179 research outputs found

    Unusual molecular material formed through irreversible transformation and revealed by 4D electron microscopy

    Get PDF
    Four-dimensional (4D) electron microscopy (EM) uniquely combines the high spatial resolution to pinpoint individual nano-objects, with the high temporal resolution necessary to address the dynamics of their laser-induced transformation. Here, using 4D-EM, we demonstrate the in situ irreversible transformation of individual nanoparticles of the molecular framework Fe(pyrazine)Pt(CN)4. The newly formed material exhibits an unusually large negative thermal expansion (i.e. contraction), which is revealed by time-resolved imaging and diffraction. Negative thermal expansion is a unique property exhibited by only few materials. Here we show that the increased flexibility of the metal–cyanide framework after the removal of the bridging pyrazine ligands is responsible for the negative thermal expansion behavior of the new material. This in situ visualization of single nanostructures during reactions should be extendable to other classes of reactive systems

    BALoo: First and Efficient Countermeasure dedicated to Persistent Fault Attacks

    Get PDF
    Persistent fault analysis is a novel and efficient cryptanalysis method. The persistent fault attacks take advantage of a persistent fault injected in a non-volatile memory, then present on the device until the reboot of the device. Contrary to classical physical fault injection, where differential analysis can be performed, persistent fault analysis requires new analyses and dedicated countermeasures. Persistent fault analysis requires a persistent fault injected in the S-box such that the bijective characteristic of the permutation function is not present anymore. In particular, the analysis will use the non-uniform distribution of the S-box values: when one of the possible S-box values never appears and one of the possible S-box values appears twice. In this paper, we present the first dedicated protection to prevent persistent fault analysis. This countermeasure, called BALoo for Bijection Assert with Loops, checks the property of bijectivity of the S-box. We show that this countermeasure has a 100% fault coverage for the persistent fault analysis, with a very small software overhead (memory overhead) and reasonable hardware overhead (logical resources, memory and performance). To evaluate the overhead of BALoo, we provide experimental results obtained with the software and the hardware (FPGA) implementations of an AES-128

    A Robust Titanium Isophthalate Metal-Organic Framework for Visible-Light Photocatalytic CO2 Methanation

