ∈ (0, 1) : g(z) = γ for z ≤ 0, g(z) = 1 for z ≥ 1.

Functions with this property are often used to model incomplete damage of elastic materials. The value

z = 1 then describes the undamaged state, whereas z = 0 stands for maximal damage. The monotonicity

of g reflects the fact that, with increasing damage (i.e. decreasing z), the material becomes weaker.

4.2 A uniform discrete BV-estimate

We now obtain an L1(0, T ;Z)-estimate for the derivatives (ẑ′τ )τ (hence an estimate in BV([0, T ];Z) for

(ẑτ )τ ), with a constant independent of both parameters τ and ε. Hereafter, we restrict to

uniform time steps τ = τN = T/N

and suppose that the parameters τ, ε satisfy τ ≤ 2ε. This is sufficient since we are ultimately interested

in obtaining estimates for the limit τ ↘ 0.

Proposition 4.7. Assume (2.1), (2.8)–(2.10) and (2.16). Suppose that z0 ∈ Z fulfills DzI(0, z0) ∈
L2(Ω). Then, there exists a constant C14 such that for every ε, τ > 0 with τ ≤ 2ε and the piecewise linear

interpolants (ẑτ )τ defined via the solutions zτk of (4.1), the following estimate holds

∫ T

0

‖ẑ′τ (t)‖Z dt ≤ C14

(
T +
√
ε+ ‖DzI(0, z0)‖L2(Ω) +

∫ T

0

R1(ẑ′τ (t)) dt

)
. (4.34)

Proof. The idea is to combine a time-discrete Gronwall estimate with weights (generalizing [NSV00,

Lemma 3.17]) with a suitable discrete version of the arguments in the proof of [MZ12, Lemma 3.4].
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We start from (4.9), written for ρ = mk and σ = mk−1, where mk := 1
2 (tτk−1 + tτk) and k ∈ {2, . . . , N}.

Adding the term ‖ẑ′τ (mk)‖2L2(Ω) on both sides, we obtain

ε

τ
〈ẑ′τ (mk)− ẑ′τ (mk−1), ẑ′τ (mk)〉L2(Ω) + τ−1〈As(zτ (mk)− zτ (mk−1)), ẑ′τ (mk)〉Z + ‖ẑ′τ (mk)‖2L2(Ω)

≤ −τ−1〈DzĨ(tk, zτ (mk))−DzĨ(tk−1, zτ (mk−1)), ẑ′τ (mk)〉Z + ‖ẑ′τ (mk)‖2L2(Ω) , (4.35)

where Ĩ is defined as in (2.33). The left-hand side of (4.35) can be estimated by

l.h.s. ≥ ε

2τ
‖ẑ′τ (mk)‖L2(Ω)

(
‖ẑ′τ (mk)‖L2(Ω) − ‖ẑ

′
τ (mk−1)‖L2(Ω)

)
+ ‖ẑ′τ (mk)‖2Z .

In order to estimate the right-hand side, we proceed as follows. With r, σ ∈ (2,∞) and σ0 = max{r, σ}
as in the proof of Proposition 4.2, analogously to (4.12) we have

r.h.s. ≤ C(‖ẑ′τ (mk)‖2Lσ0 (Ω) + ‖ẑ′τ (mk)‖Lσ0 (Ω)) ≤ C(‖ẑ′τ (mk)‖2Lσ0 (Ω) + 1),

where in the last estimate we have used the Young inequality. Similar to the arguments subsequent to

(4.12), by applying a Gagliardo-Nirenberg type inequality and Young’s inequality it follows that there

exists a θ ∈ (0, 1) such that for ρ > 0 to be chosen later we obtain ‖ẑ′τ (mk)‖2Lσ0 (Ω) ≤ Cρ ‖ẑ′τ (mk)‖2L1(Ω) +

ρC ‖ẑ′τ (mk)‖2Z . Since by (1.3) it holds ‖ẑ′τ (mk)‖L1(Ω) ≤ κ−1R1(ẑ′τ (mk)), suitably tuning the constant ρ

we arrive at

r.h.s. ≤ 1

2
‖ẑ′τ (mk)‖2Z + C

(
1 + ‖ẑ′τ (mk)‖L2(Ω)R1(ẑ′τ (mk))

)
.

Hence, estimate (4.35) yields

ε

2τ
‖ẑ′τ (mk)‖L2(Ω)

(
‖ẑ′τ (mk)‖L2(Ω) − ‖ẑ

′
τ (mk−1)‖L2(Ω)

)
+

1

2
‖ẑ′τ (mk)‖2Z

≤ C
(

1 + ‖ẑ′τ (mk)‖L2(Ω)R1(ẑ′τ (mk))
)
,

where the constant C is independent of τ, k and ε. Multiplying this inequality by 4τ/ε and taking into

account that ‖ẑ′τ (mk)‖2Z ≥ ‖ẑ′τ (mk)‖2L2(Ω), we arrive at

2 ‖ẑ′τ (mk)‖L2(Ω)

(
‖ẑ′τ (mk)‖L2(Ω) − ‖ẑ

′
τ (mk−1)‖L2(Ω)

)
+
τ

ε
‖ẑ′τ (mk)‖2L2(Ω) +

τ

ε
‖ẑ′τ (mk)‖2Z

≤ 4τC

ε
+

4τC

ε
‖ẑ′τ (mk)‖L2(Ω)R1(ẑ′τ (mk)), (4.36)

which is valid for all 2 ≤ k ≤ N . We define now for 0 ≤ i ≤ N − 1

ai = ‖ẑ′τ (mi+1)‖L2(Ω) , bi = (τ/ε)
1
2 ‖ẑ′τ (mi+1)‖Z , ci = (4τC/ε)

1
2 , di =

2τC

ε
R1(ẑ′τ (mi+1)), γ =

τ

2ε
.

