9 research outputs found

    First Description of a Temperate Bacteriophage (vB_FhiM_KIRK) of Francisella hispaniensis Strain 3523

    Get PDF
    Here we present the characterization of a Francisella bacteriophage (vB_FhiM_KIRK) including the morphology, the genome sequence and the induction of the prophage. The prophage sequence (FhaGI-1) has previously been identified in F. hispaniensis strain 3523. UV radiation induced the prophage to assemble phage particles consisting of an icosahedral head (~52 nm in diameter), a tail of up to 97 nm in length and a mean width of 9 nm. The double stranded genome of vB_FhiM_KIRK contains 51 open reading frames and is 34,259 bp in length. The genotypic and phylogenetic analysis indicated that this phage seems to belong to the Myoviridae family of bacteriophages. Under the conditions tested here, host cell (Francisella hispaniensis 3523) lysis activity of KIRK was very low, and the phage particles seem to be defective for infecting new bacterial cells. Nevertheless, recombinant KIRK DNA was able to integrate site-specifically into the genome of different Francisella species after DNA transformation.Peer Reviewe

    Potato Wart Isolates from Europe and North America Form Distinct Clusters of Genetic Variation

    Get PDF
    We have extended previously published sets of simple sequence repeat markers for Synchytrium endobioticum, selected to be polymorphic for the German-standard isolates of pathotypes P1, P2, P6, P8, and P18. These markers also complement the extensive published information on DNA polymorphisms for the mitogenomes of Synchytrium endobioticum. This extended set of 35 markers representing 73 alleles differentiated 51 isolates from Europe and North America into three large, well-separated clusters and subclusters using dendrogram analysis, principal coordinates analysis (PCoA), and population substructure analysis using STRUCTURE 2.3.4 software. This suggests a limited number of introgressions of the wart disease pathogen into current potato growing areas, followed by recombination and admixture of populations through human activities. The new markers extend the published marker sets and are useful tools for future analyses of population structure and dynamics in Synchytrium endobioticum, which are necessary to understand the biology of the interaction between the pathogen and its potato host and to develop future control strategies

    Diagnosing potato wart disease – reliable identification and assessment of resting spores of Synchytrium endobioticum

    Get PDF
    Die Dauersporangien des Kartoffelkrebserregers, Synchytrium endobioticum, stellen aufgrund ihrer Widerstandsfähigkeit gegenüber chemischer Behandlungen eine besondere Gefährdung in Form von Langzeitkontamination von Resterden und Ackerflächen dar. Sie weisen ein breites Spektrum an Erscheinungsformen mit spezifischen Charakteristika auf und sind deshalb eine besondere Herausforderung bei der sicheren Diagnose von Kartoffelkrebs. Neben der Bewertung als Synchytrium endobioticum stellt die Beurteilung der Vitalität des einzelnen Sporangiums auf Basis mikroskopischer Untersuchungen eine Herausforderung dar. Die Referenzbildsammlung soll eine Entscheidungshilfe und Schulungsmaterial für die Diagnoselabore bieten. Exemplarisch werden Sporangien­bilder verschiedener Kategorien bewertet und Besonderheiten hervorgehoben. Die Referenzbildsammlung ist auf der Homepage des Nationalen Referenzlaboratoriums des Julius Kühn-Instituts für registrierte Nutzer abrufbar.Due to their resistance to chemical treatments, the resting spores of Synchytrium endobioticum the causal agent of potato wart disease pose a particular threat in the form of long-term contamination of residual soil and arable land. They show a wide spectrum of characteristic morphological phenotypes and are therefore a particular challenge in the reliable diagnosis of potato wart. In addition to addressing them as Synchytrium endobioticum, assessing the viability of the resting spore based on microscopic examination is challenging. The reference image collection is intended to provide decision support and training material for diagnostic laboratories. Exemplary images of resting spores/sporangium of different categories are evaluated and special characteristics are highlighted. The reference image collection is available on the homepage of the National Reference Laboratory of the Julius Kühn Institute for registered users

    Diagnosis of quarantine organisms at the JKI in the National Reference Laboratory for organisms harmful to plants

