136 research outputs found
Cover crops can mitigate effects on grape pathogen dispersal
Different kind of ground covers has been indicated as an efficient way to limit rain-splashed dispersal of disease-causing spores in several crops, but not in vineyards. In the CORE Organic Cofund project BIOVINE cover crops are tested to reduce both splash- and air-borne diseases
Epidemiology and modelling of grapevine downy mildey primary infections caused by Plasmopara viticola (Berk et Curt). Berlese et de Toni
La peronospora della vite è causata dall’Oomicete eterotallico Plasmopara viticola ed è ampiamente diffusa in tutte le aree caratterizzate da primavere miti e piovose. Gli organi svernanti di questo patogeno sono le oospore, che rappresentano l’unica fonte di inoculo per le infezioni primarie. Recenti studi molecolari hanno evidenziato l’importanza delle infezioni primarie e suggerito una revisione dell’epidemiologia di P. viticola. Questa tesi è costituita dagli studi epidemiologici realizzati per indagare il processo di maturazione e germinazione delle oospore mirati all’elaborazione di un modello dinamico per la simulazione delle infezioni primarie di P. viticola. Il modello è stato successivamente validato in diverse aree viticole italiane e, inoltre, utilizzato come base per un warning system in tempo reale per la gestione dei trattamenti in vigneto.The heterothallic Oomycete Plasmopara viticola represents the causal agent of downy mildew of grapevine (Vitis spp.). The unique source of inoculum is represented by the overwintering sexual spores, originated by the fusion between anteridium and oogonium, so called oospores. Despite their critical impact on the epidemiology of this disease, knowledge about oospores presents some inconsistencies that are engaged in the present dissertation.
Initially, the effect of water moistening the grape leaf litter holding overwintering P. viticola oospores was investigated. A close relationship was found between vapour pressure deficit (VPD in hPa) and aW (water activity) of the leaf litter, so that when VPD is lower than 2.13 hPa there is sufficient water for oospores to develop. Results showed that moisture of the leaf litter due to the water flow from the atmosphere makes the oospore development possible also during non rainy periods.
Then, the effects of environmental conditions on the variability in germination dynamics of Plasmopara viticola oospores were studied over five years. The germination course was determined indirectly as the relative infection incidence (RII) occurring on grape leaf discs kept in contact with oospores sampled from a vineyard between March and July. The time elapsed between the 1st of January and the infection occurrence was expressed as physiological time, using sums of hourly rates from a temperature-dependent function only in hours when VPD was not a limiting factor (hydro-thermal time, HT). The Gompertz equation calculated over hydro-thermal time produced a consistent modelling of the general relationships between the germination dynamics of a population of P. viticola oospores and weather conditions. It represents the relative density of the seasonal oospores that should have produced sporangia when they have experienced favourable conditions for germination.
Finally, a dynamic model for Plasmopara viticola primary infections on grapevine was elaborated according to a mechanistic approach. Development of the sexual stage of the pathogen was split into different state variables, in which changes from one state to another were regulated by rates depending on environmental conditions. The conceptual model was based on the definition of a primary inoculum season, a seasonal oospore (inoculum) dose, and its division into many coeval cohorts. Each cohort progresses along the primary infection cycle (production and survival of sporangia, release, survival and dispersal of zoospores, infection, appearance of disease symptoms) simultaneously, with a time step of one hour. The model was evaluated by comparing model predictions with disease onset in: i) 100 vineyards of Northern, Southern and Insular Italy (1995 to 2007); ii) 42 groups of potted grapevine plants exposed to inoculum (2006 to 2008). Most of the wrong positive predictions occurred in early season, when the host was in the earlier growth stages, or when the oospore germination was triggered by isolated weak rain events. Considering that neither calibration nor empirical adjustment of model parameters were necessary to obtain accurate simulation, it was concluded that this model produces a reasonable approximation of the primary infection processes underlying oospore development.
A warning system based on such a model and on short-term weather forecasts was developed and its use was evaluated in experimental vineyards over a 3-year period in North Italy. An unsprayed control was compared with a “warning” treatment (fungicides were applied when the warning system predicted an infection), a “threshold” treatment (fungicides were applied as in the warning treatment, but only for the oospore cohorts higher than a fixed threshold), and the grower’s schedule. Average efficacy in decreasing disease incidence on leaves compared to the unsprayed control was > 90% for all treatments. On the average, 6.8 sprays were applied following the grower’s schedule; use of the warning system reduced applications by about one half (warning treatment) or two third (threshold treatment). The grower’s schedule was the most expensive control strategy, with average of 337 €/ha; the average saving was 174 and 224 €/ha for the warning and the threshold treatments, respectively.