With this, (4.36) can be rewritten as

2ai(ai − ai−1) + 2γa2
i + b2i ≤ c2i + 2aidi,
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which holds for 1 ≤ i ≤ N − 1. Thus, estimate (4.51) in Lemma 4.9 below implies that for all j ≤ N − 1

j∑
i=1

(1 + γ)2(i−j)−1b2i ≤ 2(1 + γ)−2ja2
0 + 2

j∑
i=1

(1 + γ)2(i−j)−1c2i + 4

(
j∑
i=1

(1 + γ)i−j−1di

)2

.

Reinserting the explicit values of ai, bi and di, and using the fact that c2i = 8Cγ, the above inequality

yields for 2 ≤ n ≤ N (with i+ 1 = k, n = j + 1):

1

ε

n∑
k=2

τ(1 + γ)2(k−n)−1 ‖ẑ′τ (mk)‖2Z

≤ 2(1 + γ)−2n ‖ẑ′τ (m1)‖2L2(Ω) + 16Cγ

n∑
k=2

(1 + γ)2(k−n)−1 + 16C2

(
n∑
k=2

τ

ε
(1 + γ)k−n−1R1(ẑ′τ (mk))

)2

.

(4.37)

We now calculate and estimate the second term on the right-hand side of (4.37) explicitly, using that by

assumption we have γ ≤ 1:

γ

n∑
k=2

(1 + γ)2(k−n)−1 ≤ γ(1 + γ)−2n−1 1− (1 + γ)2(n+1)

1− (1 + γ)2
≤ 1

2
(1 + γ) ≤ 1. (4.38)

Combining (4.38) with (4.37) yields

1

ε

n∑
k=2

τ(1 + γ)2(k−n)−1 ‖ẑ′τ (mk)‖2Z

≤ C

1 + (1 + γ)−2n ‖ẑ′τ (m1)‖2L2(Ω) +

(
n∑
k=2

τ

ε
(1 + γ)k−n−1R1(ẑ′τ (mk))

)2
 , (4.39)

which is the discrete counterpart of estimate (3.23) in [MZ12].

We now proceed following the arguments in the proof of [MZ12, Lemma 3.4], translating them in the

present time-discrete setting. Let us stress once again that, hereafter, the generic constant C > 0 shall

be independent of τ and ε. We start by observing that, by Hölder inequality,

1

ε

n∑
k=2

τ(1 + γ)2(k−n)−1 ‖ẑ′τ (mk)‖Z ≤

(
n∑
k=2

τ

ε
(1 + γ)2(k−n)−1

) 1
2
(

n∑
k=2

τ

ε
(1 + γ)2(k−n)−1 ‖ẑ′τ (mk)‖2Z

) 1
2

.

(4.40)

Recalling that τ
ε = 2γ ≤ 2 we find with (4.38) that the first factor on the right-hand side is bounded by√

2. Hence, from (4.40) and (4.39) we deduce

1

ε

n∑
k=2

τ(1 + γ)2(k−n)−1 ‖ẑ′τ (mk)‖Z

≤ C

(
1 + (1 + γ)−n ‖ẑ′τ (m1)‖L2(Ω) +

n∑
k=2

τ

ε
(1 + γ)k−n−1R1(ẑ′τ (mk))

)
. (4.41)
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Now we multiply both sides of (4.41) by τ and sum over n = 2, . . . , N :

1

ε

N∑
n=2

τ

n∑
k=2

τ(1 + γ)2(k−n)−1 ‖ẑ′τ (mk)‖Z

≤ C
N∑
n=2

τ

(
1 + (1 + γ)−n ‖ẑ′τ (m1)‖L2(Ω) +

n∑
k=2

τ

ε
(1 + γ)k−n−1R1(ẑ′τ (mk))

)
. (4.42)

We discuss the different terms on the left-hand and on the right-hand side of (4.42) separately. Now, we

introduce for every k, n = 2, . . . , N the coefficient cnk defined by 1 if k ≤ n and 0 if k > n. This coefficient

will be used below to change the order of the sums. Starting with the left-hand side of (4.42), we have

1

ε

N∑
n=2

τ

n∑
k=2

τ(1 + γ)2(k−n)−1 ‖ẑ′τ (mk)‖Z =
1

ε

N∑
n=2

τ

N∑
k=2

τcnk (1 + γ)2(k−n)−1 ‖ẑ′τ (mk)‖Z

=

N∑
k=2

τ ‖ẑ′τ (mk)‖Z
N∑
n=k

τ

ε
(1 + γ)2(k−n)−1

= 2
1 + γ

2 + γ

N∑
k=2

τ ‖ẑ′τ (mk)‖Z
(

1− (1 + γ)2(k−N)−2
)
.

