5,871 research outputs found
Response maxima in time-modulated turbulence: Direct Numerical Simulations
The response of turbulent flow to time-modulated forcing is studied by direct
numerical simulations of the Navier-Stokes equations. The large-scale forcing
is modulated via periodic energy input variations at frequency . The
response is maximal for frequencies in the range of the inverse of the large
eddy turnover time, confirming the mean-field predictions of von der Heydt,
Grossmann and Lohse (Phys. Rev. E 67, 046308 (2003)). In accordance with the
theory the response maximum shows only a small dependence on the Reynolds
number and is also quite insensitive to the particular flow-quantity that is
monitored, e.g., kinetic energy, dissipation-rate, or Taylor-Reynolds number.
At sufficiently high frequencies the amplitude of the kinetic energy response
decreases as . For frequencies beyond the range of maximal response,
a significant change in phase-shift relative to the time-modulated forcing is
observed.Comment: submitted to Europhysics Letters (EPL), 8 pages, 8 Postscript
figures, uses epl.cl
Multiplier Sequences for Simple Sets of Polynomials
In this paper we give a new characterization of simple sets of polynomials B
with the property that the set of B-multiplier sequences contains all
Q-multiplier sequence for every simple set Q. We characterize sequences of real
numbers which are multiplier sequences for every simple set Q, and obtain some
results toward the partitioning of the set of classical multiplier sequences
A solenoidal electron spectrometer for a precision measurement of the neutron -asymmetry with ultracold neutrons
We describe an electron spectrometer designed for a precision measurement of
the neutron -asymmetry with spin-polarized ultracold neutrons. The
spectrometer consists of a 1.0-Tesla solenoidal field with two identical
multiwire proportional chamber and plastic scintillator electron detector
packages situated within 0.6-Tesla field-expansion regions. Select results from
performance studies of the spectrometer with calibration sources are reported.Comment: 30 pages, 19 figures, 1 table, submitted to NIM
Molecular biomarkers for assessing the heat-adapted phenotype:a narrative scoping review
Heat acclimation/acclimatisation (HA) mitigates heat-related decrements in physical capacity and heat-illness risk and is a widely advocated countermeasure for individuals operating in hot environments. The efficacy of HA is typically quantified by assessing the thermo-physiological responses to a standard heat acclimation state test (i.e. physiological biomarkers), but this can be logistically challenging, time consuming, and expensive. A valid molecular biomarker of HA would enable evaluation of the heat-adapted state through the sampling and assessment of a biological medium. This narrative review examines candidate molecular biomarkers of HA, highlighting the poor sensitivity and specificity of these candidates and identifying the current lack of a single 'standout' biomarker. It concludes by considering the potential of multivariable approaches that provide information about a range of physiological systems, identifying a number of challenges that must be overcome to develop a valid molecular biomarker of the heat-adapted state, and highlighting future research opportunities
Measurement of the neutron β-asymmetry parameter A_0 with ultracold neutrons
We present a detailed report of a measurement of the neutron β-asymmetry parameter A_0, the parity-violating angular correlation between the neutron spin and the decay electron momentum, performed with polarized ultracold neutrons (UCN). UCN were extracted from a pulsed spallation solid deuterium source and polarized via transport through a 7-T magnetic field. The polarized UCN were then transported through an adiabatic-fast-passage spin-flipper field region, prior to storage in a cylindrical decay volume situated within a 1-T 2×2π solenoidal spectrometer. The asymmetry was extracted from measurements of the decay electrons in multiwire proportional chamber and plastic scintillator detector packages located on both ends of the spectrometer. From an analysis of data acquired during runs in 2008 and 2009, we report A_0=−0.11966±0.00089_(−0.00140)^(+0.00123), from which we extract a value for the ratio of the weak axial-vector and vector coupling constants of the nucleon, λ=g_A/g_V=−1.27590±0.00239_(−0.00377)^(+0.00331). Complete details of the analysis are presented
Parity-violating Electron Deuteron Scattering and the Proton's Neutral Weak Axial Vector Form Factor
We report on a new measurement of the parity-violating asymmetry in
quasielastic electron scattering from the deuteron at backward angles at Q2=
0.038 (GeV/c)2. This quantity provides a determination of the neutral weak
axial vector form factor of the nucleon, which can potentially receive large
electroweak corrections. The measured asymmetry A=-3.51 +/- 0.57(stat) +/-
0.58(sys)ppm is consistent with theoretical predictions. We also report on
updated results of the previous experiment at Q2=0.091 (GeV/c)2, which are also
consistent with theoretical predictions.Comment: 4 pages, 2 figures, submitted to Phys. Rev. Let
- …