465 research outputs found

    Subaqueous cryptodome eruption, hydrothermal activity and related seafloor morphologies on the andesitic North Su volcano

    Get PDF
    © The Author(s), 2016. This is the author's version of the work and is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Volcanology and Geothermal Research 323 (2016): 80-96, doi:10.1016/j.jvolgeores.2016.04.041.North Su is a double-peaked active andesite submarine volcano located in the eastern Manus Basin of the Bismarck Sea that reaches a depth of 1154 m. It hosts a vigorous and varied hydrothermal system with black and white smoker vents along with several areas of diffuse venting and deposits of native sulfur. Geologic mapping based on ROV observations from 2006 and 2011 combined with morphologic features identified from repeated bathymetric surveys in 2002 and 2011 document the emplacement of a volcanic cryptodome between 2006 and 2011. We use our observations and rock analyses to interpret an eruption scenario where highly viscous, crystal-rich andesitic magma erupted slowly into the water-saturated, gravel-dominated slope of North Su. An intense fragmentation process produced abundant blocky clasts of a heterogeneous magma (olivine crystals within a rhyolitic groundmass) that only rarely breached through the clastic cover onto the seafloor. Phreatic and phreatomagmatic explosions beneath the seafloor cause mixing of juvenile and pre-existing lithic clasts and produce a volcaniclastic deposit. This volcaniclastic deposit consists of blocky, non-altered clasts next, variably (1-100 %) altered clasts, hydrothermal precipitates and crystal fragments. The usually applied parameters to identify juvenile subaqueous lava fragments, i.e. fluidal shape or chilled margin, were not applicable to distinguish between pre-existing non-altered clasts and juvenile clasts. This deposit is updomed during further injection of magma and mechanical disruption. Gas-propelled turbulent clast-recycling causes clasts to develop variably rounded shapes. An abundance of blocky clasts and the lack of clasts typical for the contact of liquid lava with water is interpreted to be the result of a cooled, high-viscosity, crystal-rich magma that failed as a brittle solid upon stress. The high viscosity allows the lava to form blocky and short lobes. The pervasive volcaniclastic cover on North Su is partly cemented by hydrothermal precipitates. These hydrothermally-cemented breccias, crusts and single pillars show that hydrothermal circulation through a thick layer of volcaniclastic deposits can temporarily increase slope stability through precipitation and cementation.The RV Melville work was funded by a combination of the US National Science Foundation grant OCE-0327448 and a collaborative research funding grant from Nautilus Minerals for the ABE surveys. The RV Sonne research cruise was funded through the BMBF (Grant G03216a). Additional funding, including salary support for JT, was provided by the German DFG Research Centre/Excellence Cluster ―The Ocean in the Earth System‖. WB acknowledges support from DFG research grant BA1605/4-1.2018-05-1

    Permeability-porosity relationships in seafloor vent deposits : dependence on pore evolution processes

    Get PDF
    Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): B05208, doi:10.1029/2006JB004716.Systematic laboratory measurements of permeability and porosity were conducted on three large vent structures from the Mothra Hydrothermal vent field on the Endeavor segment of the Juan de Fuca Ridge. Geometric means of permeability values obtained from a probe permeameter are 5.9 × 10−15 m2 for Phang, a tall sulfide-dominated spire that was not actively venting when sampled; 1.4 × 10−14 m2 for Roane, a lower-temperature spire with dense macrofaunal communities growing on its sides that was venting diffuse fluid of <300°C; and 1.6 × 10−14 m2 for Finn, an active black smoker with a well-defined inner conduit that was venting 302°C fluids prior to recovery. Twenty-three cylindrical cores were then taken from these vent structures. Permeability and porosity of the drill cores were determined on the basis of Darcy's law and Boyle's law, respectively. Permeability values range from ∼10−15 to 10−13 m2 for core samples from Phang, from ∼10−15 to 10−12 m2 for cores from Roane, and from ∼10−15 to 3 × 10−13 m2 for cores from Finn, in good agreement with the probe permeability measurements. Permeability and porosity relationships are best described by two different power law relationships with exponents of ∼9 (group I) and ∼3 (group II). Microstructural analyses reveal that the difference in the two permeability-porosity relationships reflects different mineral precipitation processes as pore space evolves within different parts of the vent structures, either with angular sulfide grains depositing as aggregates that block fluid paths very efficiently (group I), or by late stage amorphous silica that coats existing grains and reduces fluid paths more gradually (group II). The results suggest that quantification of permeability and porosity relationships leads to a better understanding of pore evolution processes. Correctly identifying permeability and porosity relationships is an important first step toward accurately estimating fluid distribution, flow rate, and environmental conditions within seafloor vent deposits, which has important consequences for chimney growth and biological communities that reside within and on vent structures.Support from the National Science Foundation under grants NSF OCE-9986456 (W.Z. and M.K.T.) and NSF OCE-0327488 (P.R.C.) is gratefully acknowledged. We also thank the WHOI summer student fellowship for providing support to H.G