(4.43)

Passing to the right-hand side of (4.42), using again the definition of γ we find

N∑
n=2

τ(1 + γ)−n ‖ẑ′τ (m1)‖L2(Ω) ≤ 4ε ‖ẑ′τ (m1)‖L2(Ω) . (4.44)

Next we discuss the term

N∑
n=2

τ

n∑
k=2

τ

ε
(1 + γ)k−n−1R1(ẑ′τ (mk)) =

N∑
k=2

τR1(ẑ′τ (mk))

N∑
n=k

τ

ε
(1 + γ)k−n−1

≤ 2

N∑
k=2

τR1(ẑ′τ (mk)),

(4.45)

where the last inequality follows from calculations analogous to (4.43). Combining (4.42) with (4.43)–

(4.45), and recalling that τ = T
N , so that

∑N
n=2 τ ≤ T , we get

N∑
k=2

τ ‖ẑ′τ (mk)‖Z
(

1− (1 + γ)2(k−N)−2
)
≤ C

(
T + ε ‖ẑ′τ (m1)‖L2(Ω) +

N∑
k=2

τR1(ẑ′τ (mk))

)
,

that is

N∑
k=2

τ ‖ẑ′τ (mk)‖Z ≤C

(
T + ε ‖ẑ′τ (m1)‖L2(Ω) +

N∑
k=2

τR1(ẑ′τ (mk))

)

+

N∑
k=2

τ(1 + γ)2(k−N)−2 ‖ẑ′τ (mk)‖Z .

(4.46)
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Using (4.41) to estimate the last term in (4.46), we arrive at

N∑
k=2

τ ‖ẑ′τ (mk)‖Z ≤ C

(
T + ε ‖ẑ′τ (m1)‖L2(Ω) +

N∑
k=2

τR1(ẑ′τ (mk))

)
. (4.47)

Taking into account (4.6) together with τ ≤ 2ε, we finally obtain (4.34).

Combining estimate (4.34) with (4.16) it follows that

Corollary 4.8. Assume (2.1), (2.8)–(2.10) and (2.16). Suppose that z0 ∈ Z and that DzI(0, z0) ∈ L2(Ω).

For ε ∈ (0, ε0] let (zε)ε ∈ H1(0, T ;Z) be a family of solutions to the Cauchy problem for (3.1), which are

limits of sequences (ẑε,τ )τ↘0 of solutions to (4.1) (as in the statement of Theorem 4.3).

Then there exist constants C15, C16 > 0 such that for all ε > 0 it holds∫ T

0

‖z′ε(t)‖Z dt ≤ C15 ‖DzI(0, z0)‖L2(Ω) + C16

∫ T

0

(1 +R1(z′ε(t))) dt. (4.48)

Estimate (3.12) then follows from inequality (4.48), taking into account that from the energy identity

(3.7) it can be deduced that supε>0

∫ T
0
R1(z′ε(t)) dt ≤ C.

In the proof of Proposition 4.7 we used the following time-discrete Gronwall-type estimate with weights.

Lemma 4.9. Let {ak}Nk=0 and {bk, ck, dk}Nk=1 be nonnegative numbers and γ ≥ 0. Assume that for

1 ≤ k ≤ N it holds

2ak(ak − ak−1) + 2γa2
k + b2k ≤ c2k + 2akdk. (4.49)

Then the following estimates are valid for all n ≥ 1:

an ≤

(
(1 + γ)−2na2

0 +

n∑
k=1

(1 + γ)2(k−n)−1c2k

) 1
2

+

n∑
k=1

(1 + γ)k−n−1dk , (4.50)

(
n∑
k=1

(1 + γ)2(k−n)−1b2k

) 1
2

≤

(
(1 + γ)−2na2

0 +

n∑
k=1

(1 + γ)2(k−n)−1c2k

) 1
2

+
√

2

n∑
k=1

(1 + γ)k−n−1dk . (4.51)

Remark 4.10. If γ = 0, then Lemma 4.9 exactly reproduces [NSV00, Lemma 3.17]. Hence, our proof

follows closely the steps in [NSV00], introducing the weight (1 + γ)α in a suitable way.

Proof. We set a0 = R0 and define for 1 ≤ n ≤ N the quantities

Rn = ξn + δn, δn =

n∑
k=1

(1 + γ)k−n−1dk, (4.52)

ξn =

(
(1 + γ)−2na2

0 +

n∑
k=1

(1 + γ)2(k−n)−1c2k

) 1
2

. (4.53)

As in [NSV00], we first prove the inequality an ≤ Rn for all 1 ≤ n ≤ N , which then gives (4.50). Since

bn ≥ 0, from (4.49) we find that

(1 + γ)a2
n − (an−1 + dn)an ≤ 1

2c
2
n.
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Hence, investigating the roots of an in the quadratic inequality, we find since an ≥ 0

2(1 + γ)an ≤ an−1 + dn +
(
(an−1 + dn)2 + 2(1 + γ)c2n

) 1
2 . (4.54)

Observe that (1 + γ)δn = δn−1 + dn and that (1 + γ)ξn ≥ ξn−1. Therefore, from the definition of Rn it

follows that

(1 + γ)R2
n − (Rn−1 + dn)Rn = Rn

(
(1 + γ)ξn + (1 + γ)δn − ξn−1 − δn−1 − dn

)
≥ ξn

(
(1 + γ)ξn − ξn−1

)
Using Young’s inequality with ξnξn−1 ≤ 1

2 ((1+γ)ξ2
n+(1+γ)−1ξ2

n−1) and taking into account the definition

of ξn, we conclude that

ξn
(
(1 + γ)ξn − ξn−1

)
≥ 1

2

(
(1 + γ)ξ2

n − (1 + γ)−1ξ2
n−1

)
=
c2n
2
.

Hence, we have shown that

(1 + γ)R2
n − (Rn−1 + dn)Rn ≥ 1

2c
2
n.