    Full text link
    [EN] Isophthalic acid (IPA) has been considered to build metal-organic frameworks (MOFs), owing to its facile availability, unique connection angle-mode, and a wide range of functional groups attached. Constructing titanium-IPA frameworks that possess photoresponse properties is an alluring characteristic with respect to the challenge of synthesizing new titanium-based MOFs (Ti-MOFs) Here, we report the first Ti-IPA MOF (MIP-208) that efficiently combines the use of preformed Ti-8 oxoclusters and in situ acetylation of the 5-NH2-IPA linker. The mixed solid-solution linkers strategy was successfully applied, resulting in a series of multivariate MIP-208 structures with tunable chemical environments and sizable porosity. MIP-208 shows the best result among the pure MOF catalysts for the photocatalytic methanation of carbon dioxide. To improve the photocatalytic performance, ruthenium oxide nanoparticles were photo-deposited on MIP-208, forming a highly active and selective composite catalyst, MIP-208@RuOx, which features a notable visible-light response coupled with excellent stability and recycling ability.S.W. acknowledges the support from the National Natural Science Foundation of China (22071234) and the Fundamental Research Funds for the Central Universities (WK2480000007). S.N. thanks the Ministerio de Ciencia, Innovacion y Universidades (RTI2018-099482-A-I00 project, the Fundacion Ramon Areces (XVIII Concurso Nacional para la Adjudicacion de Ayudas a la Investigacion en Ciencias de la Vida y de la Materia, 2016), and Generalitat Valenciana grupos de investigacion consolidables (AICO/2019/214 project) and Agencia Valenciana de la Innovacion (INNEST/2020/111 project) for financial support. C.-C.C. acknowledges the support from the Program of China Scholarship Council (201700260093) and PHC Cai YuanPei Project (38893VJ). C.M.-C. is grateful for financial support from the Institut Universitaire de France (IUF) and the Paris Ile-de-France Region -DIM "Respore.'' H.G. thanks the Spanish Ministry of Science and Innovation (Severo Ochoa and RTI2018-098237-CO2-1) and Generalitat Valenciana (Prometeo2017/083) for financial support. The authors thank the staff at Synchrotron SOLEIL and the associated scientists for beamtime and assistance during SCXRD data collections on PROXIMA 2A, as well as Dr. Peng Guo and Dr. Nana Yan from Dalian Institute of Chemical Physics (Chinese Academy of Sciences) for the collection of high-resolution PXRD data for Rietveld refinement.Wang, S.; Cabrero-Antonino, M.; Navalón Oltra, S.; Cao, C.; Tissot, A.; Dovgaliuk, I.; Marrot, J.... (2020). A Robust Titanium Isophthalate Metal-Organic Framework for Visible-Light Photocatalytic CO2 Methanation. Chem. 6(12):3409-3427. https://doi.org/10.1016/j.chempr.2020.10.017S34093427612Dhakshinamoorthy, A., Li, Z., & Garcia, H. (2018). Catalysis and photocatalysis by metal organic frameworks. Chemical Society Reviews, 47(22), 8134-8172. doi:10.1039/c8cs00256hChen, L., & Xu, Q. (2019). Metal-Organic Framework Composites for Catalysis. Matter, 1(1), 57-89. doi:10.1016/j.matt.2019.05.018Yeung, H. H.-M., Li, W., Saines, P. J., Köster, T. K. J., Grey, C. P., & Cheetham, A. K. (2013). Ligand-Directed Control over Crystal Structures of Inorganic-Organic Frameworks and Formation of Solid Solutions. Angewandte Chemie International Edition, 52(21), 5544-5547. doi:10.1002/anie.201300440Lu, W., Wei, Z., Gu, Z.-Y., Liu, T.-F., Park, J., Park, J., … Zhou, H.-C. (2014). Tuning the structure and function of metal–organic frameworks via linker design. Chem. Soc. Rev., 43(16), 5561-5593. doi:10.1039/c4cs00003jDesai, A. V., Sharma, S., Let, S., & Ghosh, S. K. (2019). N-donor linker based metal-organic frameworks (MOFs): Advancement and prospects as functional materials. Coordination Chemistry Reviews, 395, 146-192. doi:10.1016/j.ccr.2019.05.020Zhang, H., Zou, R., & Zhao, Y. (2015). Macrocycle-based metal-organic frameworks. Coordination Chemistry Reviews, 292, 74-90. doi:10.1016/j.ccr.2015.02.012He, Y., Li, B., O’Keeffe, M., & Chen, B. (2014). Multifunctional metal–organic frameworks constructed from meta-benzenedicarboxylate units. Chem. Soc. Rev., 43(16), 5618-5656. doi:10.1039/c4cs00041bWang, H., Zhu, Q.-L., Zou, R., & Xu, Q. (2017). Metal-Organic Frameworks for Energy Applications. Chem, 2(1), 52-80. doi:10.1016/j.chempr.2016.12.002Kuppler, R. J., Timmons, D. J., Fang, Q.-R., Li, J.-R., Makal, T. A., Young, M. D., … Zhou, H.-C. (2009). Potential applications of metal-organic frameworks. Coordination Chemistry Reviews, 253(23-24), 3042-3066. doi:10.1016/j.ccr.2009.05.019Czaja, A. U., Trukhan, N., & Müller, U. (2009). Industrial applications of metal–organic frameworks. Chemical Society Reviews, 38(5), 1284. doi:10.1039/b804680hSilva, P., Vilela, S. M. F., Tomé, J. P. C., & Almeida Paz, F. A. (2015). Multifunctional metal–organic frameworks: from academia to industrial applications. Chemical Society Reviews, 44(19), 6774-6803. doi:10.1039/c5cs00307eRen, J., Dyosiba, X., Musyoka, N. M., Langmi, H. W., Mathe, M., & Liao, S. (2017). Review on the current practices and efforts towards pilot-scale production of metal-organic frameworks (MOFs). Coordination Chemistry Reviews, 352, 187-219. doi:10.1016/j.ccr.2017.09.005Ohtani, M., Takase, K., Wang, P., Higashi, K., Ueno, K., Yasuda, N., … Kobiro, K. (2016). Water-triggered macroscopic structural transformation of a metal–organic framework. CrystEngComm, 18(11), 1866-1870. doi:10.1039/c6ce00031bReinsch, H., De Vos, D., & Stock, N. (2013). Structure and Properties of [Al4(OH)8(o-C6H4(CO2)2)2]·H2O, a Layered Aluminum Phthalate. Zeitschrift für anorganische und allgemeine Chemie, 639(15), 2785-2789. doi:10.1002/zaac.201300357Li, H., Davis, C. E., Groy, T. L., Kelley, D. G., & Yaghi, O. M. (1998). Coordinatively Unsaturated Metal Centers in the Extended Porous Framework of Zn3(BDC)3·6CH3OH (BDC = 1,4-Benzenedicarboxylate). Journal of the American Chemical Society, 120(9), 2186-2187. doi:10.1021/ja974172gBanerjee, D., & Parise, J. B. (2011). Recent Advances in s-Block Metal Carboxylate Networks. Crystal Growth & Design, 11(10), 4704-4720. doi:10.1021/cg2008304Pagis, C., Ferbinteanu, M., Rothenberg, G., & Tanase, S. (2016). Lanthanide-Based Metal Organic Frameworks: Synthetic Strategies and Catalytic Applications. ACS Catalysis, 6(9), 6063-6072. doi:10.1021/acscatal.6b01935Aguirre-Díaz, L. M., Reinares-Fisac, D., Iglesias, M., Gutiérrez-Puebla, E., Gándara, F., Snejko, N., & Monge, M. Á. (2017). Group 13th metal-organic frameworks and their role in heterogeneous catalysis. Coordination Chemistry Reviews, 335, 1-27. doi:10.1016/j.ccr.2016.12.003Kang, M., Luo, D., Deng, Y., Li, R., & Lin, Z. (2014). Solvothermal synthesis and characterization of new calcium carboxylates based on cluster- and rod-like building blocks. Inorganic Chemistry Communications, 47, 52-55. doi:10.1016/j.inoche.2014.07.015Bourne, S. A., Lu, J., Mondal, A., Moulton, B., & Zaworotko, M. J. (2001). Self-Assembly of Nanometer-Scale Secondary Building Units into an Undulating Two-Dimensional Network with Two Types of Hydrophobic Cavity. Angewandte Chemie International Edition, 40(11), 2111-2113. doi:10.1002/1521-3773(20010601)40:113.0.co;2-fVodak, D. T., Braun, M. E., Kim, J., Eddaoudi, M., & Yaghi, O. M. (2001). Chemical Communications, (24), 2534-2535. doi:10.1039/b108684gBarthelet, K., Riou, D., & Férey, G. (2002). [VIII(H2O)]3O(O2CC6H4CO2)3·(Cl, 9H2O) (MIL-59): a rare example of vanadocarboxylate with a magnetically frustrated three-dimensional hybrid framework. Chemical Communications, (14), 1492-1493. doi:10.1039/b202749fQazvini, O. T., Babarao, R., Shi, Z.