16 research outputs found

    Efficacy and safety of tocilizumab in COVID-19 patients: a living systematic review and meta-analysis

    Get PDF
    ObjectivesCytokine release syndrome with elevated interleukin-6 (IL-6) levels is associated with multiorgan damage and death in severe coronavirus disease 2019 (COVID-19). Our objective was to perform a living systematic review of the literature concerning the efficacy and toxicity of the IL-6 receptor antagonist tocilizumab in COVID-19 patients. MethodsData sources were Ovid MEDLINE(R) and Epub Ahead of Print, In-Process & Other Non-Indexed Citations and Daily, Ovid Embase, Ovid Cochrane Central Register of Controlled Trials, Ovid Cochrane Database of Systematic Reviews, Web of Science, Scopus up, preprint servers and Google up to October 8, 2020. Study eligibility criteria were randomized controlled trials (RCTs) and observational studies at low or moderate risk of bias. Participants were hospitalized COVID-19 patients. Interventions included tocilizumab versus placebo or standard of care. We pooled crude risk ratios (RRs) of RCTs and adjusted RRs from cohorts, separately. We evaluated inconsistency between studies with I2. We assessed the certainty of evidence using the GRADE approach. ResultsOf 1156 citations, 24 studies were eligible (five RCTs and 19 cohorts). Five RCTs at low risk of bias, with 1325 patients, examined the effect of tocilizumab on short-term mortality; pooled RR was 1.09 (95%CI 0.80–1.49, I2 = 0%). Four RCTs with 771 patients examined the effect of tocilizumab on risk of mechanical ventilation; pooled RR was 0.71 (95%CI 0.52–0.96, I2 = 0%), with a corresponding number needed to treat of 17 (95%CI 9–100). Among 18 cohorts at moderate risk of bias with 9850 patients, the pooled adjusted RR for mortality was 0.58 (95%CI 0.51–0.66, I2 = 2.5%). This association was observed over all degrees of COVID-19 severity. Data from the RCTs did not show a higher risk of infections or adverse events with tocilizumab: pooled RR 0.63 (95%CI 0.38–1.06, five RCTs) and 0.83 (95%CI 0.55–1.24, five RCTs), respectively. ConclusionsCumulative moderate-certainty evidence shows that tocilizumab reduces the risk of mechanical ventilation in hospitalized COVID-19 patients. While RCTs showed that tocilizumab did not reduce short-term mortality, low-certainty evidence from cohort studies suggests an association between tocilizumab and lower mortality. We did not observe a higher risk of infections or adverse events with tocilizumab use. This review will continuously evaluate the role of tocilizumab in COVID-19 treatment

    Association of corticosteroids use and outcomes in COVID-19 patients: A systematic review and meta-analysis

    Get PDF
    BackgroundTo systematically review the literature about the association between systemic corticosteroid therapy (CST) and outcomes of COVID-19 patients. MethodsWe searched Medline, Embase, EBM Reviews, Scopus, Web of Science, and preprints up to July 20, 2020. We included observational studies and randomized controlled trials (RCT) that assessed COVID-19 patients treated with CST. We pooled adjusted effect estimates of mortality and other outcomes using a random effect model, among studies at low or moderate risk for bias. We assessed the certainty of evidence for each outcome using the GRADE approach. ResultsOut of 1067 citations screened for eligibility, one RCT and 19 cohort studies were included (16,977 hospitalized patients). Ten studies (1 RCT and 9 cohorts) with 10,278 patients examined the effect of CST on short term mortality. The pooled adjusted RR was 0.92 (95% CI 0.69–1.22, I2 = 81.94%). This effect was observed across all stages of disease severity. Four cohort studies examined the effect of CST on composite outcome of death, ICU admission and mechanical ventilation need. The pooled adjusted RR was 0.41(0.23−0.73, I2 = 78.69%). Six cohort studies examined the effect of CST on delayed viral clearance. The pooled adjusted RR was 1.47(95% CI 1.11–1.93, I2 = 43.38%). ConclusionIn this systematic review, as of July 2020, heterogeneous and low certainty cumulative evidence based on observational studies and one RCT suggests that CST was not associated with reduction in short-term mortality but possibly with a delay in viral clearance in patients hospitalized with COVID-19 of different severities. However, the discordant results between the single RCT and observational studies as well as the heterogeneity observed across observational studies, call for caution in using observational data and suggests the need for more RCTs to identify the clinical and biochemical characteristics of patients’ population that could benefit from CST

    Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: A systematic analysis for the Global Burden of Disease Study 2013