In the same way as for an (cf. (4.54)), we deduce the estimate

2(1 + γ)Rn ≥ Rn−1 + dn +
(
(Rn−1 + dn)2 + 2(1 + γ)c2n

) 1
2 . (4.55)

Since a0 = R0, by induction from (4.54) and (4.55) we have an ≤ Rn for every n ≤ N , whence (4.50).

We now prove (4.51). Let 1 ≤ n ≤ N . From (4.49),applying the Young inequality to the term 2akak−1

and taking into account that ak ≤ Rk, we find for 1 ≤ k ≤ n

b2k ≤ c2k + 2Rkdk + (1 + γ)−1a2
k−1 − (1 + γ)a2

k.

Multiplying this inequality with (1 + γ)2(k−n)−1, using that (1 + γ)k−nRk ≤ Rn and summing up we

obtain

n∑
k=1

(1 + γ)2(k−n)−1b2k ≤
n∑
k=1

(1 + γ)2(k−n)−1c2k + 2Rn

n∑
k=1

(1 + γ)k−n−1dk

+

n∑
k=1

(1 + γ)2(k−n)−2a2
k−1 −

n∑
k=1

(1 + γ)2(k−n)a2
k. (4.56)

Observe that the last two terms add up to (1 + γ)−2na2
0 − a2

n. Thus, we finally arrive at

n∑
k=1

(1 + γ)2(k−n)−1b2k ≤ ξ2
n + 2Rnδn ≤

(
ξn +

√
2δn

)2

,

whence (4.51).
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5 Existence of parameterized solutions

Throughout this section, we shall work with a family (zε)ε ⊂ H1(0, T ;Z) of solutions to the ε-viscous

Cauchy problem (3.1)–(3.2), for which the L1-estimate

sup
ε>0

∫ T

0

‖z′ε(t)‖Z dt ≤ C <∞ (5.1)

is valid. The existence of such a family is ensured by Theorem 3.3, under condition (3.10) on the initial

datum z0 ∈ Z.

5.1 The vanishing viscosity analysis

For every ε > 0, we consider the graph Graph(zε) := { (t, zε(t)) ; t ∈ [0, T ] } ⊂ [0, T ] × Z and its Z-

arclength parameterization

sε(t) = t+

∫ t

0

‖z′ε(r)‖Z dr. (5.2)

For Sε = sε(T ) we introduce the functions t̂ε : [0, Sε]→ [0, T ] and ẑε : [0, Sε]→ Z

t̂ε(s) := s−1
ε (s), ẑε(s) := zε(t̂ε(s)) (5.3)

and study the limiting behavior as ε → 0 of the parameterized trajectories
{

(t̂ε(s), ẑε(s)) ; s ∈ [0, Sε]
}

,

which fulfill the normalization condition

t̂′ε(s) + ‖ẑ′ε(s)‖Z = 1 for a.a. s ∈ (0, Sε). (5.4)

Observe that, in view of estimate (5.1), there holds supε>0 Sε < +∞. Therefore, up to a subsequence

Sε → S as ε→ 0, with S ≥ T (the latter inequality follows from the fact that sε(t) ≥ t). With no loss of

generality, we may consider the parameterized trajectories to be defined on the fixed time interval [0, S].

For this passage to the limit, following [MRS09, MRS12a] we adopt an energetic viewpoint, i.e. we take

the limit of the energy identity fulfilled by the parameterized trajectories (t̂ε(s), ẑε(s))s∈[0,S]. Setting

d2(ξ, ∂R1(0)) := min
µ∈∂R1(0)

√
2R̃2(ξ−µ)

the energy identity (3.11) written for the pair (t̂ε, ẑε) on any time interval (σ1, σ2) ⊂ [0, S] reads∫ σ2

σ1

(
R1(ẑ′ε(s))+

ε

2t̂′ε(s)
‖ẑ′ε(s)‖

2
L2(Ω)+

t̂′ε(s)

2ε
d2

2(−DzI(t̂ε(s), ẑε(s)), ∂R1(0))
)

ds+ I(t̂ε(σ2), ẑε(σ2))

= I(t̂ε(σ1), ẑε(σ1)) +

∫ σ2

σ1

∂tI(t̂ε(s), ẑε(s))t̂
′
ε(s)ds.

The above identity can be also reformulated by means of the functional (cf. [MRS09, Sec. 3.2])

Mε : (0,+∞)× L2(Ω)× [0,+∞)→ [0,+∞], Mε(α, v, ζ) := R1(v) +
ε

2α
‖v‖2L2(Ω) +

α

2ε
ζ2, (5.5)
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whence ∫ σ2

σ1

Mε(t̂
′
ε(s), ẑ

′
ε(s),d2(−DzI(t̂ε(s), ẑε(s)), ∂R1(0))) ds+ I(t̂ε(σ2), ẑε(σ2))

= I(t̂ε(σ1), ẑε(σ1)) +

∫ σ2

σ1

∂tI(t̂ε(s), ẑε(s))t̂
′
ε(s)ds.

(5.6)

For the passage to the limit as ε → 0 in (5.6), we shall rely on the following Γ-convergence/lower

semicontinuity result, which was proved in a finite-dimensional setting in [MRS09] (cf. Lemma 3.1 therein).

Lemma 5.1. Extend the functional Mε (5.5) to [0,+∞)× L2(Ω)× [0,+∞) via

Mε(0, v, ζ) :=

0 for v = 0 and ζ ∈ [0,+∞) ,

+∞ for v ∈ L2(Ω)\{0} and ζ ∈ [0,+∞) .