-L., Zhang, Y.-B., & Telfer, S. G. (2019). A Robust Ethane-Trapping Metal–Organic Framework with a High Capacity for Ethylene Purification. Journal of the American Chemical Society, 141(12), 5014-5020. doi:10.1021/jacs.9b00913Kim, J.-Y., Norquist, A. J., & O’Hare, D. (2003). Incorporation of uranium(vi) into metal–organic framework solids, [UO2(C4H4O4)]·H2O, [UO2F(C5H6O4)]·2H2O, and [(UO2)1.5(C8H4O4)2]2[(CH3)2NCOH2]·H2O. Dalton Trans., (14), 2813-2814. doi:10.1039/b306733pWang, G., Song, T., Fan, Y., Xu, J., Wang, M., Zhang, H., … Wang, L. (2010). [Y2(H2O)(BDC)3(DMF)]·(DMF)3: A rare 2-D (42.6)(45.6)2(48.62)(49.65.8) net with multi-helical-array and opened windows. Inorganic Chemistry Communications, 13(4), 502-505. doi:10.1016/j.inoche.2010.01.021Mihalcea, I., Henry, N., Clavier, N., Dacheux, N., & Loiseau, T. (2011). Occurence of an Octanuclear Motif of Uranyl Isophthalate with Cation–Cation Interactions through Edge-Sharing Connection Mode. Inorganic Chemistry, 50(13), 6243-6249. doi:10.1021/ic2005584Vougo-Zanda, M., Wang, X., & Jacobson, A. J. (2007). Influence of Ligand Geometry on the Formation of In−O Chains in Metal-Oxide Organic Frameworks (MOOFs). Inorganic Chemistry, 46(21), 8819-8824. doi:10.1021/ic701126tBu, F., & Xiao, S.-J. (2010). A 4-connected anionic metal–organic nanotube constructed from indium isophthalate. CrystEngComm, 12(11), 3385. doi:10.1039/c001284jPanda, T., Kundu, T., & Banerjee, R. (2013). Structural isomerism leading to variable proton conductivity in indium(iii) isophthalic acid based frameworks. Chemical Communications, 49(55), 6197. doi:10.1039/c3cc41939hChen, P.-K., Che, Y.-X., Zheng, J.-M., & Batten, S. R. (2007). Heteropolynuclear Metamagnet Showing Spin Canting and Single-Crystal to Single-Crystal Phase Transformation. Chemistry of Materials, 19(9), 2162-2167. doi:10.1021/cm062801sZhang, L., Qin, Y.-Y., Li, Z.-J., Lin, Q.-P., Cheng, J.-K., Zhang, J., & Yao, Y.-G. (2008). Topology Analysis and Nonlinear-Optical-Active Properties of Luminescent Metal−Organic Framework Materials Based on Zinc/Lead Isophthalates. Inorganic Chemistry, 47(18), 8286-8293. doi:10.1021/ic800871rZhang, J.-P., Ghosh, S. K., Lin, J.-B., & Kitagawa, S. (2009). New Heterometallic Carboxylate Frameworks: Synthesis, Structure, Robustness, Flexibility, and Porosity. Inorganic Chemistry, 48(16), 7970-7976. doi:10.1021/ic900919wMcCormick, L. J., Morris, S. A., Slawin, A. M. Z., Teat, S. J., & Morris, R. E. (2016). Coordination Polymers of 5-Alkoxy Isophthalic Acids. Crystal Growth & Design, 16(10), 5771-5780. doi:10.1021/acs.cgd.6b00853Chen, J., Li, C.-P., & Du, M. (2011). Substituent effect of R-isophthalates (R = –H, –CH3, –OCH3, –tBu, –OH, and –NO2) on the construction of CdIIcoordination polymers incorporating a dipyridyl tecton 2,5-bis(3-pyridyl)-1,3,4-oxadiazole. CrystEngComm, 13(6), 1885-1893. doi:10.1039/c0ce00555jDu, M., Zhang, Z.-H., You, Y.-P., & Zhao, X.-J. (2008). R-Isophthalate (R = –H, –NO2, and –COOH) as modular building blocks for mixed-ligand coordination polymers incorporated with a versatile connector 4-amino-3,5-bis(3-pyridyl)-1,2,4-triazole. CrystEngComm, 10(3), 306-321. doi:10.1039/b711447hChen, L., Ye, J.-W., Wang, H.-P., Pan, M., Yin, S.-Y., Wei, Z.-W., … Su, C.-Y. (2017). Ultrafast water sensing and thermal imaging by a metal-organic framework with switchable luminescence. Nature Communications, 8(1). doi:10.1038/ncomms15985Yuan, S., Qin, J.-S., Lollar, C. T., & Zhou, H.-C. (2018). Stable Metal–Organic Frameworks with Group 4 Metals: Current Status and Trends. ACS Central Science, 4(4), 440-450. doi:10.1021/acscentsci.8b00073Rieth, A. J., Wright, A. M., & Dincă, M. (2019). Kinetic stability of metal–organic frameworks for corrosive and coordinating gas capture. Nature Reviews Materials, 4(11), 708-725. doi:10.1038/s41578-019-0140-1Dhakshinamoorthy, A., Asiri, A. M., & García, H. (2016). Metal–Organic Framework (MOF) Compounds: Photocatalysts for Redox Reactions and Solar Fuel Production. Angewandte Chemie International Edition, 55(18), 5414-5445. doi:10.1002/anie.201505581Alvaro, M., Carbonell, E., Ferrer, B., Llabrés i Xamena, F. X., & Garcia, H. (2007). Semiconductor Behavior of a Metal-Organic Framework (MOF). Chemistry - A European Journal, 13(18), 5106-5112. doi:10.1002/chem.200601003Nasalevich, M. A., Goesten, M. G., Savenije, T. J., Kapteijn, F., & Gascon, J. (2013). Enhancing optical absorption of metal–organic frameworks for improved visible light photocatalysis. Chem. Commun., 49(90), 10575-10577. doi:10.1039/c3cc46398bZhu, J., Li, P.-Z., Guo, W., Zhao, Y., & Zou, R. (2018). Titanium-based metal–organic frameworks for photocatalytic applications. Coordination Chemistry Reviews, 359, 80-101. doi:10.1016/j.ccr.2017.12.013Benoit, V., Pillai, R. S., Orsi, A., Normand, P., Jobic, H., Nouar, F., … Llewellyn, P. L. (2016). MIL-91(Ti), a small pore metal–organic framework which fulfils several criteria: an upscaled green synthesis, excellent water stability, high CO2 selectivity and fast CO2 transport. Journal of Materials Chemistry A, 4(4), 1383-1389. doi:10.1039/c5ta09349jSun, Y., Liu, Y., Caro, J., Guo, X., Song, C., & Liu, Y. (2018). In‐Plane Epitaxial Growth of Highly c ‐Oriented NH 2 ‐MIL‐125(Ti) Membranes with Superior H 2 /CO 2 Selectivity. Angewandte Chemie International Edition, 57(49), 16088-16093. doi:10.1002/anie.201810088Wahiduzzaman, M., Wang, S., Schnee, J., Vimont, A., Ortiz, V., Yot, P. G., … Devautour-Vinot, S. (2019). A High Proton Conductive Hydrogen-Sulfate Decorated Titanium Carboxylate Metal−Organic Framework. ACS Sustainable Chemistry & Engineering, 7(6), 5776-5783. doi:10.1021/acssuschemeng.8b05306Pinto, R. V., Wang, S., Tavares, S. R., Pires, J., Antunes, F., Vimont, A., … Pinto, M. L. (2020). Tuning Cellular Biological Functions Through the Controlled Release of NO from a Porous Ti‐MOF. Angewandte Chemie International Edition, 59(13), 5135-5143. doi:10.1002/anie.201913135Assi, H., Mouchaham, G., Steunou, N., Devic, T., & Serre, C. (2017). Titanium coordination compounds: from discrete metal complexes to metal–organic frameworks. Chemical Society Reviews, 46(11), 3431-3452. doi:10.1039/c7cs00001dTachikawa, T., Tojo, S., Fujitsuka, M., Sekino, T., & Majima, T. (2006). Photoinduced Charge Separation in Titania Nanotubes. The Journal of Physical Chemistry B, 110(29), 14055-14059. doi:10.1021/jp063800qWang, S., Kitao, T., Guillou, N., Wahiduzzaman, M., Martineau-Corcos, C., Nouar, F., … Serre, C. (2018). A phase transformable ultrastable titanium-carboxylate framework for photoconduction. Nature Communications, 9(1). doi:10.1038/s41467-018-04034-wSerre, C., Groves, J. A., Lightfoot, P., Slawin, A. M. Z., Wright, P. A., Stock, N., … Férey, G. (2006). Synthesis, Structure and Properties of Related Microporous N,N‘-Piperazinebismethylenephosphonates of Aluminum and Titanium. Chemistry of Materials, 18(6), 1451-1457. doi:10.1021/cm052149lLi, C., Xu, H., Gao, J., Du, W., Shangguan, L., Zhang, X., … Chen, B. (2019). Tunable titanium metal–organic frameworks with infinite 1D Ti–O rods for efficient visible-light-driven photocatalytic H2 evolution. Journal of Materials Chemistry A, 7(19), 11928-11933. doi:10.1039/c9ta01942aKeum, Y., Park, S., Chen, Y.