    Get PDF
    Dem JKI wurde im April 2019 durch das Bundesministerium für Ernährung und Landwirtschaft (BMEL) die Funktion des nationalen Referenzlaboratoriums (NRL) für Schadorganismen der Pflanzen zugewiesen. Mit dieser Funktion des NRL für Deutschland sind bestimmte Zuständigkeiten und Aufgaben verbunden, die in der EU-Verordnung 2017/625 (EU, 2017) geregelt sind. Dazu gehören auch Referenzuntersuchungen bzw. die Diag­nose von Quarantäneschadorganismen (QSO). Das NRL stellt eine übergeordnete Einheit innerhalb des JKI dar. Durch insgesamt 14 Prüflabore der JKI-Institute für Pflanzenschutz in Ackerbau und Grünland (A), nationale und internationale Angelegenheiten der Pflanzengesundheit (AG), Epidemiologie und Pathogendiagnostik (EP), Pflanzenschutz in Gartenbau und Forst (GF), Pflanzenschutz in Obst- und Weinbau (OW) wird die Referenzfunktion bei der Diagnose zu verschiedensten (Quarantäne)-Schadorganismen der Pathogengruppen Bakterien, Insekten, Nematoden, Pilze (einschließlich Oomyceten), Phytoplasmen und Viren wahrgenommen.In April 2019, the JKI was officially designated as the Natio­nal Reference Laboratory (NRL) for organisms harmful to plants by the Federal Ministry of Food and Agri­culture (BMEL). This function as NRL for Germany is associated with certain responsibilities and tasks, which are specified in the EU Regulation 2017/625 (EU, 2017). This also includes reference tests and the diagnosis of quarantine pests, respectively. The NRL represents a super­ordinate unit inside JKI. A total of 14 test laboratories from different JKI institutes, namely for Plant Protection in Field Crops and Grassland (A), for National and International Plant Health (AG), for Epidemiology and Pathogen Diagnostics (EP), Plant Protection in Horti­culture and Forests (GF), and for Plant Protection in Fruit Crops and Viticulture (OW) are in charge to carry out a reference function in the diagnosis of (quarantine) pests in the pathogen groups of bacteria, fungi (including oomycetes), insects, nematodes, phytoplasma und viruses

    Studien zu Genominseln in und zur Virulenz von Francisella

    Get PDF
    Die genomische Insel (GI) FhaGI 1 des Stammes Francisella hispaniensis (Fhis) AS02 814 kann sowohl in die tRNAVal integriert als auch als episomale Form vorliegen und kodiert für einen putativen Prophagen. Im Rahmen dieser Arbeit konnte durch Verwendung synthetisch hergestellter, verkürzter Varianten von FhaGI-1 gezeigt werden, dass die GI auf andere Francisella Spezies übertragbar ist. Die ortsspezifische Integration und Exzision der GI sind Integrase-abhängige Prozesse, die durch weitere regulatorische Gene beeinflusst werden. Die Identifizierung der GI FphGI 1 in drei F. philomiragia-Stämmen zeigt, dass die tRNAVal als Integrationsort für GIs in Francisella dient. Die vermutlich nicht funktionale Integrase von FphGI 1 ist wahrscheinlich die Ursache für das Fehlen einer episomalen Form der GI. Das Vorhandensein von GIs in Francisella liefert einen Hinweis darauf, dass horizontaler Gentransfer zwischen verschiedenen Francisella Spezies möglich ist. Auf Grundlage von FhaGI 1 wurden zwei Varianten eines Francisella- Phagenintegrationsvektors (pFIV1-Val und pFIV2 Val) generiert. Der FIV Teil der Vektoren bildet eine zirkuläre, episomale Form, die nach der Transformation in verschiedene Francisella Spezies ortspezifisch in die tRNAVal integriert. Es konnte gezeigt werden, dass die Vektoren für die Expression von Reportergenen sowie die Komplementation von Francisella Deletionsmutanten geeignet sind. Sie sind sowohl in vitro als auch während der Infektion von Wirtszellen ohne Selektionsdruck stabil und zählen zu den low-copy-Vektoren. Damit erweitern die FIV-Vektoren das Repertoire der vorhandenen Werkzeuge zur genetischen Manipulation von Francisellen. Da der Stamm Fhis AS02 814 für Untersuchungen nicht zur Verfügung stand, wurde FhaGI 1 synthetisch in zwei Hälften hergestellt, die jedoch bisher nicht zusammengeführt werden konnten. Damit ist eine Aussage darüber, ob es sich bei FhaGI 1 tatsächlich um einen funktionalen Prophagen handelt, bis jetzt nicht möglichThe genomic island (GI) FhaGI 1 of strain Francisella hispaniensis (Fhis) AS02 814 can exist as a circular episomal form or integrated into the tRNAVal gene and codes for a putative prophage. In this work small-sized variants of FhaGI 1 were used to show that the GI can be transferred to other Francisella species. The site-specific integration and excision of the GI are integrase-dependent processes that are influenced by further regulatory genes. The identification of the GI FphGI 1 in three F. philomiragia strains shows that the tRNAVal gene serves as an integration site for GIs in Francisella. The integrase of FphGI 1 is probably non-functional and hence presumably the reason for the missing episomal form of the GI. The presence of GIs in Francisella might be an indication that horizontal gene transfer between different Francisella species could be possible. Two variants of a Francisella phage integration vector (pFIV1 Val and pFIV2 Val) were successfully constructed based on FhaGI 1. The FIV Val part of the vectors integrates site-specifically into the tRNAVal after transformation into different Francisella species. It was demonstrated that the vectors can be used for the expression of reporter genes as well as for the complementation of Francisella deletion mutants. They remain stable without selective pressure during in vitro growth and during the infection of host cells and fall into the group of low-copy-vectors. The FIV Val vectors expand the repertoire of tools that can be used for the genetic manipulation of Francisella. As strain Fhis AS02 814 could not be obtained for further analysis, FhaGI 1 was synthetically generated in two halves which could not be joined so far. Consequently, it is not possible to state whether FhaGI 1 actually codes for a functional prophage

