47 research outputs found
Terrestrial crustaceans (Arthropoda, Crustacea): taxonomic diversity, terrestrial adaptations, and ecological functions
Terrestrial crustaceans are represented by approximately 4,900 species from six main lineages. The diversity of terrestrial taxa ranges from a few genera in Cladocera and Ostracoda to about a third of the known species in Isopoda. Crustaceans are among the smallest as well as the largest terrestrial arthropods. Tiny microcrustaceans (Branchiopoda, Ostracoda, Copepoda) are always associated with water films, while adult stages of macrocrustaceans (Isopoda, Amphipoda, Decapoda) spend most of their lives in terrestrial habitats, being independent of liquid water. Various adaptations in morphology, physiology, reproduction, and behavior allow them to thrive in virtually all geographic areas, including extremely arid habitats. The most derived terrestrial crustaceans have acquired highly developed visual and olfactory systems. The density of soil copepods is sometimes comparable to that of mites and springtails, while the total biomass of decapods on tropical islands can exceed that of mammals in tropical rainforests. During migrations, land crabs create record-breaking aggregations and biomass flows for terrestrial invertebrates. The ecological role of terrestrial microcrustaceans remains poorly studied, while omnivorous macrocrustaceans are important litter transformers and soil bioturbators, occasionally occupying the position of the top predators. Notably, crustaceans are the only group among terrestrial saprotrophic animals widely used by humans as food. Despite the great diversity and ecological impact, terrestrial crustaceans, except for woodlice, are often neglected by terrestrial ecologists. This review aims to narrow this gap discussing the diversity, abundance, adaptations to terrestrial lifestyle, trophic relationships and ecological functions, as well as the main methods used for sampling terrestrial crustaceans
An ancient bison from the mouth of the Rauchua River (Chukotka, Russia)
An incomplete carcass of an extinct bison, Bison ex gr. priscus, was discovered in 2012 in the mouth of the Rauchua River (69°30'N, 166°49'E), Chukotka. The carcass included the rump with two hind limbs, ribs, and large flap of hide from the abdomen and sides, several vertebrae, bones of the forelimbs and anterior autopodia, stomach with its contents, and wool. The limb bones are relatively gracile, which is unusual in bison, and a SEM study of the hair microstructure suggests higher insulating capacity than in extant members of the genus. Additionally, mitochondrial DNA analyses indicate that the Rauchua bison belonged to a distinct and previously unidentified lineage of steppe bison. Two radiocarbon dates suggest a Holocene age for the bison: a traditional 14C date provided an estimate of 8030±70 14C yr BP (SPb-743) and an AMS radiocarbon date provided an age of 9497±92 14C yr BP (AA101271). These dates make this the youngest known bison from Chukotka. Analysis of stomach contents revealed a diet of herbaceous plants (meadow grasses and sedges) and shrubs, suggesting that the early Holocene vegetation near the mouth of the Rauchua River was similar to that of the present day: tundra-associated vegetation with undersized plants
Regional variability in peatland burning at mid- to high-latitudes during the Holocene
Acknowledgements This work developed from the PAGES (Past Global Changes) C-PEAT (Carbon in Peat on EArth through Time) working group. PAGES has been supported by the US National Science Foundation, Swiss National Science Foundation, Swiss Academy of Sciences and Chinese Academy of Sciences. We acknowledge the following financial support: UK Natural Environment Research Council Training Grants NE/L002574/1 (T.G.S.) and NE/S007458/1 (R.E.F.); Dutch Foundation for the Conservation of Irish Bogs, Quaternary Research Association and Leverhulme Trust RPG-2021-354 (G.T.S); the Academy of Finland (M.V); PAI/SIA 80002 and FONDECYT Iniciación 11220705 - ANID, Chile (C.A.M.); R20F0002 (PATSER) ANID Chile (R.D.M.); Swedish Strategic Research Area (SRA) MERGE (ModElling the Regional and Global Earth system) (M.J.G.); Polish National Science Centre Grant number NCN 2018/29/B/ST10/00120 (K.A.); Russian Science Foundation Grant No. 19-14-00102 (Y.A.M.); University of Latvia Grant No. AAp2016/B041/Zd2016/AZ03 and the Estonian Science Council grant PRG323 (TrackLag) (N.S. and A.M.); U.S. Geological Survey Land Change Science/Climate Research & Development Program (M.J., L.A., and D.W.); German Research Foundation (DFG), grant MA 8083/2-1 (P.M.) and grant BL 563/19-1 (K.H.K.); German Academic Exchange Service (DAAD), grant no. 57044554, Faculty of Geosciences, University of Münster, and Bavarian University Centre for Latin America (BAYLAT) (K.H.K). Records from the Global Charcoal Database supplemented this work and therefore we would like to thank the contributors and managers of this open-source resource. We also thank Annica Greisman, Jennifer Shiller, Fredrik Olsson and Simon van Bellen for contributing charcoal data to our analyses. Any use of trade, firm, or product name is for descriptive purposes only and does not imply endorsement by the U.S. Government.Peer reviewedPostprin
Priorities for research in soil ecology
The ecological interactions that occur in and with soil are of consequence in many ecosystems on the planet. These interactions provide numerous essential ecosystem services, and the sustainable management of soils has attracted increasing scientific and public attention. Although soil ecology emerged as an independent field of research many decades ago, and we have gained important insights into the functioning of soils, there still are fundamental aspects that need to be better understood to ensure that the ecosystem services that soils provide are not lost and that soils can be used in a sustainable way. In this perspectives paper, we highlight some of the major knowledge gaps that should be prioritized in soil ecological research. These research priorities were compiled based on an online survey of 32 editors of Pedobiologia – Journal of Soil Ecology. These editors work at universities and research centers in Europe, North America, Asia, and Australia. The questions were categorized into four themes: (1) soil biodiversity and biogeography, (2) interactions and the functioning of ecosystems, (3) global change and soil management, and (4) new directions. The respondents identified priorities that may be achievable in the near future, as well as several that are currently achievable but remain open. While some of the identified barriers to progress were technological in nature, many respondents cited a need for substantial leadership and goodwill among members of the soil ecology research community, including the need for multi-institutional partnerships, and had substantial concerns regarding the loss of taxonomic expertise