-P., & Park, J. (2018). Titanium-Carboxylate Metal-Organic Framework Based on an Unprecedented Ti-Oxo Chain Cluster. Angewandte Chemie International Edition, 57(45), 14852-14856. doi:10.1002/anie.201809762Yuan, S., Liu, T.-F., Feng, D., Tian, J., Wang, K., Qin, J., … Zhou, H.-C. (2015). A single crystalline porphyrinic titanium metal–organic framework. Chemical Science, 6(7), 3926-3930. doi:10.1039/c5sc00916bPadial, N. M., Castells-Gil, J., Almora-Barrios, N., Romero-Angel, M., da Silva, I., Barawi, M., … Martí-Gastaldo, C. (2019). Hydroxamate Titanium–Organic Frameworks and the Effect of Siderophore-Type Linkers over Their Photocatalytic Activity. Journal of the American Chemical Society, 141(33), 13124-13133. doi:10.1021/jacs.9b04915Wang, S., Reinsch, H., Heymans, N., Wahiduzzaman, M., Martineau-Corcos, C., De Weireld, G., … Serre, C. (2020). Toward a Rational Design of Titanium Metal-Organic Frameworks. Matter, 2(2), 440-450. doi:10.1016/j.matt.2019.11.002Hendon, C. H., Tiana, D., Fontecave, M., Sanchez, C., D’arras, L., Sassoye, C., … Walsh, A. (2013). Engineering the Optical Response of the Titanium-MIL-125 Metal–Organic Framework through Ligand Functionalization. Journal of the American Chemical Society, 135(30), 10942-10945. doi:10.1021/ja405350uFu, Y., Sun, D., Chen, Y., Huang, R., Ding, Z., Fu, X., & Li, Z. (2012). An Amine-Functionalized Titanium Metal-Organic Framework Photocatalyst with Visible-Light-Induced Activity for CO2 Reduction. Angewandte Chemie International Edition, 51(14), 3364-3367. doi:10.1002/anie.201108357Duran, D., Couster, S. L., Desjardins, K., Delmotte, A., Fox, G., Meijers, R., … Shepard, W. (2013). PROXIMA 2A – A New Fully Tunable Micro-focus Beamline for Macromolecular Crystallography. Journal of Physics: Conference Series, 425(1), 012005. doi:10.1088/1742-6596/425/1/012005Reinsch, H., van der Veen, M. A., Gil, B., Marszalek, B., Verbiest, T., de Vos, D., & Stock, N. (2012). Structures, Sorption Characteristics, and Nonlinear Optical Properties of a New Series of Highly Stable Aluminum MOFs. Chemistry of Materials, 25(1), 17-26. doi:10.1021/cm3025445Férey, G., & Serre, C. (2009). Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. Chemical Society Reviews, 38(5), 1380. doi:10.1039/b804302gFérey, G. (2016). Giant flexibility of crystallized organic–inorganic porous solids: facts, reasons, effects and applications. New Journal of Chemistry, 40(5), 3950-3967. doi:10.1039/c5nj02747kLeshuk, T., Parviz, R., Everett, P., Krishnakumar, H., Varin, R. A., & Gu, F. (2013). Photocatalytic Activity of Hydrogenated TiO2. ACS Applied Materials & Interfaces, 5(6), 1892-1895. doi:10.1021/am302903nChen, X., Liu, L., & Huang, F. (2015). Black titanium dioxide (TiO2) nanomaterials. Chemical Society Reviews, 44(7), 1861-1885. doi:10.1039/c4cs00330fLiu, L., & Chen, X. (2014). Titanium Dioxide Nanomaterials: Self-Structural Modifications. Chemical Reviews, 114(19), 9890-9918. doi:10.1021/cr400624rReinsch, H., Waitschat, S., & Stock, N. (2013). Mixed-linker MOFs with CAU-10 structure: synthesis and gas sorption characteristics. Dalton Transactions, 42(14), 4840. doi:10.1039/c3dt32355bDeng, H., Doonan, C. J., Furukawa, H., Ferreira, R. B., Towne, J., Knobler, C. B., … Yaghi, O. M. (2010). Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks. Science, 327(5967), 846-850. doi:10.1126/science.1181761Foo, M. L., Matsuda, R., & Kitagawa, S. (2013). Functional Hybrid Porous Coordination Polymers. Chemistry of Materials, 26(1), 310-322. doi:10.1021/cm402136zHelal, A., Yamani, Z. H., Cordova, K. E., & Yaghi, O. M. (2017). Multivariate metal-organic frameworks. National Science Review, 4(3), 296-298. doi:10.1093/nsr/nwx013Ding, M., Flaig, R. W., Jiang, H.-L., & Yaghi, O. M. (2019). Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chemical Society Reviews, 48(10), 2783-2828. doi:10.1039/c8cs00829aLi, R., Hu, J., Deng, M., Wang, H., Wang, X., Hu, Y., … Xiong, Y. (2014). Integration of an Inorganic Semiconductor with a Metal-Organic Framework: A Platform for Enhanced Gaseous Photocatalytic Reactions. Advanced Materials, 26(28), 4783-4788. doi:10.1002/adma.201400428Cabrero-Antonino, M., Remiro-Buenamañana, S., Souto, M., García-Valdivia, A. A., Choquesillo-Lazarte, D., Navalón, S., … García, H. (2019). Design of cost-efficient and photocatalytically active Zn-based MOFs decorated with Cu2O nanoparticles for CO2methanation. Chemical Communications, 55(73), 10932-10935. doi:10.1039/c9cc04446aUlmer, U., Dingle, T., Duchesne, P. N., Morris, R. H., Tavasoli, A., Wood, T., & Ozin, G. A. (2019). Fundamentals and applications of photocatalytic CO2 methanation. Nature Communications, 10(1). doi:10.1038/s41467-019-10996-2Younas, M., Loong Kong, L., Bashir, M. J. K., Nadeem, H., Shehzad, A., & Sethupathi, S. (2016). Recent Advancements, Fundamental Challenges, and Opportunities in Catalytic Methanation of CO2. Energy & Fuels, 30(11), 8815-8831. doi:10.1021/acs.energyfuels.6b01723Mateo, D., Albero, J., & García, H. (2019). Titanium-Perovskite-Supported RuO2 Nanoparticles for Photocatalytic CO2 Methanation. Joule, 3(8), 1949-1962. doi:10.1016/j.joule.2019.06.001Wenderich, K., & Mul, G. (2016). Methods, Mechanism, and Applications of Photodeposition in Photocatalysis: A Review. Chemical Reviews, 116(23), 14587-14619. doi:10.1021/acs.chemrev.6b00327Giang, T. P. L., Tran, T. N. M., & Le, X. T. (2012). Preparation and characterization of titanium dioxide nanotube array supported hydrated ruthenium oxide catalysts. Advances in Natural Sciences: Nanoscience and Nanotechnology, 3(1), 015008. doi:10.1088/2043-6262/3/1/015008Morgan, D. J. (2015). Resolving ruthenium: XPS studies of common ruthenium materials. Surface and Interface Analysis, 47(11), 1072-1079. doi:10.1002/sia.5852Albero, J., Peng, Y., & García, H. (2020). Photocatalytic CO2 Reduction to C2+ Products. ACS Catalysis, 10(10), 5734-5749. doi:10.1021/acscatal.0c00478Mateo, D., Santiago‐Portillo, A., Albero, J., Navalón, S., Alvaro, M., & García, H. (2019). Long‐Term Photostability in Terephthalate Metal–Organic Frameworks. Angewandte Chemie International Edition, 58(49), 17843-17848. doi:10.1002/anie.201911600Mateo, D., Albero, J., & García, H. (2018). Graphene supported NiO/Ni nanoparticles as efficient photocatalyst for gas phase CO2 reduction with hydrogen. Applied Catalysis B: Environmental, 224, 563-571. doi:10.1016/j.apcatb.2017.10.071Mateo, D., Albero, J., & García, H. (2017). Photoassisted methanation using Cu2O nanoparticles supported on graphene as a photocatalyst. Energy & Environmental Science, 10(11), 2392-2400. doi:10.1039/c7ee02287eMateo, D., Asiri, A. M., Albero, J., & García, H. (2018). The mechanism of photocatalytic CO2 reduction by graphene-support