    Construction of a New Phage Integration Vector pFIV-Val for Use in Different Francisella Species

    Get PDF
    We recently identified and described a putative prophage on the genomic island FhaGI-1 located within the genome of Francisella hispaniensis AS02-814 (F. tularensis subsp. novicida-like 3523). In this study, we constructed two variants of a Francisella phage integration vector, called pFIV1-Val and pFIV2-Val (Francisella Integration Vector-tRNAVal-specific), using the attL/R-sites and the site-specific integrase (FN3523_1033) of FhaGI-1, a chloramphenicol resistance cassette and a sacB gene for counter selection of transformants against the vector backbone. We inserted the respective sites and genes into vector pUC57-Kana to allow for propagation in Escherichia coli. The constructs generated a circular episomal form in E. coli which could be used to transform Francisella spp. where FIV-Val stably integrated site specifically into the tRNAVal gene of the genome, whereas pUC57-Kana is lost due to counter selection. Functionality of the new vector was demonstrated by the successfully complementation of a Francisella mutant strain. The vectors were stable in vitro and during host-cell infection without selective pressure. Thus, the vectors can be applied as a further genetic tool in Francisella research, expanding the present genetic tools by an integrative element. This new element is suitable to perform long-term experiments with different Francisella species

    DataSheet2.xlsx

    No full text
    <p>We recently identified and described a putative prophage on the genomic island FhaGI-1 located within the genome of Francisella hispaniensis AS02-814 (F. tularensis subsp. novicida-like 3523). In this study, we constructed two variants of a Francisella phage integration vector, called pFIV1-Val and pFIV2-Val (Francisella Integration Vector-tRNA<sup>Val</sup>-specific), using the attL/R-sites and the site-specific integrase (FN3523_1033) of FhaGI-1, a chloramphenicol resistance cassette and a sacB gene for counter selection of transformants against the vector backbone. We inserted the respective sites and genes into vector pUC57-Kana to allow for propagation in Escherichia coli. The constructs generated a circular episomal form in E. coli which could be used to transform Francisella spp. where FIV-Val stably integrated site specifically into the tRNA<sup>Val</sup> gene of the genome, whereas pUC57-Kana is lost due to counter selection. Functionality of the new vector was demonstrated by the successfully complementation of a Francisella mutant strain. The vectors were stable in vitro and during host-cell infection without selective pressure. Thus, the vectors can be applied as a further genetic tool in Francisella research, expanding the present genetic tools by an integrative element. This new element is suitable to perform long-term experiments with different Francisella species.</p
    corecore