The value of this dissertation consists in two relevant and connected aspects. From one side the studies performed on the oospore maturation and germination allowed to better understand and clarify a key point of the downy mildew epidemics still wrapped by a lack of information. From the other side the model elaborated during this thesis represents a practical and efficient tool that leads to the reduction both of growers’ costs and chemical input in the environment
Helping farmers face the increasing complexity of decision-making for crop protection
The European Community Directive 128/2009 on the Sustainable Use of Pesticides establishes a strategy for the use of plant protection products (PPPs) in the European Community so as to reduce risks to human health and the environment. Integrated Pest Management (IPM) is a key component of this strategy, which will become mandatory in 2014. IPM is based on dynamic processes and requires decision-making at strategic, tactical, and operational levels. Relative to decision makers in conventional agricultural systems, decision makers in IPM systems require more knowledge and must deal with greater complexity. Different tools have been developed for supporting decision-making in plant disease control and include warning services, on-site devices, and decision support systems (DSSs). These decision-support tools operate at different spatial and time scales, are provided to users both by public and private sources, focus on different communication modes, and can support multiple options for delivering information to farmers. Characteristics, weaknesses, and strengths of these tools are described in this review. Also described are recently developed DSSs, which are characterised by: i) holistic treatment of crop management problems (including pests, diseases, fertilisation, canopy management and irrigation); ii) conversion of complex decision processes into simple and easy-to-understand ‘decision supports’; iii) easy and rapid access through the Internet; and iv) two-way communication between users and providers that make it possible to consider context-specific information. These DSSs are easy-to-use tools that perform complex tasks efficiently and effectively. The delivery of these DSSs via the Internet increases user accessibility, allows the DSSs to be updated easily and continuously (so that new knowledge can be rapidly and efficiently provided to farmers), and allows users to maintain close contact with providers
Combining biocontrol agents with different mechanisms of action in a strategy to control Botrytis cinerea on grapevine
The use of several microbial biocontrol agents to combat Botrytis cinerea, the causal agent of grey mould, has been studied. However, only a few microorganisms have been developed as biofungicides, which are currently used in some countries, mostly in organic farming. The main reason for the limited market uptake of microbial biofungicides is their debated variable efficacy. To cope with poor survival in the canopy, due to unfavourable environmental conditions or their intrinsic lower level of disease control compared to synthetic chemical fungicides, use of a mixture of two or more microorganisms with different environmental requirements and mechanisms of action has been proposed with contrasting results. However, their use in strategies involving calculated timing of the microbial biocontrol agents, taking into consideration their mechanism of action in relation to the epidemiology and pathogenesis of the disease, has never been attempted in relation to combating grey mould on grapes. The results of four years of trials in three locations in Northern and Central Italy show that Trichoderma atroviride, Aureobasidium pullulans and Bacillus subtilis, applied at bunch-closure, veraison and pre-harvest, respectively, controlled B. cinerea on bunches very satisfactorily, and the results did not differ from those obtained with a strategy combining the three biofungicides, applied at the aforementioned stages. Colonisation of berries by each of the different microbial biocontrol agents at harvest time did not differ for individual treatments or when applied in the combined strategy, suggesting that the microorganisms did not negatively interfere with each other and that they may possibly occupy different ecological niches. The high level of efficacy of the tested biocontrol agents against grey mould can be explained with the relatively low-medium level of the disease, their integration with agronomic practices or the optimal timing of the treatment
Development and Validation of a Mechanistic Model That Predicts Infection by Diaporthe ampelina, the Causal Agent of Phomopsis Cane and Leaf Spot of Grapevines
Phomopsis cane and leaf spot (PCLS), known in Europe as “excoriose,” is an important fungal disease of grapevines caused by Diaporthe spp., and most often by Diaporthe ampelina (synonym Phomopsis viticola). PCLS is re-emerging worldwide, likely due to climate change, changes in the management of downy mildew from calendar- to risk-based criteria that eliminate early-season (unnecessary) sprays, and the progressive reduction in the application of broad-spectrum fungicides. In this study, a mechanistic model for D. ampelina infection was developed based on published information. The model accounts for the following processes: (i) overwintering and maturation of pycnidia on affected canes; (ii) dispersal of alpha conidia to shoots and leaves; (iii) infection; and (iv) onset of disease symptoms. The model uses weather and host phenology to predict infection periods and disease progress during the season. Model output was validated against 11 independent PCLS epidemics that occurred in Italy (4 vineyards in 2019 and 2020) and Montenegro (3 vineyards in 2020). The model accurately predicted PCLS disease progress, with a concordance correlation coefficient (CCC) = 0.925 between observed and predicted data. A ROC analysis (AUROC>0.7) confirmed the ability of the model to predict the infection periods leading to an increase in PCLS severity in the field, indicating that growers could use the model to perform risk-based fungicide applications
A mechanistic model of Botrytis cinerea on grapevines that includes weather, vine growth stage, and the main infection pathways
A mechanistic model for Botrytis cinerea on grapevine was developed. The model, which