    Ecological and evolutionary consequences of anticancer adaptations

    Get PDF
    Cellular cheating leading to cancers exists in all branches of multicellular life, favoring the evolution of adaptations to avoid or suppress malignant progression, and/or to alleviate its fitness consequences. Ecologists have until recently largely neglected the importance of cancer cells for animal ecology, presumably because they did not consider either the potential ecological or evolutionary consequences of anticancer adaptations. Here, we review the diverse ways in which the evolution of anticancer adaptations has significantly constrained several aspects of the evolutionary ecology of multicellular organisms at the cell, individual, population, species, and ecosystem levels and suggest some avenues for future research

    Development of a Multivariate Prediction Model for Early-Onset Bronchiolitis Obliterans Syndrome and Restrictive Allograft Syndrome in Lung Transplantation.

    Get PDF
    Chronic lung allograft dysfunction and its main phenotypes, bronchiolitis obliterans syndrome (BOS) and restrictive allograft syndrome (RAS), are major causes of mortality after lung transplantation (LT). RAS and early-onset BOS, developing within 3 years after LT, are associated with particularly inferior clinical outcomes. Prediction models for early-onset BOS and RAS have not been previously described. LT recipients of the French and Swiss transplant cohorts were eligible for inclusion in the SysCLAD cohort if they were alive with at least 2 years of follow-up but less than 3 years, or if they died or were retransplanted at any time less than 3 years. These patients were assessed for early-onset BOS, RAS, or stable allograft function by an adjudication committee. Baseline characteristics, data on surgery, immunosuppression, and year-1 follow-up were collected. Prediction models for BOS and RAS were developed using multivariate logistic regression and multivariate multinomial analysis. Among patients fulfilling the eligibility criteria, we identified 149 stable, 51 BOS, and 30 RAS subjects. The best prediction model for early-onset BOS and RAS included the underlying diagnosis, induction treatment, immunosuppression, and year-1 class II donor-specific antibodies (DSAs). Within this model, class II DSAs were associated with BOS and RAS, whereas pre-LT diagnoses of interstitial lung disease and chronic obstructive pulmonary disease were associated with RAS. Although these findings need further validation, results indicate that specific baseline and year-1 parameters may serve as predictors of BOS or RAS by 3 years post-LT. Their identification may allow intervention or guide risk stratification, aiming for an individualized patient management approach