    Get PDF
    Background Up-to-date evidence on levels and trends for age-sex-specific all-cause and cause-specific mortality is essential for the formation of global, regional, and national health policies. In the Global Burden of Disease Study 2013 (GBD 2013) we estimated yearly deaths for 188 countries between 1990, and 2013. We used the results to assess whether there is epidemiological convergence across countries. Methods We estimated age-sex-specific all-cause mortality using the GBD 2010 methods with some refinements to improve accuracy applied to an updated database of vital registration, survey, and census data. We generally estimated cause of death as in the GBD 2010. Key improvements included the addition of more recent vital registration data for 72 countries, an updated verbal autopsy literature review, two new and detailed data systems for China, and more detail for Mexico, UK, Turkey, and Russia. We improved statistical models for garbage code redistribution. We used six different modelling strategies across the 240 causes; cause of death ensemble modelling (CODEm) was the dominant strategy for causes with sufficient information. Trends for Alzheimer's disease and other dementias were informed by meta-regression of prevalence studies. For pathogen-specific causes of diarrhoea and lower respiratory infections we used a counterfactual approach. We computed two measures of convergence (inequality) across countries: the average relative difference across all pairs of countries (Gini coefficient) and the average absolute difference across countries. To summarise broad findings, we used multiple decrement life-tables to decompose probabilities of death from birth to exact age 15 years, from exact age 15 years to exact age 50 years, and from exact age 50 years to exact age 75 years, and life expectancy at birth into major causes. For all quantities reported, we computed 95% uncertainty intervals (UIs). We constrained cause-specific fractions within each age-sex-country-year group to sum to all-cause mortality based on draws from the uncertainty distributions. Findings Global life expectancy for both sexes increased from 65·3 years (UI 65·0-65·6) in 1990, to 71·5 years (UI 71·0-71·9) in 2013, while the number of deaths increased from 47·5 million (UI 46·8-48·2) to 54·9 million (UI 53·6-56·3) over the same interval. Global progress masked variation by age and sex: for children, average absolute differences between countries decreased but relative differences increased. For women aged 25-39 years and older than 75 years and for men aged 20-49 years and 65 years and older, both absolute and relative differences increased. Decomposition of global and regional life expectancy showed the prominent role of reductions in age-standardised death rates for cardiovascular diseases and cancers in high-income regions, and reductions in child deaths from diarrhoea, lower respiratory infections, and neonatal causes in low-income regions. HIV/AIDS reduced life expectancy in southern sub-Saharan Africa. For most communicable causes of death both numbers of deaths and age-standardised death rates fell whereas for most non-communicable causes, demographic shifts have increased numbers of deaths but decreased age-standardised death rates. Global deaths from injury increased by 10·7%, from 4·3 million deaths in 1990 to 4·8 million in 2013; but age-standardised rates declined over the same period by 21%. For some causes of more than 100 000 deaths per year in 2013, age-standardised death rates increased between 1990 and 2013, including HIV/AIDS, pancreatic cancer, atrial fibrillation and flutter, drug use disorders, diabetes, chronic kidney disease, and sickle-cell anaemias. Diarrhoeal diseases, lower respiratory infections, neonatal causes, and malaria are still in the top five causes of death in children younger than 5 years. The most important pathogens are rotavirus for diarrhoea and pneumococcus for lower respiratory infections. Country-specific probabilities of death over three phases of life were substantially varied between and within regions. Interpretation For most countries, the general pattern of reductions in age-sex specific mortality has been associated with a progressive shift towards a larger share of the remaining deaths caused by non-communicable disease and injuries. Assessing epidemiological convergence across countries depends on whether an absolute or relative measure of inequality is used. Nevertheless, age-standardised death rates for seven substantial causes are increasing, suggesting the potential for reversals in some countries. Important gaps exist in the empirical data for cause of death estimates for some countries; for example, no national data for India are available for the past decade. Funding Bill & Melinda Gates Foundation

    Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study

    Get PDF
    Cardiovascular diseases (CVDs), principally ischemic heart disease (IHD) and stroke, are the leading cause of global mortality and a major contributor to disability. This paper reviews the magnitude of total CVD burden, including 13 underlying causes of cardiovascular death and 9 related risk factors, using estimates from the Global Burden of Disease (GBD) Study 2019. GBD, an ongoing multinational collaboration to provide comparable and consistent estimates of population health over time, used all available population-level data sources on incidence, prevalence, case fatality, mortality, and health risks to produce estimates for 204 countries and territories from 1990 to 2019. Prevalent cases of total CVD nearly doubled from 271 million (95% uncertainty interval [UI]: 257 to 285 million) in 1990 to 523 million (95% UI: 497 to 550 million) in 2019, and the number of CVD deaths steadily increased from 12.1 million (95% UI:11.4 to 12.6 million) in 1990, reaching 18.6 million (95% UI: 17.1 to 19.7 million) in 2019. The global trends for disability-adjusted life years (DALYs) and years of life lost also increased significantly, and years lived with disability doubled from 17.7 million (95% UI: 12.9 to 22.5 million) to 34.4 million (95% UI:24.9 to 43.6 million) over that period. The total number of DALYs due to IHD has risen steadily since 1990, reaching 182 million (95% UI: 170 to 194 million) DALYs, 9.14 million (95% UI: 8.40 to 9.74 million) deaths in the year 2019, and 197 million (95% UI: 178 to 220 million) prevalent cases of IHD in 2019. The total number of DALYs due to stroke has risen steadily since 1990, reaching 143 million (95% UI: 133 to 153 million) DALYs, 6.55 million (95% UI: 6.00 to 7.02 million) deaths in the year 2019, and 101 million (95% UI: 93.2 to 111 million) prevalent cases of stroke in 2019. Cardiovascular diseases remain the leading cause of disease burden in the world. CVD burden continues its decades-long rise for almost all countries outside high-income countries, and alarmingly, the age-standardized rate of CVD has begun to rise in some locations where it was previously declining in high-income countries. There is an urgent need to focus on implementing existing cost-effective policies and interventions if the world is to meet the targets for Sustainable Development Goal 3 and achieve a 30% reduction in premature mortality due to noncommunicable diseases

    Cardiac toxicity of chloroquine or hydroxychloroquine in patients With COVID-19: A systematic review and meta-regression analysis

    No full text
    Objective To systematically review the literature and to estimate the risk of chloroquine (CQ) and hydroxychloroquine (HCQ) cardiac toxicity in patients with coronavirus disease 2019 (COVID-19). Methods We searched multiple data sources including PubMed/MEDLINE, Ovid Embase, Ovid EBM Reviews, Scopus, and Web of Science and medrxiv.org from November 2019 through May 27, 2020. We included studies that enrolled patients with COVID-19 treated with CQ or HCQ, with or without azithromycin, and reported on cardiac toxic effects. We performed a meta-analysis using the arcsine transformation of the different incidences. Results A total of 19 studies with a total of 5652 patients were included. The pooled incidence of torsades de pointes arrhythmia, ventricular tachycardia, or cardiac arrest was 3 per 1000 (95% CI, 0-21; I2=96%) in 18 studies with 3725 patients. Among 13 studies of 4334 patients, the pooled incidence of discontinuation of CQ or HCQ due to prolonged QTc or arrhythmias was 5% (95% CI, 1-11; I2=98%). The pooled incidence of change in QTc from baseline of 60 milliseconds or more or QTc of 500 milliseconds or more was 9% (95% CI, 3-17; I2=97%). Mean or median age, coronary artery disease, hypertension, diabetes, concomitant QT-prolonging medications, intensive care unit admission, and severity of illness in the study populations explained between-studies heterogeneity. Conclusion Treatment of patients with COVID-19 with CQ or HCQ is associated with an important risk of drug-induced QT prolongation and relatively higher incidence of torsades de pointes, ventricular tachycardia, or cardiac arrest. Therefore, these agents should not be used routinely in the management of COVID-19 disease. Patients with COVID-19 who are treated with antimalarials for other indications should be adequately monitored

    The Cardiac Toxicity of Chloroquine or Hydroxychloroquine in COVID-19 Patients: A Systematic Review and Meta-regression Analysis.

    No full text
    Objective: To systematically review the literature and estimate the risk of Chloroquine (CQ) and hydroxychloroquine (HCQ) cardiac toxicity in COVID-19 patients. Methods: We searched multiple data sources including PubMed/MEDLINE, Ovid Embase, Ovid EBM Reviews, Scopus, and Web of Science, and medrxiv.org from November 2019 through May 27, 2020. We included studies that enrolled COVID-19 patients treated with CQ or HCQ, with or without azithromycin and reported on cardiac toxicities. We performed a meta-analysis using the arcsine transformation of the different incidences. Results: A total of 19 studies with a total of 5652 patients were included. The pooled incidence of TdP arrhythmia or VT or cardiac arrest was 3 per 1000, 95% CI (0-21), I Conclusions: Treatment of COVID-19 patients with CQ or HCQ is associated with a significant risk of drug-induced QT prolongation and relatively higher incidence of TdP/VT/cardiac arrest. Therefore, these agents should not be used routinely in the management of COVID-19 disease. COVID-19 patients who are treated with antimalarials for other indications should be adequately monitored
    corecore