accounts for conidia production on various inoculum sources and for multiple infection pathways,
considers two infection periods. During the first period (“inflorescences clearly visible”
to “berries groat-sized”), the model calculates: i) infection severity on inflorescences and
young clusters caused by conidia (SEV1). During the second period (“majority of berries
touching” to “berries ripe for harvest”), the model calculates: ii) infection severity of ripening
berries by conidia (SEV2); and iii) severity of berry-to-berry infection caused by mycelium
(SEV3). The model was validated in 21 epidemics (vineyard × year combinations) between
2009 and 2014 in Italy and France. A discriminant function analysis (DFA) was used to: i)
evaluate the ability of the model to predict mild, intermediate, and severe epidemics; and ii)
assess how SEV1, SEV2, and SEV3 contribute to epidemics. The model correctly classified
the severity of 17 of 21 epidemics. Results from DFA were also used to calculate the daily
probabilities that an ongoing epidemic would be mild, intermediate, or severe. SEV1 was
the most influential variable in discriminating between mild and intermediate epidemics,
whereas SEV2 and SEV3 were relevant for discriminating between intermediate and severe
epidemics. The model represents an improvement of previous B. cinerea models in viticulture
and could be useful for making decisions about Botrytis bunch rot control
Alternatives to CU Applications in Viticulture. How R&D Projects Can Provide Applied Solutions, Helping to Establish Legislation Limits
Copper (Cu) and its based preparations have been used for over 200 years to control fungi and bacterial diseases in cultivated plants. Downy mildew caused by the obligate biotrophic oomycete Plasmopara viticola is one of the most relevant and recurrent diseases of grapevines. Recently, the use of Cu is being limited by some regulations because of its high impact at different levels (health and environmental problems). Due to its accumulation in soil, this metal causes a little controversy with the principles of sustainable production. Therefore, international legislation and initiatives have recently been arisen to start limiting its use, with the main goal to replace it. In this framework, some alternatives have been tested and others are recently being developed to replace, at least partially, the use of Cu in viticulture. Many of them, are being developed and tested under the scope of research and development EU funded projects. To not compromise sustainability targets in viticulture, results from these R&D projects need to be considered to assess the present risks of using Cu in viticulture and to better support establishing limits for its applications, considering soils vulnerability, while no sustainable alternatives are available in the market
Nitrogen use efficiency, rhizosphere bacterial community, and root metabolome reprogramming due to maize seed treatment with microbial biostimulants
Seed inoculation with beneficial microorganisms has gained importance as it has been proven to show biostimulant activity in plants, especially in terms of abiotic/biotic stress tolerance and plant growth promotion, representing a sustainable way to ensure yield stability under low input sustainable agriculture. Nevertheless, limited knowledge is available concerning the molecular and physiological processes underlying the root-inoculant symbiosis or plant response at the root system level. Our work aimed to integrate the interrelationship between agronomic traits, rhizosphere microbial population and metabolic processes in roots, following seed treatment with either arbuscular mycorrhizal fungi (AMF) or Plant Growth-Promoting Rhizobacteria (PGPR). To this aim, maize was grown under open field conditions with either optimal or reduced nitrogen availability. Both seed treatments increased nitrogen uptake efficiency under reduced nitrogen supply revealed some microbial community changes among treatments at root microbiome level and limited yield increases, while significant changes could be observed at metabolome level. Amino acid, lipid, flavone, lignan, and phenylpropanoid concentrations were mostly modulated. Integrative analysis of multi-omics datasets (Multiple Co-Inertia Analysis) highlighted a strong correlation between the metagenomics and the untargeted metabolomics datasets, suggesting a coordinate modulation of root physiological traits
Sporulation rate in culture and mycoparasitic activity, but not mycohost specificity, are the key factors for selecting Ampelomyces strains for biocontrol of grapevine powdery mildew (Erysiphe necator)
To develop a new biofungicide product against grapevine powdery mildew, caused by Erysiphe necator, cultural characteristics and mycoparasitic activities of pre-selected strains of Ampelomyces spp. were compared in laboratory tests to the commercial strain AQ10. Then, a 2-year experiment was performed in five vineyards with a selected strain, RS1-a, and the AQ10 strain. This consisted of autumn sprays in vineyards as the goal was to reduce the
number of chasmothecia of E. necator, and, thus, the amount of overwintering inocula, instead of targeting the conidial stage of the pathogen during spring and summer. This is a yet little explored strategy to manage E. necator in vineyards. Laboratory tests compared the growth and sporulation of colonies of a total of 33 strains in culture; among these, eight strains with superior characteristics were compared to the commercial product AQ10 Biofungicide® in terms of their intrahyphal spread, pycnidial production, and reduction of both asexual and sexual reproduction in E. necator colonies. Mycoparasitic activities of the eight strains isolated from six different powdery mildew species, including E. necator, did not depend on their mycohost species of origin. Strain RS1-a, isolated from rose powdery mildew, showed, togetherwith three strains from E. necator, the highest rate of parasitism of E. necator chasmothecia. In field experiments, each strain, AQ10 and RS1-a, applied twice in autumn, significantly delayed and reduced early-season development of grapevine powdery mildew in the next year. Therefore, instead of mycohost specificity of Ampelomyces presumed in some works, but not confirmed by this study, the high sporulation rate in culture and the mycoparasitic patterns became the key factors for proposing strain RS1-a for further development as a biocontrol agent of E. necator
- …