    Single-nanoparticle phase transitions visualized by four-dimensional electron microscopy

    Get PDF
    The advancement of techniques that can probe the behaviour of individual nanoscopic objects is of paramount importance in various disciplines, including photonics and electronics. As it provides images with a spatiotemporal resolution, four-dimensional electron microscopy, in principle, should enable the visualization of single-nanoparticle structural dynamics in real and reciprocal space. Here, we demonstrate the selectivity and sensitivity of the technique by visualizing the spin crossover dynamics of single, isolated metal–organic framework nanocrystals. By introducing a small aperture in the microscope, it was possible to follow the phase transition and the associated structural dynamics within a single particle. Its behaviour was observed to be distinct from that imaged by averaging over ensembles of heterogeneous nanoparticles. The approach reported here has potential applications in other nanosystems and those that undergo (bio)chemical transformations

    Thermo- and Photo-induced switching of spin-crossover molecular solids : from single crystal to nanoparticles

    No full text
    Ce travail de thèse est consacré à l’élaboration de composés à transition de spin et l’étude de leurs propriétés induites par irradiation lumineuse ou par une variation de la température. L’induction à l’état solide de la transition de spin par la lumière, via les effets appelés Light-Induced Excited Spin State Trapping (LIESST) et Ligand Driven Light-Induced Spin Change (LD-LISC)) a été étudiée. La préparation de nanoparticules et leur mise en forme ont été ensuite développées à partir de composés à transition de spin de nature moléculaire, puis leurs propriétés de commutation ont été examinées. Deux familles de matériaux aux propriétés optimisées pour l’étude du mécanisme de photo-conversion par effet LIESST aux temps ultra-courts ont été examinées et les premiers résultats de mesures résolues en temps sont présentés. Par ailleurs, l’étude de l’effet photomagnétique LD-LISC a été menée avec les composés de FeII(stpy)4(NCSe)2 (stpy = 4-styrylpyridine, ligand photo-isomérisable), soit en dispersant les composés dans une matrice polymérique, soit à l’état cristallin. L’influence du milieu sur la photo-réactivité du composé a été démontrée et, dans le solide cristallin, une isomérisation unidirectionnelle du ligand stpy via un mécanisme original mettant en jeu des états excités MLCT a été mise en évidence. Le développement de méthodes originales permettant la préparation de nanoparticules à transition de spin à partir de composés moléculaires a été effectuée. Tout d’abord, la chimie sol-gel a été utilisée afin d’obtenir des nano-objets dispersés dans un film mince de silice. Cette approche élégante a permis un bon contrôle de la taille des objets et l’obtention de solides de bonne qualité optique, dans lesquels une conversion thermo- et photo-induite a été observée avec le composé [FeII(mepy)3tren](PF6)2. Une autre méthode de synthèse, consistant en la précipitation rapide d’objets, éventuellement limitée par la présence de polymère a été appliquée avec succès à l’étude de plusieurs composés moléculaires à transition de spin. Avec le composé [FeIII(3-OMeSalEen)2]PF6, des objets de taille contrôlée ont été synthétisés et, de manière remarquable, un effet, relativement faible, de la réduction de taille sur la coopérativité a été observé. Enfin, l’étude de microcristaux FeII(phen)2(NCS)2, a permis de démontrer de manière indiscutable que la présence de polymère enrobant les objets pouvait influer sur leur transition thermo- et photo-induite en induisant des contraintes au niveau des particules.This work is devoted to synthesis of spin-crossover compounds and to the study of their thermo- or photo-induced switching. Photo-induced spin-crossover, either by the Light-Induced Excited Spin State Trapping (LIESST) or the Ligand Driven Light-Induced Spin Change (LD-LISC)) effects, has been studied in the solid state. The synthesis of spin-crossover nanoparticles built with compounds of molecular nature and the study of their switching properties has then been examined. The synthesis of optimized materials for the study of the photo-switching mechanism (LIESST effect) at ultrafast timescales has been developed and the first time-resolved measurements are presented. The study of the LD-LISC effect on the FeII(stpy)4(NCSe)2 (stpy = 4-styrylpyridine, photo-isomerizable ligand) complexes has also been performed, either bydispersing the compound in a polymeric matrix, or on the crystalline state. Different photo-induced behaviours have been evidenced, depending on the compound environment. On thecrystalline state, a unidirectional reactivity of the stpy ligand through an original mechanism following the excitation in the MLCT excited states has been evidenced. The synthesis of spin-crossover nanoparticles with compounds of molecular nature has then been performed with two different methods. First, the sol-gel process has been used to obtain well dispersed nanoparticles in a silica thin film. This approach allows the synthesis of size-controlled particles trapped on solids of good optical quality, in which a thermo- and photo-induced spin crossover has been observed with the [FeII(mepy)3tren](PF6)2 compound. Another synthetic method, based on the precipitation in an anti-solvent, has been successfully applied to various spin-crossover complexes. With the [FeIII(3-OMeSalEen)2]PF6 compound, size-controlled particles have been prepared and, interestingly, the size reduction effect on the cooperative processes appears to be limited. Finally, the study of FeII(phen)2(NCS)2 microcrystals has evidenced that the interaction between the polymer and the particles can affect their thermo- and photo-induced spin-crossover processes

    Commutation thermo- et photo-induite de solides moléculaires a transition de spin : du monocristal aux nano-objets