Define M0 : [0,+∞)× L2(Ω)× [0,+∞)→ [0,+∞] by

M0(α, v, ζ) :=

R1(v) + ζ ‖v‖L2(Ω) if α = 0,

R1(v) + I0(ζ) if α > 0,
(5.7)

where I0 denotes the indicator function of the singleton {0}. Then,

(A) Mε Γ-converges to M0 on [0,+∞)× L2(Ω)× [0,+∞) w.r. to the strong-weak-strong topology, viz.

Γ-liminf estimate:

(αε, ζε)→ (α, ζ) and vε ⇀ v in L2(Ω) =⇒ M0(α, v, ζ) ≤ lim inf
ε↘0

Mε(αε, vε, ζε) ,
(5.8a)

Γ-limsup estimate:

∀ (α, v, ζ) ∃ (αε, vε, ζε)ε>0 :

(αε, ζε)→ (α, ζ), vε ⇀ v in L2(Ω) and

M0(α, v, ζ) ≥ lim supε↘0Mε(αε, vε, ζε) .

(5.8b)

(B) If αε ⇀ ᾱ in L1(a, b), vε ⇀ v̄ in L1(a, b;L2(Ω)), and lim infε→0 ζε(s) ≥ ζ̄(s) for a.a. s ∈ (a, b), then∫ b

a

M0(ᾱ(s), v̄(s), ζ̄(s))ds ≤ lim inf
ε→0

∫ b

a

Mε(αε(s), vε(s), ζε(s))ds .

The proof can be developed arguing in the same way as in the proof of [MRS09, Lemma 3.1], up to re-

placing the usage of Ioffe’s theorem [Iof77] with its infinite-dimensional version, see e.g. [Val90, Thm. 21].

Moving from this result, and following [MRS09, Def. 3.2], [MRS12a, Def. 5.2], we give the ensuing

Definition 5.2. A pair (t̂, ẑ) ∈ C0
lip([0, S]; [0, T ]×Z) is a Z-parameterized solution of (1.6), if it satisfies

the energy identity for all 0 ≤ σ1 ≤ σ2 ≤ S∫ σ2

σ1

M0(t̂′(s), ẑ′(s),d2(−DzI(t̂(s), ẑ(s)), ∂R1(0))) ds+ I(t̂(σ2), ẑ(σ2))

= I(t̂(σ1), ẑ(σ1)) +

∫ σ2

σ1

∂tI(t̂(s), ẑ(s))t̂′(s)ds.

(5.9)

We say that a Z-parameterized solution (t̂, ẑ) ∈ C0
lip([0, S]; [0, T ]×Z) is non-degenerate if it fulfills

t̂′(s) + ‖ẑ′(s)‖Z > 0 for a.a. s ∈ (0, S). (5.10)
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We are now in the position of stating the main result of this section.

Theorem 5.3. Let s = d/2. Assume (2.1), (2.8)–(2.10), and (2.16). Let (zε)ε ⊂ H1(0, T ;Z) be a family

of solutions to the ε-viscous problem (3.1)–(3.2), for which estimate (5.1) is valid, and let (t̂ε, ẑε)ε>0 ⊂
C0

lip([0, S]; [0, T ]×Z) be defined by (5.3).

Then, for every sequence εn ↘ 0 there exist a pair (t̂, ẑ) ∈ C0
lip([0, S]; [0, T ]× Z) and a (not-relabeled)

subsequence such that

(t̂εn , ẑεn)
∗
⇀ (t̂, ẑ) in W 1,∞(0, S; [0, T ]×Z),

t̂εn → t̂ in C0([0, S]; [0, T ]), ẑεn(s) ⇀ ẑ(s) in Z for all s ∈ [0, S],
(5.11)

and (t̂, ẑ) is a Z-parameterized solution of (1.6), fulfilling

t̂′(s) + ‖ẑ′(s)‖Z ≤ 1 for a.a. s ∈ (0, S). (5.12)

Remark 5.4. At the moment, it remains an open problem to prove that, the limiting Z-parameterized

solution in Thm. 5.3 is also non-degenerate. Without going into details, we may mention that, in some

sense, this is due to the gap between condition (5.10), which involves the Z-norm of ẑ′, and our energetic

method for taking the vanishing viscosity limit of (3.1). The mismatch occurs because, neither the viscous

energy identity (5.6), nor its limit (5.9) contain information on the term ‖ẑ′‖Z .
These considerations also suggest that, in order to obtain non-degenerate parameterized solutions,

it could be necessary to implement on this vanishing viscosity limit the alternative reparameterization

techniques which we will discuss in Section 5.3. We plan to address this issue in a future paper.

Remark 5.5. By reparameterizing degenerate Z-parameterized solutions, non-degenerate Z-parameterized

solutions can be obtained: Let (t̂, ẑ) ∈ W 1,∞(0, S;R) × W 1,∞(0, S;Z) be a Z-parameterized solu-

tion with t̂′(ρ) + ‖ẑ′(ρ)‖Z ≤ 1 for a.a. ρ ∈ (0, S). Define m(ρ) :=
∫ ρ

0
t̂′(σ) + ‖ẑ′(σ)‖Z dσ, r(µ) :=

inf { ρ ≥ 0 ; m(ρ) = µ } and t̃(µ) := t̂(r(µ)), z̃(µ) = ẑ(r(µ)). Clearly, m is monotone and Lipschitz while

r is monotone and belongs to BV([0, R]) with R := r(m(S)). Moreover, it holds m(r(µ)) = µ and for

every µ ∈ J(r) (where J(r) denotes the jump set of the BV-function r) we have m(r(µ−)) = m(r(µ+)).