    Autonomous and remotely operated vehicle technology for hydrothermal vent discovery, exploration, and sampling

    Get PDF
    Author Posting. © Oceanography Society, 2007. This article is posted here by permission of Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 20, 1 (2007): 152-161.Autonomous and remotely operated underwater vehicles play complementary roles in the discovery, exploration, and detailed study of hydrothermal vents. Beginning with clues provided by towed or lowered instruments, autonomous underwater vehicles (AUVs) can localize and make preliminary photographic surveys of vent fields. In addition to finding and photographing such sites, AUVs excel at providing regional context through fine-scale bathymetric and magnetic field mapping. Remotely operated vehicles (ROVs) enable close-up inspection, photomosaicking, and tasks involving manipulation of samples and instruments. Increasingly, ROVs are used to conduct in situ seafloor experiments. ROVs can also be used for fine-scale bathymetric mapping with excellent results, although AUVs are usually more efficient in such tasks

    Mid-ocean ridge exploration with an autonomous underwater vehicle

    Get PDF
    Author Posting. © Oceanography Society, 2007. This article is posted here by permission of Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 20, 4 (2007): 52-61.Human-occupied submersibles, towed vehicles, and tethered remotely operated vehicles (ROVs) have traditionally been used to study the deep seafloor. In recent years, however, autonomous underwater vehicles (AUVs) have begun to replace these other vehicles for mapping and survey missions. AUVs complement the capabilities of these pre-existing systems, offering superior mapping capabilities, improved logistics, and better utilization of the surface support vessel by allowing other tasks such as submersible operations, ROV work, CTD stations, or multibeam surveys to be performed while the AUV does its work. AUVs are particularly well suited to systematic preplanned surveys using sonars, in situ chemical sensors, and cameras in the rugged deep-sea terrain that has been the focus of numerous scientific expeditions (e.g., those to mid-ocean ridges and ocean margin settings). The Autonomous Benthic Explorer (ABE) is an example of an AUV that has been used for over 20 cruises sponsored by the National Science Foundation (NSF), the National Oceanic and Atmospheric Administration (NOAA) Office of Ocean Exploration (OE), and international and private sources. This paper summarizes NOAA OE-sponsored cruises made to date using ABE

    The Cleft revealed: geologic, magnetic, and morphologic evidence for construction of upper oceanic crust along the southern Juan de Fuca Ridge

    Get PDF
    Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 7 (2006): Q04003, doi:10.1029/2005GC001038.The geology and structure of the Cleft Segment of the Southern Juan de Fuca Ridge (JdFR) have been examined using high-resolution mapping systems, observations by remotely operated vehicle (ROV), ROV-mounted magnetometer, and the geochemical analysis of recovered lavas. Bathymetric mapping using multibeam (EM300) coupled with in situ observations that focused on near-axis and flank regions provides a detailed picture of 0 to 400 ka upper crust created at the southern terminus of the JdFR. A total of 53 rock cores and 276 precisely located rock or glass samples were collected during three cruises that included sixteen ROV dives. Our observations of the seafloor during these dives suggest that many of the unfaulted and extensive lava flows that comprise and/or cap the prominent ridges that flank the axial valley emanate from ridge parallel faults and fissures that formed in the highly tectonized zone that forms the walls of the axial valley. The geochemically evolved and heterogeneous nature of these near-axis and flank eruptions is consistent with an origin within the cooler distal edges of a crustal magma chamber or mush zone. In contrast, the most recent axial eruptions are more primitive (higher MgO), chemically homogeneous lobate, sheet, and massive flows that generate a distinct magnetic high over the axial valley. We suggest that the syntectonic capping volcanics observed off-axis were erupted from near-axis and flank fissures and created a thickened extrusive layer as suggested by the magnetic and seismic data. This model suggests that many of the lavas that comprise the elevated ridges that bound the axial valley of the Cleft Segment were erupted during the collapse of a magmatic cycle not during the robust phase that established a new magmatic cycle.This research has been partially supported by a NSF grant to M. Perfit (OCE-0221541). M. Tivey acknowledges support from WHOI’s Mellon grant for Independent Study. Support for D. Stakes, T. Ramirez, D. Caress, and N. Maher and for the entire field program was provided by funds to MBARI from the Lucille and David Packard Foundation
    • …
    corecore