    No full text
    This work is devoted to synthesis of spin-crossover compounds and to the study of their thermo- or photo-induced switching. Photo-induced spin-crossover, either by the Light-Induced Excited Spin State Trapping (LIESST) or the Ligand Driven Light-Induced Spin Change (LD-LISC)) effects, has been studied in the solid state. The synthesis of spin-crossover nanoparticles built with compounds of molecular nature and the study of their switching properties has then been examined. The synthesis of optimized materials for the study of the photo-switching mechanism (LIESST effect) at ultrafast timescales has been developed and the first time-resolved measurements are presented. The study of the LD-LISC effect on the FeII(stpy)4(NCSe)2 (stpy = 4-styrylpyridine, photo-isomerizable ligand) complexes has also been performed, either bydispersing the compound in a polymeric matrix, or on the crystalline state. Different photo-induced behaviours have been evidenced, depending on the compound environment. On thecrystalline state, a unidirectional reactivity of the stpy ligand through an original mechanism following the excitation in the MLCT excited states has been evidenced. The synthesis of spin-crossover nanoparticles with compounds of molecular nature has then been performed with two different methods. First, the sol-gel process has been used to obtain well dispersed nanoparticles in a silica thin film. This approach allows the synthesis of size-controlled particles trapped on solids of good optical quality, in which a thermo- and photo-induced spin crossover has been observed with the [FeII(mepy)3tren](PF6)2 compound. Another synthetic method, based on the precipitation in an anti-solvent, has been successfully applied to various spin-crossover complexes. With the [FeIII(3-OMeSalEen)2]PF6 compound, size-controlled particles have been prepared and, interestingly, the size reduction effect on the cooperative processes appears to be limited. Finally, the study of FeII(phen)2(NCS)2 microcrystals has evidenced that the interaction between the polymer and the particles can affect their thermo- and photo-induced spin-crossover processes.Ce travail de thèse est consacré à l’élaboration de composés à transition de spin et l’étude de leurs propriétés induites par irradiation lumineuse ou par une variation de la température. L’induction à l’état solide de la transition de spin par la lumière, via les effets appelés Light-Induced Excited Spin State Trapping (LIESST) et Ligand Driven Light-Induced Spin Change (LD-LISC)) a été étudiée. La préparation de nanoparticules et leur mise en forme ont été ensuite développées à partir de composés à transition de spin de nature moléculaire, puis leurs propriétés de commutation ont été examinées. Deux familles de matériaux aux propriétés optimisées pour l’étude du mécanisme de photo-conversion par effet LIESST aux temps ultra-courts ont été examinées et les premiers résultats de mesures résolues en temps sont présentés. Par ailleurs, l’étude de l’effet photomagnétique LD-LISC a été menée avec les composés de FeII(stpy)4(NCSe)2 (stpy = 4-styrylpyridine, ligand photo-isomérisable), soit en dispersant les composés dans une matrice polymérique, soit à l’état cristallin. L’influence du milieu sur la photo-réactivité du composé a été démontrée et, dans le solide cristallin, une isomérisation unidirectionnelle du ligand stpy via un mécanisme original mettant en jeu des états excités MLCT a été mise en évidence. Le développement de méthodes originales permettant la préparation de nanoparticules à transition de spin à partir de composés moléculaires a été effectuée. Tout d’abord, la chimie sol-gel a été utilisée afin d’obtenir des nano-objets dispersés dans un film mince de silice. Cette approche élégante a permis un bon contrôle de la taille des objets et l’obtention de solides de bonne qualité optique, dans lesquels une conversion thermo- et photo-induite a été observée avec le composé [FeII(mepy)3tren](PF6)2. Une autre méthode de synthèse, consistant en la précipitation rapide d’objets, éventuellement limitée par la présence de polymère a été appliquée avec succès à l’étude de plusieurs composés moléculaires à transition de spin. Avec le composé [FeIII(3-OMeSalEen)2]PF6, des objets de taille contrôlée ont été synthétisés et, de manière remarquable, un effet, relativement faible, de la réduction de taille sur la coopérativité a été observé. Enfin, l’étude de microcristaux FeII(phen)2(NCS)2, a permis de démontrer de manière indiscutable que la présence de polymère enrobant les objets pouvait influer sur leur transition thermo- et photo-induite en induisant des contraintes au niveau des particules

    Commutation thermo- et photo-induite de solides moléculaires a transition de spin : du monocristal aux nano-objets

    No full text
    This work is devoted to synthesis of spin-crossover compounds and to the study of their thermo- or photo-induced switching. Photo-induced spin-crossover, either by the Light-Induced Excited Spin State Trapping (LIESST) or the Ligand Driven Light-Induced Spin Change (LD-LISC)) effects, has been studied in the solid state. The synthesis of spin-crossover nanoparticles built with compounds of molecular nature and the study of their switching properties has then been examined. The synthesis of optimized materials for the study of the photo-switching mechanism (LIESST effect) at ultrafast timescales has been developed and the first time-resolved measurements are presented. The study of the LD-LISC effect on the FeII(stpy)4(NCSe)2 (stpy = 4-styrylpyridine, photo-isomerizable ligand) complexes has also been performed, either bydispersing the compound in a polymeric matrix, or on the crystalline state. Different photo-induced behaviours have been evidenced, depending on the compound environment. On thecrystalline state, a unidirectional reactivity of the stpy ligand through an original mechanism following the excitation in the MLCT excited states has been evidenced. The synthesis of spin-crossover nanoparticles with compounds of molecular nature has then been performed with two different methods. First, the sol-gel process has been used to obtain well dispersed nanoparticles in a silica thin film. This approach allows the synthesis of size-controlled particles trapped on solids of good optical quality, in which a thermo- and photo-induced spin crossover has been observed with the [FeII(mepy)3tren](PF6)2 compound. Another synthetic method, based on the precipitation in an anti-solvent, has been successfully applied to various spin-crossover complexes. With the [FeIII(3-OMeSalEen)2]PF6 compound, size-controlled particles have been prepared and, interestingly, the size reduction effect on the cooperative processes appears to be limited. Finally, the study of FeII(phen)2(NCS)2 microcrystals has evidenced that the interaction between the polymer and the particles can affect their thermo- and photo-induced spin-crossover processes.Ce travail de thèse est consacré à l’élaboration de composés à transition de spin et l’étude de leurs propriétés induites par irradiation lumineuse ou par une variation de la température. L’induction à l’état solide de la transition de spin par la lumière, via les effets appelés Light-Induced Excited Spin State Trapping (LIESST) et Ligand Driven Light-Induced Spin Change (LD-LISC)) a été étudiée. La préparation de nanoparticules et leur mise en forme ont été ensuite développées à partir de composés à transition de spin de nature moléculaire, puis leurs propriétés de commutation ont été examinées. Deux familles de matériaux aux propriétés optimisées pour l’étude du mécanisme de photo-conversion par effet LIESST aux temps ultra-courts ont été examinées et les premiers résultats de mesures résolues en temps sont présentés. Par ailleurs, l’étude de l’effet photomagnétique LD-LISC a été menée avec les composés de FeII(stpy)4(NCSe)2 (stpy = 4-styrylpyridine, ligand photo-isomérisable), soit en dispersant les composés dans une matrice polymérique, soit à l’état cristallin. L’influence du milieu sur la photo-réactivité du composé a été démontrée et, dans le solide cristallin, une isomérisation unidirectionnelle du ligand stpy via un mécanisme original mettant en jeu des états excités MLCT a été mise en évidence. Le développement de méthodes originales permettant la préparation de nanoparticules à transition de spin à partir de composés moléculaires a été effectuée. Tout d’abord, la chimie sol-gel a été utilisée afin d’obtenir des nano-objets dispersés dans un film mince de silice. Cette approche élégante a permis un bon contrôle de la taille des objets et l’obtention de solides de bonne qualité optique, dans lesquels une conversion thermo- et photo-induite a été observée avec le composé [FeII(mepy)3tren](PF6)2. Une autre méthode de synthèse, consistant en la précipitation rapide d’objets, éventuellement limitée par la présence de polymère a été appliquée avec succès à l’étude de plusieurs composés moléculaires à transition de spin. Avec le composé [FeIII(3-OMeSalEen)2]PF6, des objets de taille contrôlée ont été synthétisés et, de manière remarquable, un effet, relativement faible, de la réduction de taille sur la coopérativité a été observé. Enfin, l’étude de microcristaux FeII(phen)2(NCS)2, a permis de démontrer de manière indiscutable que la présence de polymère enrobant les objets pouvait influer sur leur transition thermo- et photo-induite en induisant des contraintes au niveau des particules