Hence, with the chain rule in [AFP00, Theorem 3.96] it follows that

dµ = Dm(r(·)) = m′(r(·))D̃r +
∑

µ∈J(r)

(m(r(µ+))−m(r(µ−)))δµ = m′(r(·))D̃r. (5.13)

Here, D̃r denotes the diffuse part of the distributional derivative Dr. The Lipschitz continuity of t̃ and

z̃ now is an immediate consequence of the above calculations. Indeed, let 0 ≤ µ1 ≤ µ2 ≤ R. Then

0 ≤ t̃(µ2)− t̃(µ1) =

∫ µ2

µ1

t̂′(r(µ))D̃r(µ) =

∫ µ2

µ1

(
m′(r(µ))− ‖ẑ′(r(µ))‖Z

)
D̃r(µ)

=

∫ µ2

µ1

dµ−
∫ µ2

µ1

‖ẑ′(r(µ))‖Z D̃r(µ) ≤ µ2 − µ1,

where the second equality is due to the definition of m and the third one follows from (5.13). The last

inequality is due to the monotonicity of r. Similarly we show that z̃ is Lipschitz continuous. Hence, the

pair (t̃, z̃) belongs to W 1,∞(0, R;R)×W 1,∞(0, R;Z) and satisfies t̃′(µ)+‖z̃′(µ)‖Z = 1 for a.a. µ ∈ (0, R).

Finally, it is easy to check that (t̃, z̃) satisfies the energy identity (5.9), whence (t̃, z̃) is a non-degenerate

Z-parameterized solution of (1.6).
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The proof of Theorem 5.3 is based on the following result, which is the “parameterized counterpart” to

Proposition 3.2. Indeed, it provides an equivalent formulation of (5.9). The reader is referred to [MRS12a,

Prop. 5.3] for further characterizations of parameterized solutions.

Lemma 5.6. Let s = d/2. Assume (2.1), (2.8)–(2.10), and (2.16). Then, a pair (t̂, ẑ) ∈ C0
lip([0, S]; [0, T ]×

Z) is a Z-parameterized solution of (1.6) if and only if it satisfies for all 0 ≤ σ ≤ S the energy inequality∫ σ

0

M0(t̂′(s), ẑ′(s),d2(−DzI(t̂(s), ẑ(s)), ∂R1(0))) ds+ I(t̂(σ), ẑ(σ))

≤ I(t̂(0), ẑ(0)) +

∫ σ

0

∂tI(t̂(s), ẑ(s))t̂′(s)ds.

(5.14)

Proof. Like in the proof of Proposition 3.2, we observe that, due to the smoothness of the energy functional

I (cf. Corollary 2.9), any pair (t̃, z̃) ∈ C0
lip([0, S]; [0, T ]×Z) fulfills the “parameterized chain rule” identity

d

ds
I(t̃(s), z̃(s)) = ∂tI(t̃(s), z̃(s))t̃′(s) + 〈DzI(t̃(s), z̃(s)), z̃′(s)〉Z for a.a. s ∈ (0, S). (5.15)

Now, let µ(s) ∈ ∂R1(0) satisfy
∥∥−DzI(t̃(s)− µ(s)

∥∥
L2(Ω)

= d2(−DzI(t̃(s), z̃(s)), ∂R1(0))) for almost all

s ∈ (0, S) (cf. Lemma 3.1). Then, there holds

− d

ds
I(t̃(s), z̃(s)) + ∂tI(t̃(s), z̃(s))t̃′(s) = 〈−DzI(t̃(s), z̃(s))− µ(s), z̃′(s)〉L2(Ω) + 〈µ(s), z̃′(s)〉Z

≤ d2(−DzI(t̃(s), z̃(s)), ∂R1(0))) ‖z̃′(s)‖L2(Ω) +R1(z̃′(s)),
(5.16)

where the latter inequality follows from the definition (1.4) of ∂R1(0). Hence, let (t̂, ẑ) comply with (5.14).

In particular, M0(t̂′(s), ẑ′(s),d2(−DzI(t̂(s), ẑ(s)), ∂R1(0))) <∞ for a.a. s ∈ (0, S), which yields that

t̂′(s) > 0 ⇒ d2(−DzI(t̂(s), ẑ(s)), ∂R1(0)) = 0. (5.17)

Therefore, for (t̂, ẑ) the following inequality holds

d2(−DzI(t̃(s), z̃(s)), ∂R1(0))) ‖z̃′(s)‖L2(Ω) +R1(z̃′(s))

≤M0(t̂′(s), ẑ′(s),d2(−DzI(t̂(s), ẑ(s)), ∂R1(0))) for a.a. s ∈ (0, S).
(5.18)

Combining (5.16) with (5.18) and integrating in time, we deduce from (5.14) the chain of inequalities

(ultimately, identities)∫ σ

0

M0(t̂′(s), ẑ′(s),d2(−DzI(t̂(s), ẑ(s)), ∂R1(0))) ds+ I(t̂(σ), ẑ(σ))

≤ I(t̂(0), ẑ(0)) +

∫ σ

0

∂tI(t̂(s), ẑ(s))t̂′(s)ds

=

∫ σ

0

M0(t̂′(s), ẑ′(s),d2(−DzI(t̂(s), ẑ(s)), ∂R1(0))) ds+ I(t̂(σ), ẑ(σ))

for all σ ∈ [0, S]. Then, with the very same arguments as in the proof of Proposition 3.2, we find that

(t̂, ẑ) complies with (5.9) for all 0 ≤ σ1 ≤ σ2 ≤ S.

Proof of Theorem 5.3. From estimate (5.4), we deduce that there exists (t̂, ẑ) ∈ C0
lip([0, S]; [0, T ]×Z)

such that convergences (5.11) hold along some subsequence. Arguing as in the proof of Theorem 4.3 and
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relying on Corollary 2.9, we then find that, for all s ∈ [0, S]

lim inf
n→∞

I(t̂εn(s), ẑεn(s)) ≥ I(t̂(s), ẑ(s)), DzI(t̂εn(s), ẑεn(s)) ⇀ DzI(t̂(s), ẑ(s)) weakly in Z∗,

∂tI(t̂εn(s), ẑεn(s))→ ∂tI(t̂(s), ẑ(s)) in Lp(0, S) for all 1 ≤ p <∞.
(5.19)

Now, (5.12) follows by taking the limit as εn → 0 in (5.4), with a trivial lower semicontinuity argument.

Thanks to Lemma 5.1 and convergences (5.19), we have that, for all 0 ≤ σ ≤ S

lim inf
εn→0

∫ σ

0

Mεn(t̂′εn(s), ẑ′εn(s),d2(−DzI(t̂εn(s), ẑεn(s)), ∂R1(0))) ds

≥
∫ σ

0

M0(t̂′(s), ẑ′(s),d2(−DzI(t̂(s), ẑ(s)), ∂R1(0))) ds.

Then, combining (5.11) and (5.19), and using that ẑε(0) = zε(0) = z0 for all ε > 0, we pass to the limit

in (5.6) written for σ1 = 0 and σ2 = σ. We thus find that the pair (t̂, ẑ) satisfies (5.14) for all 0 ≤ σ ≤ S.

In view of Lemma 5.6, we conclude that (t̂, ẑ) is a parameterized solution.

5.2 Properties of non-degenerate parameterized solutions

The following characterization of non-degenerate parameterized solutions was proved in [MRS12a, Prop. 5.3,

Cor. 5.4]. Adapted to our setting, it reads

Proposition 5.7 (Differential characterization). Let s = d/2. Assume (2.1), (2.8)–(2.10), and (2.16).

Then, a pair (t̂, ẑ) ∈ C0
lip([0, S]; [0, T ]×Z) is a non-degenerate Z-parameterized solution of (1.6), if and

only if there exists a Borel function λ : (0, S)→ [0,+∞) such that∂R1(ẑ′(s)) + λ(s)ẑ′(s) + DzI(t̂(s), ẑ(s)) 3 0,

t̂′(s)λ(s) = 0
for a.a. s ∈ (0, S). (5.20)

Remark 5.8 (Mechanical interpretation). As in [MRS12a, Rmk. 5.6] (see also [EM06, MRS09]), from the

differential characterization (5.20) of parameterized solutions we may draw the following conclusions on

the evolution described by the notion of parameterized solution:

- the regime (t̂′ > 0, ẑ′ = 0) corresponds to sticking ;

- the regime (t̂′ > 0, ẑ′ 6= 0) corresponds to rate-independent evolution: From the second of (5.20)

and t̂′(s) > 0 we deduce that λ(s) = 0, hence the first of (5.20) reads

∂R1(ẑ′(s)) + DzI(t̂(s), ẑ(s)) 3 0

where only the rate-independent dissipation is present;

- when (t̂′ = 0, ẑ′ 6= 0) (note that the latter condition is implied by the non-degeneracy (5.10)), the

system has switched to a viscous regime. The latter is seen as a jump in the (slow) external time

scale, encoded by the time function t̂, which is frozen. Since t̂′(s) = 0, the second of (5.20) is

satisfied and λ(s) may be strictly positive. In this case, in the first of (5.20) also viscous dissipation

is active. Indeed, (5.20) describes the energetic behavior of the system at jump points, see also

[MRS09, MRS12a].
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5.3 Alternative reparameterization techniques and conclusions

As we have already mentioned in the introduction, in the papers [MRS09, MRS12a] and [EM06, Mie11,

MZ12], the vanishing viscosity analysis of rate-independent systems has been developed by reparameter-

ization techniques as well, however based on choices of the parameterization functions different from our

own (5.2).

The reparameterization considered in [MRS09, MRS12a] (see also the forthcoming [MRS12c]) would

feature, in the present setting, the “energetic quantity”

s̄ε(t) =

∫ t

0

(
1 +Rε(z′ε(τ)) +R∗ε (−DI(τ, zε(τ)))

)
dτ (5.21)

which can be considered as some sort of energy-dissipation arclength of the viscous solution zε. In fact,

under the sole assumption z0 ∈ Z, from the energy identity (3.7) fulfilled by viscous solutions it is

immediate to deduce that supε>0 s̄ε(T ) < +∞.