    Commutation thermo- et photo-induite de solides moléculaires a transition de spin (du monocristal aux nano-objets)

    No full text
    Ce travail de thèse est consacré à l élaboration de composés à transition de spin et l étude de leurs propriétés induites par irradiation lumineuse ou par une variation de la température. L induction à l état solide de la transition de spin par la lumière, via les effets appelés Light-Induced Excited Spin State Trapping (LIESST) et Ligand Driven Light-Induced Spin Change (LD-LISC)) a été étudiée. La préparation de nanoparticules et leur mise en forme ont été ensuite développées à partir de composés à transition de spin de nature moléculaire, puis leurs propriétés de commutation ont été examinées. Deux familles de matériaux aux propriétés optimisées pour l étude du mécanisme de photo-conversion par effet LIESST aux temps ultra-courts ont été examinées et les premiers résultats de mesures résolues en temps sont présentés. Par ailleurs, l étude de l effet photomagnétique LD-LISC a été menée avec les composés de FeII(stpy)4(NCSe)2 (stpy = 4-styrylpyridine, ligand photo-isomérisable), soit en dispersant les composés dans une matrice polymérique, soit à l état cristallin. L influence du milieu sur la photo-réactivité du composé a été démontrée et, dans le solide cristallin, une isomérisation unidirectionnelle du ligand stpy via un mécanisme original mettant en jeu des états excités MLCT a été mise en évidence. Le développement de méthodes originales permettant la préparation de nanoparticules à transition de spin à partir de composés moléculaires a été effectuée. Tout d abord, la chimie sol-gel a été utilisée afin d obtenir des nano-objets dispersés dans un film mince de silice. Cette approche élégante a permis un bon contrôle de la taille des objets et l obtention de solides de bonne qualité optique, dans lesquels une conversion thermo- et photo-induite a été observée avec le composé [FeII(mepy)3tren](PF6)2. Une autre méthode de synthèse, consistant en la précipitation rapide d objets, éventuellement limitée par la présence de polymère a été appliquée avec succès à l étude de plusieurs composés moléculaires à transition de spin. Avec le composé [FeIII(3-OMeSalEen)2]PF6, des objets de taille contrôlée ont été synthétisés et, de manière remarquable, un effet, relativement faible, de la réduction de taille sur la coopérativité a été observé. Enfin, l étude de microcristaux FeII(phen)2(NCS)2, a permis de démontrer de manière indiscutable que la présence de polymère enrobant les objets pouvait influer sur leur transition thermo- et photo-induite en induisant des contraintes au niveau des particules.This work is devoted to synthesis of spin-crossover compounds and to the study of their thermo- or photo-induced switching. Photo-induced spin-crossover, either by the Light-Induced Excited Spin State Trapping (LIESST) or the Ligand Driven Light-Induced Spin Change (LD-LISC)) effects, has been studied in the solid state. The synthesis of spin-crossover nanoparticles built with compounds of molecular nature and the study of their switching properties has then been examined. The synthesis of optimized materials for the study of the photo-switching mechanism (LIESST effect) at ultrafast timescales has been developed and the first time-resolved measurements are presented. The study of the LD-LISC effect on the FeII(stpy)4(NCSe)2 (stpy = 4-styrylpyridine, photo-isomerizable ligand) complexes has also been performed, either bydispersing the compound in a polymeric matrix, or on the crystalline state. Different photo-induced behaviours have been evidenced, depending on the compound environment. On thecrystalline state, a unidirectional reactivity of the stpy ligand through an original mechanism following the excitation in the MLCT excited states has been evidenced. The synthesis of spin-crossover nanoparticles with compounds of molecular nature has then been performed with two different methods. First, the sol-gel process has been used to obtain well dispersed nanoparticles in a silica thin film. This approach allows the synthesis of size-controlled particles trapped on solids of good optical quality, in which a thermo- and photo-induced spin crossover has been observed with the [FeII(mepy)3tren](PF6)2 compound. Another synthetic method, based on the precipitation in an anti-solvent, has been successfully applied to various spin-crossover complexes. With the [FeIII(3-OMeSalEen)2]PF6 compound, size-controlled particles have been prepared and, interestingly, the size reduction effect on the cooperative processes appears to be limited. Finally, the study of FeII(phen)2(NCS)2 microcrystals has evidenced that the interaction between the polymer and the particles can affect their thermo- and photo-induced spin-crossover processes.PARIS11-SCD-Bib. électronique (914719901) / SudocSudocFranceF
    corecore