On the other hand, the L1(0, T ;Z)-estimate (5.1) for (z′ε) (which can be proved under the additional

condition DzI(0, z0) ∈ L2(Ω)) clearly yields that supε
∫ T

0
‖z′ε(r)‖L2(Ω) dr ≤ C < ∞. In principle, this

would also allow us to reparameterize by the L2(Ω)-arclength

s̃ε(t) =

∫ t

0

(
1 + ‖z′ε(τ)‖L2(Ω)

)
dτ (5.22)

of the graph of zε, like in [Mie11, MZ12]. The advantage of the L2-arclength reparameterization, in

comparison with the energy-dissipation arclength and the Z-arclength repameterizations, is that it leads

to a more understandable “parameterized formulation”, both on the ε-level and in the vanishing viscosity

limit. More precisely, setting t̃ε(s) := s̃−1
ε (s), z̃ε(s) := zε(t̃ε(s)) for s ∈ [0, s̃ε(T )], it can be easily calculated

that the pair (t̃ε, z̃ε) fulfillst̃ε(0) = 0, z̃ε(0) = z0, t̃′ε(s) + ‖z̃′ε(s)‖L2(Ω) = 1,

∂R1(z̃′ε(s)) + ε
1−‖z̃′ε(s)‖L2(Ω)

z̃′ε(s) + DzI(t̃ε(s), z̃ε(s)) 3 0
for a.a. s ∈ (0, s̃ε(T )). (5.23)

As in [Mie11, Section 4.4] (cf. also [EM06, MZ12]), one observes that the ε-viscous term is the subdiffer-

ential of the potential Vε, which is defined for every η ∈ L2(Ω) as follows:

Vε(η) = εv
(
‖η‖L2(Ω)

)
with v(ξ) =

− log(1− ξ)− ξ if ξ < 1,

+∞ else.

With R̃ε(η) := R1(η) + Vε(η), the differential inclusion in (5.23) can be rewritten as

∂R̃ε(z̃′ε(s)) + DzI(t̃ε(s), z̃ε(s)) 3 0 for a.a. s ∈ (0, s̃ε(T )). (5.24)

Notice that (5.24) has the same structure as the “viscous” doubly nonlinear equation (3.1). It can be

checked (cf. with [MZ12, Lemma A.4] in the reversible case R1(·) = ‖·‖L1(Ω)), that the potential R̃ε
converges monotonously to the limit functional R̃0 with R̃0(η) = R1(η) if ‖η‖L2(Ω) ≤ 1 and +∞ else.

Therefore, recalling the results in [Mie11, MZ12], it is to be expected that, up to a subsequence, the
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pairs (t̃ε, z̃ε)ε converge to (t̃, z̃) ∈ C0
lip([0, S̃]; [0, T ]× L2(Ω)) (with S̃ = limε→0 s̃ε(T )), satisfyingt̃(0) = 0, t̃(S) = T, t̃′(s) ≥ 0, t̃′(s) + ‖z̃′(s)‖L2(Ω) ≤ 1,

∂R̃0(z̃′(s)) + DzI(t̃(s), z̃(s)) 3 0
for a.a. s ∈ (0, S̃). (5.25)

However, at the moment we are not able to prove this convergence result. Our main difficulty in the

passage to the limit as ε ↘ 0 in (5.24) is related to the unboundedness of the operator ∂R1. Because

of this, it is not possible to perform those comparison estimates in (5.24), which would give a bound in

L2(0, S̃;L2(Ω)) for the term DzI(t̃ε(·), z̃ε(·)). As it stands, such a term is only estimated in L∞(0, T ;Z∗),
which is not sufficient for passing from (5.24) to (5.25), since we only have an L1(0, T ;L2(Ω))-bound for

(z̃′ε)ε. Roughly speaking, the terms DzI(t̃ε, z̃ε) and z̃′ε are no longer “in duality”: This prevents us from

applying the passage to the limit techniques developed in [MZ12] for the “reversible” case. Furthermore,

we cannot develop the “energetic” arguments of the proof of Theorem 5.3 any longer. Indeed, in this

new setting it would still be possible to prove that (t̃ε, z̃ε)ε converge in suitable topologies to a pair

(t̃, z̃) ∈ C0
lip([0, S̃]; [0, T ]×L2(Ω)) which satisfies the energy inequality related to the limit problem (5.25):

I(T, z̃(S)) +

∫ S

0

R̃0(z̃′(s)) ds+

∫ S

0

(R̃0)∗
(
−DzI(t̃(s), z̃(s))

)
ds

≤ I(0, z̃(0)) +

∫ S

0

∂tI(t̃(s), z̃(s))t̃′(s) ds.

(5.26)

Still, from (5.26) we would not be able to conclude that (5.25) holds via chain rule arguments, like in the

proof of Theorem 5.3. In fact, we do not dispose of the “parameterized chain rule” (5.15) any longer, due

to the lack of further spatial regularity for DzI(t̃ε, z̃ε).

The vanishing viscosity analysis via the energy-dissipation arclength reparameterization would bring

forth the same difficulties. Nonetheless, we plan to address these issues in the future, relying on some

improved regularity results for the term DzI(t, zε(t)) in (3.1).
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[FK06] M. Frémond and N. Kenmochi. Damage problems for viscous locking materials. Adv. Math.

Sci. Appl., 16(2):697–716, 2006.

40



[FKS12] A. Fiaschi, D. Knees, and U. Stefanelli. Young measure quasi-static damage evolution. Arch.

Rational Mech. Anal., 203:415–453, 2012.
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L. Ambrosio and G. Savaré, editors, Nonlinear PDEs and Applications. C.I.M.E. Summer

School, Cetraro, Italy 2008., page 240 pages. Springer, Heidelberg, 2011.
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